

Atlas Project Members

- Jeffrey Adams
- Dan Barbasch
- Birne Binegar
- Bill Casselman
- Dan Ciubotaru
- Scott Crofts
- Fokko du Cloux
- Alfred Noel
- Tatiana Howard
- Alessandra Pantano
- Annegret Paul
- Patrick Polo
- Siddhartha Sahi
- Susana Salamanca
- John Stembridge
- Peter Trapa
- Marc van Leeuwen
- David Vogan
- Wai-Ling Yee
- Jiu-Kang Yu
- Gregg Zuckerman

Fix a real reductive group $G(\mathbb{R})$.

Fix a real reductive group $G(\mathbb{R})$.
Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

Fix a real reductive group $G(\mathbb{R})$.
Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit

Fix a real reductive group $G(\mathbb{R})$.
Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit
It is not clear that it can be implemented on a computer

Fix a real reductive group $G(\mathbb{R})$.
Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit
It is not clear that it can be implemented on a computer
Atlas of Lie Groups and Representations:

Fix a real reductive group $G(\mathbb{R})$.
Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit
It is not clear that it can be implemented on a computer
Atlas of Lie Groups and Representations:
Take this idea seriously

p-adic groups

Fix a p-adic group G.
Question: Is there a finite algorithm to compute:
(1) The unitary dual of G ?

p-adic groups

Fix a p-adic group G.
Question: Is there a finite algorithm to compute:
(1) The unitary dual of G ?
(2) The admissible dual of G ?
p-adic groups
Fix a p-adic group G.
Question: Is there a finite algorithm to compute:
(1) The unitary dual of G ?
(2) The admissible dual of G ?
(3) The discrete series of G ?

p-adic groups

Fix a p-adic group G.
Question: Is there a finite algorithm to compute:
(1) The unitary dual of G ?
(2) The admissible dual of G ?
(3) The discrete series of G ?
(ㄱ) The supercuspidal representations of G ?

p-adic groups

Fix a p-adic group G.
Question: Is there a finite algorithm to compute:
(1) The unitary dual of G ?
(2) The admissible dual of G ?
(3) The discrete series of G ?
(ㄱ) The supercuspidal representations of G ?
(So far the answer seems to be no...)

Admissible Dual of $G(\mathbb{R})$ Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)

Admissible Dual of $G(\mathbb{R})$ Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

Admissible Dual of $G(\mathbb{R})$

 Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.
This is known (Langlands/Knapp/Zuckerman/Vogan)...

Admissible Dual of $G(\mathbb{R})$

 Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.
This is known (Langlands/Knapp/Zuckerman/Vogan). . . but very hard to compute.

Admissible Dual of $G(\mathbb{R})$

Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)
Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.
This is known (Langlands/Knapp/Zuckerman/Vogan). . . but very hard to compute.

Example: How many irreducible representations does the split real form of E_{8} have at infinitesimal character ρ ?

Admissible Dual of $G(\mathbb{R})$

Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)
Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.
This is known (Langlands/Knapp/Zuckerman/Vogan). . . but very hard to compute.

Example: How many irreducible representations does the split real form of E_{8} have at infinitesimal character ρ ?

Answer: 526,471

Admissible Dual of $G(\mathbb{R})$

Recall $\widehat{G}_{u} \subset \widehat{G}_{a}$ (admissible dual)
Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.
This is known (Langlands/Knapp/Zuckerman/Vogan). . . but very hard to compute.

Example: How many irreducible representations does the split real form of E_{8} have at infinitesimal character ρ ?

Answer: 526,471
$(2,157$ of them $=.41 \%$ are unitary $)$

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
(9) Specify a block \mathcal{B} of irreducible representations of $G(\mathbb{R})$ (finite set)

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
(9) Specify a block \mathcal{B} of irreducible representations of $G(\mathbb{R})$ (finite set)
(3) Parametrize \mathcal{B}

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
(9) Specify a block \mathcal{B} of irreducible representations of $G(\mathbb{R})$ (finite set)
(3) Parametrize \mathcal{B}
(0) Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
(9) Specify a block \mathcal{B} of irreducible representations of $G(\mathbb{R})$ (finite set)
(3) Parametrize \mathcal{B}
(0) Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}
(- Compute the unitary representations in \mathcal{B}

Algorithm for the Admissible Dual of $G(\mathbb{R})$
More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
(9) Specify a block \mathcal{B} of irreducible representations of $G(\mathbb{R})$ (finite set)
(3) Parametrize \mathcal{B}
(6) Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}
(1) Compute the unitary representations in \mathcal{B}

The at las software does 1-6

Algorithm for the Admissible Dual of $G(\mathbb{R})$

More precisely we want to:
(1) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
(2) Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
(3) Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
(9) Specify a block \mathcal{B} of irreducible representations of $G(\mathbb{R})$ (finite set)
(3) Parametrize \mathcal{B}
(0) Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}
(0) Compute the unitary representations in \mathcal{B}

The at las software does 1-6 (we're working on 7)

Computing the Admissible Dual

Fix an infinitesimal character λ
(for now $\lambda=\rho$, infinitesimal character of trivial representation)

Computing the Admissible Dual

Fix an infinitesimal character λ
(for now $\lambda=\rho$, infinitesimal character of trivial representation)
$\Pi(G, \rho)=$ irreducible admissible representations with infinitesimal character ρ
$\Pi(G, \rho)$ is a finite set (Harish-Chandra).

```
Three views of the Admissible Dual

\section*{Computing the Admissible Dual}

Fix an infinitesimal character \(\lambda\)
(for now \(\lambda=\rho\), infinitesimal character of trivial representation)
\(\Pi(G, \rho)=\) irreducible admissible representations with infinitesimal character \(\rho\)
\(\Pi(G, \rho)\) is a finite set (Harish-Chandra).
More precise problem: Give an explicit, natural parametrization of \(\Pi(G, \rho)\)
```

Three views of the Admissible Dual

```
```

The Langlands Classification

```
The Langlands Classification
D}\mathrm{ -modules
D}\mathrm{ -modules
K orbits on G/B
K orbits on G/B
The Algorithm
```

The Algorithm

```

\section*{Computing the Admissible Dual}

Fix an infinitesimal character \(\lambda\)
(for now \(\lambda=\rho\), infinitesimal character of trivial representation)
\(\Pi(G, \rho)=\) irreducible admissible representations with infinitesimal character \(\rho\)
\(\Pi(G, \rho)\) is a finite set (Harish-Chandra).
More precise problem: Give an explicit, natural parametrization of \(\Pi(G, \rho)\)
1) explicit: a computable combinatorial set

\section*{Computing the Admissible Dual}

Fix an infinitesimal character \(\lambda\)
(for now \(\lambda=\rho\), infinitesimal character of trivial representation)
\(\Pi(G, \rho)=\) irreducible admissible representations with infinitesimal character \(\rho\)
\(\Pi(G, \rho)\) is a finite set (Harish-Chandra).
More precise problem: Give an explicit, natural parametrization of \(\Pi(G, \rho)\)
1) explicit: a computable combinatorial set
2) natural: make the Kazhdan-Lusztig-Vogan polynomials computable

Three views of the Admissible Dual
The Langlands Classification
\(\mathcal{D}\)-modules
K orbits on G/B
The Algorithm


\title{
Three views of the Admissible Dual
}

The Langlands Classification

\section*{Three pictures}

\section*{Three pictures}

Langlands classification: induced from discrete series, characters of Cartan subgroups

\section*{Three pictures}

Langlands classification: induced from discrete series, characters of Cartan subgroups
\(\mathcal{D}\)-modules: local systems on \(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C})\)

\section*{Three pictures}

Langlands classification: induced from discrete series, characters of Cartan subgroups
\(\mathcal{D}\)-modules: local systems on \(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C})\)
L-homomorphism: local systems on the space of admissible homomorphism of the Weil group into the dual group

Three pictures
Langlands classification: induced from discrete series, characters of Cartan subgroups
\(\mathcal{D}\)-modules: local systems on \(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C})\)
L-homomorphism: local systems on the space of admissible homomorphism of the Weil group into the dual group

For now assume \(G\) is simply connected, adjoint and \(\operatorname{Out}(G)=1\) (Examples: \(G=G_{2}, F_{4}\) or \(E_{8}\) )

\section*{The Langlands Classification}

Roughly: parametrize representations by characters of Cartan subgroups

\section*{The Langlands Classification}

Roughly: parametrize representations by characters of Cartan subgroups
(like the \(R_{T}(\theta)\) 's in Deligne-Lusztig's theory for finite groups)

\section*{The Langlands Classification}

Roughly: parametrize representations by characters of Cartan subgroups
(like the \(R_{T}(\theta)\) 's in Deligne-Lusztig's theory for finite groups)
Definition:
\[
\mathcal{C}(G(\mathbb{R}), \rho)=\{(H(\mathbb{R}), \chi)\} / G(\mathbb{R})
\]
\(H(\mathbb{R})=\) Cartan subgroup
\(\chi=\) character of \(H(\mathbb{R})\) with \(d \chi=\rho\)

The Langlands Classification
\((H(\mathbb{R}), \chi) \rightarrow I(H(\mathbb{R}), \chi)=\) standard module (induced from discrete series of \(M(\mathbb{R})\) )
\(\rightarrow \pi(H(\mathbb{R}), \chi)\) (unique irreducible quotient)

The Langlands Classification
\((H(\mathbb{R}), \chi) \rightarrow I(H(\mathbb{R}), \chi)=\) standard module (induced from discrete series of \(M(\mathbb{R})\) )
\(\rightarrow \pi(H(\mathbb{R}), \chi)\) (unique irreducible quotient)
Theorem: The map \((H(\mathbb{R}), \chi) \rightarrow \pi(H(\mathbb{R}), \chi)\) induces a canonical bijection:
\[
\Pi(G(\mathbb{R}), \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{C}(G, \rho)
\]

\section*{The Langlands Classification}

This tells us what we need to compute:

\section*{The Langlands Classification}

This tells us what we need to compute:
1) Conjugacy classes of Cartan subgroups of \(G(\mathbb{R})\) (Kostant)

\section*{The Langlands Classification}

This tells us what we need to compute:
1) Conjugacy classes of Cartan subgroups of \(G(\mathbb{R})\) (Kostant)
2) \(H(\mathbb{R}) / H(\mathbb{R})_{0}\)

\section*{The Langlands Classification}

This tells us what we need to compute:
1) Conjugacy classes of Cartan subgroups of \(G(\mathbb{R})\) (Kostant)
2) \(H(\mathbb{R}) / H(\mathbb{R})_{0}\)
3) \(W(G(\mathbb{R}), H(\mathbb{R}))=\operatorname{Norm}_{G(\mathbb{R})}(H(\mathbb{R})) / H(\mathbb{R}) \subset W(\) Knapp \()\)

\section*{The Langlands Classification}

This tells us what we need to compute:
1) Conjugacy classes of Cartan subgroups of \(G(\mathbb{R})\) (Kostant)
2) \(H(\mathbb{R}) / H(\mathbb{R})_{0}\)
3) \(W(G(\mathbb{R}), H(\mathbb{R}))=\operatorname{Norm}_{G(\mathbb{R})}(H(\mathbb{R})) / H(\mathbb{R}) \subset W(\) Knapp \()\)

In particular:
\[
|\Pi(G(\mathbb{R}), \rho)|=\sum_{i}\left|W / W\left(G(\mathbb{R}), H(\mathbb{R})_{i}\right)\right|\left|H(\mathbb{R}) / H(\mathbb{R})_{i}\right|
\]
\(H(\mathbb{R})_{1}, \ldots, H(\mathbb{R})_{n}\) are representatives of the conjugacy classes of Cartan subgroups.

\section*{Example:}
\(G(\mathbb{R})=S L(2, \mathbb{R})\)
```

Example:
$G(\mathbb{R})=S L(2, \mathbb{R})$
$A(\mathbb{R})=\operatorname{diag}\left(x, \frac{1}{x}\right) \simeq \mathbb{R}^{\times},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=2$,
$W(G(\mathbb{R}), H(\mathbb{R}))=W=\mathbb{Z} / 2 \mathbb{Z}$

```

Example:
\(G(\mathbb{R})=S L(2, \mathbb{R})\)
\(A(\mathbb{R})=\operatorname{diag}\left(x, \frac{1}{x}\right) \simeq \mathbb{R}^{\times},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=2\),
\(W(G(\mathbb{R}), H(\mathbb{R}))=W=\mathbb{Z} / 2 \mathbb{Z}\)
\(T=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos \theta\end{array}\right) \simeq S^{1},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=1, W=1\)

Example:
\(G(\mathbb{R})=S L(2, \mathbb{R})\)
\(A(\mathbb{R})=\operatorname{diag}\left(x, \frac{1}{x}\right) \simeq \mathbb{R}^{\times},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=2\),
\(W(G(\mathbb{R}), H(\mathbb{R}))=W=\mathbb{Z} / 2 \mathbb{Z}\)
\(T=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos \theta\end{array}\right) \simeq S^{1},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=1, W=1\)
\(\overbrace{2 \times 1}^{A}+\overbrace{1 \times 2}^{T}=4\)

Example:
\(G(\mathbb{R})=S L(2, \mathbb{R})\)
\(A(\mathbb{R})=\operatorname{diag}\left(x, \frac{1}{x}\right) \simeq \mathbb{R}^{\times},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=2\),
\(W(G(\mathbb{R}), H(\mathbb{R}))=W=\mathbb{Z} / 2 \mathbb{Z}\)
\(T=\left(\begin{array}{cc}\cos (\theta) & \sin (\theta) \\ -\sin (\theta) & \cos \theta\end{array}\right) \simeq S^{1},\left|H(\mathbb{R}) / H(\mathbb{R})^{0}\right|=1, W=1\)
\(\overbrace{2 \times 1}^{A}+\overbrace{1 \times 2}^{T}=4\)
\(S L(2, \mathbb{R})\) has 4 irreducible representations of infinitesimal character \(\rho\)

Example: \(G=S L(2, \mathbb{R})\), infinitesimal character \(=\rho\)



\section*{D-modules \\ \(\mathcal{B}=G / B\) is the flag variety (complex projective variety)}

\section*{\(\mathcal{D}\)-modules}
\(\mathcal{B}=G / B\) is the flag variety (complex projective variety)
\(K\) acts on \(\mathcal{B}\) with finitely many orbits

\section*{D-modules}
\(\mathcal{B}=G / B\) is the flag variety (complex projective variety)
\(K\) acts on \(\mathcal{B}\) with finitely many orbits
Roughly: Parametrize representations by orbits + local system on the orbit

\section*{\(\mathcal{D}\)-modules}
\(\mathcal{B}=G / B\) is the flag variety (complex projective variety)
\(K\) acts on \(\mathcal{B}\) with finitely many orbits
Roughly: Parametrize representations by orbits + local system on the orbit

Definition:
\[
\mathcal{D}(G, K, \rho)=\{(x, \chi)\} / K
\]
\(x \in \mathcal{B}\)
\(\chi=\) local system on \(\mathcal{O}=K \cdot x\)

\section*{\(\mathcal{D}\)-modules}
\(\mathcal{B}=G / B\) is the flag variety (complex projective variety)
\(K\) acts on \(\mathcal{B}\) with finitely many orbits
Roughly: Parametrize representations by orbits + local system on the orbit

Definition:
\[
\mathcal{D}(G, K, \rho)=\{(x, \chi)\} / K
\]
\(x \in \mathcal{B}\)
\(\chi=\) local system on \(\mathcal{O}=K \cdot x\)
\(=\) character of \(\operatorname{Stab}(x) / \operatorname{Stab}(x)^{0}\)

\section*{Theorem: (Vogan, Beilinson/Bernstein) There is a natural bijection}
\[
\Pi(G(\mathbb{R}), \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{D}(G, K, \rho)
\]

Example: \(G=S L(2, \mathbb{C}), G(\mathbb{R})=S L(2, \mathbb{R})\)
\(\mathcal{B}\) is the sphere \(=\mathbb{C} \cup \infty\)


\title{
Example: \(G=S L(2, \mathbb{C}), G(\mathbb{R})=S L(2, \mathbb{R})\) \\ \(\mathcal{B}\) is the sphere \(=\mathbb{C} \cup \infty\)
}

\[
K=S O(2, \mathbb{C}) \simeq \mathbb{C}^{\times}
\]

\title{
Example: \(G=S L(2, \mathbb{C}), G(\mathbb{R})=S L(2, \mathbb{R})\) \\ \(\mathcal{B}\) is the sphere \(=\mathbb{C} \cup \infty\)
}

\(K=S O(2, \mathbb{C}) \simeq \mathbb{C}^{\times}\)
\(K \ni z: w \rightarrow z^{2} w\)

\title{
Example: \(G=S L(2, \mathbb{C}), G(\mathbb{R})=S L(2, \mathbb{R})\) \\ \(\mathcal{B}\) is the sphere \(=\mathbb{C} \cup \infty\)
}
\[
\begin{aligned}
& K=S O(2, \mathbb{C}) \simeq \mathbb{C}^{\times} \\
& K \ni z: w \rightarrow z^{2} w
\end{aligned}
\]

Three orbits: north pole \((0)\), south pole \((\infty)\), open orbit \(\left(\mathbb{C}^{\times}\right)\)

\title{
Example: \(G=S L(2, \mathbb{C}), G(\mathbb{R})=S L(2, \mathbb{R})\) \\ \(\mathcal{B}\) is the sphere \(=\mathbb{C} \cup \infty\)
}

\[
\begin{aligned}
& K=S O(2, \mathbb{C}) \simeq \mathbb{C}^{\times} \\
& K \ni z: w \rightarrow z^{2} w
\end{aligned}
\]

Three orbits: north pole \((0)\), south pole \((\infty)\), open orbit \(\left(\mathbb{C}^{\times}\right)\)
Isotropy group: \(1,1, \mathbb{Z} / 2 \mathbb{Z} \rightarrow 4\) representations

\section*{L-homomorphisms}

\section*{L-homomorphisms}

Weil group \(W_{\mathbb{R}}=\left\langle\mathbb{C}^{\times}, j\right\rangle j z j^{-1}=\bar{z}, j^{2}=-1\)

\section*{L-homomorphisms}

Weil group \(W_{\mathbb{R}}=\left\langle\mathbb{C}^{\times}, j\right\rangle j z j^{-1}=\bar{z}, j^{2}=-1\)
Roughly (Langlands): parametrize representations by map of \(W_{\mathbb{R}}\) into \(G^{\vee}\) (complex dual group)

\section*{L-homomorphisms}

Weil group \(W_{\mathbb{R}}=\left\langle\mathbb{C}^{\times}, j\right\rangle j z j^{-1}=\bar{z}, j^{2}=-1\)
Roughly (Langlands): parametrize representations by map of \(W_{\mathbb{R}}\) into \(G^{\vee}\) (complex dual group)

Definition:
\[
\mathcal{L}(G, \rho)=\{(\phi, \chi)\} / G^{\vee}
\]
\(\phi: W_{\mathbb{R}} \rightarrow G^{\vee},\left(\phi\left(\mathbb{C}^{\times}\right)\right.\)is semisimple, "infinitesimal character \(\left.\rho "\right)\)
\(\chi=\) local system on \(\Omega^{\vee}=G^{\vee} \cdot \phi\)
\(=\) character of \(\operatorname{Stab}(\phi) / \operatorname{Stab}(\phi)^{0}\)

Note: different real forms of \(G\) all have the same \(G^{\vee}\) (no \(K\) here). This version must take this into account (Vogan's super packets)

Note: different real forms of \(G\) all have the same \(G^{\vee}\) (no \(K\) here). This version must take this into account (Vogan's super packets)

Theorem: There is a natural bijection
\[
\coprod_{i} \Pi\left(G(\mathbb{R})_{i}, \rho\right) \stackrel{1-1}{\longleftrightarrow} \mathcal{L}(G, \rho)
\]
where \(G_{1}(\mathbb{R}), \ldots, G_{n}(\mathbb{R})\) are the real forms of \(G\). (this version: book by A/Barbasch/Vogan)

\section*{Recapitulation}

\section*{Recapitulation}
(1) Character Data (orbits of \(G(\mathbb{R})\) on Cartans):
\[
\Pi(G(\mathbb{R}), \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{C}(G(\mathbb{R}))=\{(H(\mathbb{R}), \chi)\} / G(\mathbb{R})
\]
(2) \(\mathcal{D}\)-modules (orbits \(\mathcal{O}\) of \(K\) on \(G / B\) ):
\[
\Pi(G(\mathbb{R}), \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{D}(G, K, \rho)=\{(x, \chi)\} / K
\]
(3) L-homomorphisms (orbits \(\Omega^{\vee}\) of \(G^{\vee}\) on L-homomorphisms):
\[
\coprod_{i=1}^{n} \Pi\left(G(\mathbb{R})_{i}, \rho\right) \stackrel{1-1}{\longleftrightarrow} \mathcal{L}(G, \rho)=\{(\phi, \chi)\} / G^{\vee}
\]

In each case there is some geometric data, and a character of a finite abelian group (two-group)

In each case there is some geometric data, and a character of a finite abelian group (two-group)
We'd rather talk about orbits than characters of \((\mathbb{Z} / 2 \mathbb{Z})^{n}\)
(Matching the three pictures: easy up to \(\chi\) )

Three views of the Admissible Dual

\section*{The Langlands Classification}
\(\mathcal{D}\)-modules
K orbits on G/B
The Algorithm

\section*{Drop the \(\chi\) 's and get sets of representations:}

Drop the \(\chi\) 's and get sets of representations:
Definition: Orbit \(\Omega^{\vee}\) of \(G^{\vee}\) on L-homomorphisms \(\rightarrow\) L-packet
\[
\Pi_{L}\left(G(\mathbb{R}), \Omega^{\vee}\right)
\]
\(\left(\right.\) or \(\left.\coprod_{i} \Pi_{L}\left(G(\mathbb{R})_{i}, \Omega\right)\right)\)

Drop the \(\chi\) 's and get sets of representations:
Definition: Orbit \(\Omega^{\vee}\) of \(G^{\vee}\) on L-homomorphisms \(\rightarrow\) L-packet
\[
\Pi_{L}\left(G(\mathbb{R}), \Omega^{\vee}\right)
\]
\(\left(\right.\) or \(\left.\coprod_{i} \Pi_{L}\left(G(\mathbb{R})_{i}, \Omega\right)\right)\)
Definition: Orbit \(\mathcal{O}\) of \(K\) on \(G / B \rightarrow\) R-packet
\[
\Pi_{R}(G(\mathbb{R}), \mathcal{O})
\]

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Corollary: \(\Pi(G(\mathbb{R}), \rho)\) is parametrized by a subset of pairs
\[
\text { ( } K \text { orbit on } \mathcal{B}, G^{\vee} \text { orbit on L-homomorphisms) }
\]
via
\[
\left(\mathcal{O}, \Omega^{\vee}\right) \rightarrow \Pi_{R}(G(\mathbb{R}), \mathcal{O}) \cap \Pi_{L}\left(G(\mathbb{R}), \Omega^{\vee}\right)
\]

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Corollary: \(\Pi(G(\mathbb{R}), \rho)\) is parametrized by a subset of pairs
\[
\text { ( } K \text { orbit on } \mathcal{B}, G^{\vee} \text { orbit on L-homomorphisms) }
\]
via
\[
\left(\mathcal{O}, \Omega^{\vee}\right) \rightarrow \Pi_{R}(G(\mathbb{R}), \mathcal{O}) \cap \Pi_{L}\left(G(\mathbb{R}), \Omega^{\vee}\right)
\]

Which pairs?...

\section*{K-orbits on the dual side} Something remarkable happens:

K-orbits on the dual side
Something remarkable happens:
\(G^{\vee}\) orbits of L-homomorphisms are exactly the same thing as \(K\) orbits on \(G / B\) on the dual side.

K-orbits on the dual side
Something remarkable happens:
\(G^{\vee}\) orbits of L-homomorphisms are exactly the same thing as \(K\) orbits on \(G / B\) on the dual side.
\(K_{1}^{\vee}, \ldots, K_{n}^{\vee}=\) complexified maximal compacts of real forms of \(G^{\vee}\).

K-orbits on the dual side
Something remarkable happens:
\(G^{\vee}\) orbits of L-homomorphisms are exactly the same thing as \(K\) orbits on \(G / B\) on the dual side.
\(K_{1}^{\vee}, \ldots, K_{n}^{\vee}=\) complexified maximal compacts of real forms of \(G^{\vee}\).
\(\mathcal{B}^{\vee}=G^{\vee} / B^{\vee}\)

\section*{K-orbits on the dual side}

Something remarkable happens:
\(G^{\vee}\) orbits of L-homomorphisms are exactly the same thing as \(K\) orbits on \(G / B\) on the dual side.
\(K_{1}^{\vee}, \ldots, K_{n}^{\vee}=\) complexified maximal compacts of real forms of \(G^{\vee}\).
\(\mathcal{B}^{\vee}=G^{\vee} / B^{\vee}\)
Proposition: There is a natural bijection:
\[
\mathcal{L} \stackrel{1-1}{\longleftrightarrow} \coprod_{i=1}^{n} K_{i}^{\vee} \backslash \mathcal{B}^{\vee}
\]

\section*{Symmetric Picture}

Corollary: \(\Pi(G(\mathbb{R}), \rho)\) is parametrized by a subset of pairs

\section*{( \(K\) orbit on \(\mathcal{B}, K^{\vee}\) orbit on \(\mathcal{B}^{\vee}\) )}

\section*{Symmetric Picture}

Corollary: \(\Pi(G(\mathbb{R}), \rho)\) is parametrized by a subset of pairs
\[
\text { ( } K \text { orbit on } \mathcal{B}, K^{\vee} \text { orbit on } \mathcal{B}^{\vee} \text { ) }
\]

Note: This symmetry is Vogan Duality.

\section*{Symmetric Picture}

Corollary: \(\Pi(G(\mathbb{R}), \rho)\) is parametrized by a subset of pairs
\[
\text { ( } K \text { orbit on } \mathcal{B}, K^{\vee} \text { orbit on } \mathcal{B}^{\vee} \text { ) }
\]

Note: This symmetry is Vogan Duality.
This reduces the problem to:
\[
\text { Parametrize } K \text { orbits on } \mathcal{B}=G / B
\]
(applied to \(G\) and \(G^{\vee}\) )

\section*{K orbits on \(\mathrm{G} / \mathrm{B}\)}

\section*{Definition:}
\[
\mathcal{X}=\left\{x \in \operatorname{Norm}_{G}(H) \mid x^{2}=1\right\} / H
\]

\section*{K orbits on \(\mathrm{G} / \mathrm{B}\)}

Definition:
\[
\mathcal{X}=\left\{x \in \operatorname{Norm}_{G}(H) \mid x^{2}=1\right\} / H
\]
(Finite set; maps to \(W_{2}=\) involutions in W )

\section*{K orbits on \(\mathrm{G} / \mathrm{B}\)}

Definition:
\[
\mathcal{X}=\left\{x \in \operatorname{Norm}_{G}(H) \mid x^{2}=1\right\} / H
\]
(Finite set; maps to \(W_{2}=\) involutions in W )
Proposition: There is a natural bijection
\[
\mathcal{X} \stackrel{1-1}{\longleftrightarrow} \coprod_{i} K_{i} \backslash \mathcal{B}
\]
(union over real forms, corresponding \(K_{1}, \ldots, K_{n}\) )

\section*{K orbits on G/B}

The Algorithm

\section*{Sketch of Proof}

\section*{Sketch of Proof}
\[
\mathcal{P}=\{(x, B)\} / G\left(x^{2}=1, B=\text { Borel }\right)
\]


\section*{Sketch of Proof}
\[
\mathcal{P}=\{(x, B)\} / G\left(x^{2}=1, B=\text { Borel }\right)
\]


Fix representatives \(x_{1}, \ldots, x_{n}\) of \(\mathcal{X} / G\) (i.e. real forms)
Fix \(B_{0} \supset H\)

\section*{Sketch of Proof}
\[
\mathcal{P}=\{(x, B)\} / G\left(x^{2}=1, B=\text { Borel }\right)
\]


Fix representatives \(x_{1}, \ldots, x_{n}\) of \(\mathcal{X} / G\) (i.e. real forms)
Fix \(B_{0} \supset H\)
(1) Every \(x\) is conjugate to some \(x_{i}\) :

\section*{Sketch of Proof}
\[
\mathcal{P}=\{(x, B)\} / G\left(x^{2}=1, B=\text { Borel }\right)
\]


Fix representatives \(x_{1}, \ldots, x_{n}\) of \(\mathcal{X} / G\) (i.e. real forms)
Fix \(B_{0} \supset H\)
(1) Every \(x\) is conjugate to some \(x_{i}\) :
\[
(x, B) \sim_{G}\left(x_{i}, B^{\prime}\right) \quad\left\{\left(x_{i}, B\right)\right\} \simeq K_{i} \backslash \mathcal{B}
\]

\section*{Sketch of Proof}
\[
\mathcal{P}=\{(x, B)\} / G\left(x^{2}=1, B=\text { Borel }\right)
\]


Fix representatives \(x_{1}, \ldots, x_{n}\) of \(\mathcal{X} / G\) (i.e. real forms)
Fix \(B_{0} \supset H\)
(1) Every \(x\) is conjugate to some \(x_{i}\) :
\[
(x, B) \sim_{G}\left(x_{i}, B^{\prime}\right) \quad\left\{\left(x_{i}, B\right)\right\} \simeq K_{i} \backslash \mathcal{B}
\]
(2) Every \(B\) is conjugate to \(B_{0}\) :

\section*{Sketch of Proof}
\[
\mathcal{P}=\{(x, B)\} / G\left(x^{2}=1, B=\text { Borel }\right)
\]


Fix representatives \(x_{1}, \ldots, x_{n}\) of \(\mathcal{X} / G\) (i.e. real forms)
Fix \(B_{0} \supset H\)
(1) Every \(x\) is conjugate to some \(x_{i}\) :
\[
(x, B) \sim_{G}\left(x_{i}, B^{\prime}\right) \quad\left\{\left(x_{i}, B\right)\right\} \simeq K_{i} \backslash \mathcal{B}
\]
(2) Every \(B\) is conjugate to \(B_{0}\) :
\[
(x, B) \sim_{G}\left(x^{\prime}, B_{0}\right) \rightarrow x^{\prime} \in \mathcal{X} \quad\left(w \log x^{\prime} \in \operatorname{Norm}(H)\right)
\]

\section*{\(K \backslash G / B\) for \(\operatorname{Sp}(4, \mathbb{R})\) and \(S O(3,2)\) :}
\(\operatorname{Sp}(4, \mathbb{R})\) :
\begin{tabular}{rrrrrrlll}
\(0:\) & 1 & 2 & 6 & 4 & {\([\mathrm{nn}]\)} & 0 & 0 & \\
\(1:\) & 0 & 3 & 6 & 5 & {\([\mathrm{nn}]\)} & 0 & 0 & \\
\(2:\) & 2 & 0 & \(\star\) & 4 & {\([\mathrm{cn}]\)} & 0 & 0 & \\
\(3:\) & 3 & 1 & \(\star\) & 5 & {\([\mathrm{cn}]\)} & 0 & 0 & \\
\(4:\) & 8 & 4 & \(\star\) & \(\star\) & {\([\mathrm{Cr}]\)} & 2 & 1 & 2 \\
\(5:\) & 9 & 5 & \(\star\) & \(\star\) & {\([\mathrm{Cr}]\)} & 2 & 1 & 2 \\
\(6:\) & 6 & 7 & \(\star\) & \(\star\) & {\([\mathrm{rC}]\)} & 1 & 1 & 1 \\
\(7:\) & 7 & 6 & 10 & \(\star\) & {\([\mathrm{nC}]\)} & 1 & 2 & \(2,1,2\) \\
\(8:\) & 4 & 9 & \(\star\) & 10 & {\([\mathrm{Cn}]\)} & 2 & 2 & \(1,2,1\) \\
\(9:\) & 5 & 8 & \(\star\) & 10 & {\([\mathrm{Cn}]\)} & 2 & 2 & \(1,2,1\) \\
\(10:\) & 10 & 10 & \(\star\) & \(\star\) & {\([\mathrm{rr}]\)} & 3 & 3 & \(1,2,1,2\)
\end{tabular}
\(S O(3,2)\) :
\begin{tabular}{lllllllll}
\(0:\) & 0 & 1 & 3 & 2 & {\([n n]\)} & 0 & 0 & \\
\(1:\) & 1 & 0 & \(*\) & 2 & {\([\mathrm{n}]\)} & 0 & 0 & \\
\(2:\) & 5 & 2 & \(*\) & \(*\) & {\([\mathrm{Cr}]\)} & 2 & 1 & 2 \\
\(3:\) & 3 & 4 & \(*\) & \(*\) & {\([r \mathrm{C}]\)} & 1 & 1 & 1 \\
\(4:\) & 4 & 3 & 6 & \(*\) & {\([n C]\)} & 1 & 2 & \(2,1,2\) \\
\(5:\) & 2 & 5 & \(*\) & 6 & {\([\mathrm{Cn}]\)} & 2 & 2 & \(1,2,1\) \\
\(6:\) & 6 & 6 & \(*\) & \(*\) & {\([r r]\)} & 3 & 3 & \(1,2,1,2\)
\end{tabular}

\section*{Structure of G}
\(\mathcal{X}\) gives structure of \(G\) : real forms, Cartan subgroups, Weyl groups

\section*{Structure of G}
\(\mathcal{X}\) gives structure of \(G\) : real forms, Cartan subgroups, Weyl groups (assume \(G\) is adjoint, inner class of compact group)

\section*{Structure of G}
\(\mathcal{X}\) gives structure of \(G\) : real forms, Cartan subgroups, Weyl groups (assume \(G\) is adjoint, inner class of compact group)

Proposition
1) Real forms of \(G \stackrel{1-1}{\longleftrightarrow} \mathcal{X}_{1} / W\left(\mathcal{X}_{1}=\right.\) fiber over \(\left.1 \in W\right)\)
2) Cartan subgroups in all real forms: \(\mathcal{X} / W\)
3) \(W(G(\mathbb{R}), H(\mathbb{R}))=\operatorname{Stab}_{W}(x)\)

\section*{The Parameter Space \(\mathcal{Z}\)}

\section*{The Parameter Space \(\mathcal{Z}\)}
\(\mathcal{X} \in x\)

\section*{The Parameter Space \(\mathcal{Z}\)}
\(\mathcal{X} \in x \rightarrow \Theta_{x}=\operatorname{int}(x)\)

\section*{The Parameter Space \(\mathcal{Z}\)}
\(\mathcal{X} \in x \rightarrow \Theta_{x}=\operatorname{int}(x) \rightarrow \Theta_{x, H}=\left.\Theta_{x}\right|_{\mathfrak{H}}\)

\section*{The Parameter Space \(\mathcal{Z}\)}
\(\mathcal{X} \in x \rightarrow \Theta_{x}=\operatorname{int}(x) \rightarrow \Theta_{x, H}=\left.\Theta_{x}\right|_{\mathfrak{H}}\)
By symmetry define \(\mathcal{X}^{\vee}, \mathcal{X}^{\vee} \ni y \rightarrow \Theta_{y, H^{\vee}}\)

\section*{The Parameter Space \(\mathcal{Z}\)}
\(\mathcal{X} \in x \rightarrow \Theta_{x}=\operatorname{int}(x) \rightarrow \Theta_{x, H}=\left.\Theta_{x}\right|_{\mathfrak{H}}\)
By symmetry define \(\mathcal{X}^{\vee}, \mathcal{X}^{\vee} \ni y \rightarrow \Theta_{y, H^{\vee}}\)
Definition:
\[
\mathcal{Z}=\left\{(x, y)\left|\in \mathcal{X} \times \mathcal{X}^{\vee}\right| \Theta_{x, H}^{t}=-\Theta_{\left.y, H^{\vee}\right\}}\right\}
\]

\section*{The Parameter Space \(\mathcal{Z}\)}
\(\mathcal{X} \in x \rightarrow \Theta_{x}=\operatorname{int}(x) \rightarrow \Theta_{x, H}=\left.\Theta_{x}\right|_{\mathfrak{H}}\)
By symmetry define \(\mathcal{X}^{\vee}, \mathcal{X}^{\vee} \ni y \rightarrow \Theta_{y, H^{\vee}}\)
Definition:
\[
\mathcal{Z}=\left\{(x, y)\left|\in \mathcal{X} \times \mathcal{X}^{\vee}\right| \Theta_{x, H}^{t}=-\Theta_{\left.y, H^{\vee}\right\}}\right.
\]
\[
\mathcal{Z} \subset \coprod_{i} K_{i} \backslash \mathcal{B} \times \coprod_{j} K_{j}^{\vee} \backslash \mathcal{B}^{\vee}
\]

\section*{The Parameter Space \(\mathcal{Z}\)}

\section*{Theorem: There is a natural bijection:}
\[
\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \coprod_{i=1}^{n} \Pi\left(G(\mathbb{R})_{i}, \rho\right)
\]

\section*{The Parameter Space \(\mathcal{Z}\)}

Theorem: There is a natural bijection:
\[
\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \coprod_{i=1}^{n} \Pi\left(G(\mathbb{R})_{i}, \rho\right)
\]

Recall \(\mathcal{Z}=\{(x, y)\}\)
\[
\begin{aligned}
x \in \mathcal{X} & =\left\{x \in \operatorname{Norm}_{G}(H) \mid x^{2}=1\right\} / H \\
y \in \mathcal{X}^{\vee} & =\text { same thing on dual side }
\end{aligned}
\]

\section*{The Parameter Space \(\mathcal{Z}\)}

Theorem: There is a natural bijection:
\[
\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \coprod_{i=1}^{n} \Pi\left(G(\mathbb{R})_{i}, \rho\right)
\]

Recall \(\mathcal{Z}=\{(x, y)\}\)
\[
\begin{aligned}
x \in \mathcal{X} & =\left\{x \in \operatorname{Norm}_{G}(H) \mid x^{2}=1\right\} / H \\
y \in \mathcal{X}^{\vee} & =\text { same thing on dual side }
\end{aligned}
\]
(Canonical up to characters of \(\left.G_{q s}(\mathbb{R}) / G_{q s}(\mathbb{R})^{0}, G_{q s}^{\vee}(\mathbb{R}) / G_{q s}^{\vee}(\mathbb{R})^{0}\right)\)

Overview Admissible Dual Unipotent Representations and the Future

Three views of the Admissible Dual

\section*{The Langlands Classification}
\(\mathcal{D}\)-modules
K orbits on \(G / B\)
The Algorithm

\section*{General Groups}

\section*{General Groups}

For simplicity we assumed (recall \(G=G(\mathbb{C})\) ):
(1) \(G\) is simply connected
(2) \(G\) is adjoint
(3) \(\operatorname{Out}(G)=1\)

\section*{General Groups}

For simplicity we assumed (recall \(G=G(\mathbb{C})\) ):
(1) \(G\) is simply connected
(2) \(G\) is adjoint
(3) \(\operatorname{Out}(G)=1\)

In general:
(1) Fix an inner class of real forms
(2) Need twists \(G^{\Gamma}=G \rtimes \Gamma, G^{\vee} \rtimes \Gamma(\Gamma=\operatorname{Gal}(\mathbb{C} / \mathbb{R}))\)
(3) Require \(x^{2} \in Z(G)\left(\operatorname{not} x^{2}=1\right)\)
(9) Need several infinitesimal characters
(5) Need strong real forms

\section*{The General Algorithm}
\[
\mathcal{X}=\left\{x \in \operatorname{Norm}_{G^{\Gamma} \backslash G}(H) \mid x^{2} \in Z(G)\right\} / H
\]
\(\mathcal{X}^{\vee}\) similarly, \(\mathcal{Z}=\{(x, y) \mid \ldots\} \subset \mathcal{X} \times \mathcal{X}^{\vee}\) as before.
Theorem: There is a natural bijection
\[
\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \coprod_{i \in S} \Pi\left(G(\mathbb{R})_{i}, \Lambda\right)
\]
\(\Lambda=\) certain set of infinitesimal characters
\(S\) is the set of "strong real forms"
Reference: Algorithms for Representation Theory of Real Reductive Groups, preprint (www.liegroups.org), Fokko du Cloux, A

Three views of the Admissible Dual
The Langlands Classification
\(\mathcal{D}\)-modules
K orbits on G/B
The Algorithm

\section*{Cayley Transforms and Cross Actions}

\section*{Cayley Transforms and Cross Actions}

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

\section*{Cayley Transforms and Cross Actions}

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action In our picture:
1) W acts by conjugation on \(\mathcal{X}\) and \(\mathcal{Z}\) : cross action

\section*{Cayley Transforms and Cross Actions}

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

\section*{In our picture:}
1) W acts by conjugation on \(\mathcal{X}\) and \(\mathcal{Z}\) : cross action
2) \(w \in W_{2}, s_{\alpha} w=w s_{\alpha}\),
\[
w \rightarrow w^{\prime}=s_{\alpha} w \in W_{2}
\]

\section*{Cayley Transforms and Cross Actions}

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

\section*{In our picture:}
1) W acts by conjugation on \(\mathcal{X}\) and \(\mathcal{Z}\) : cross action
2) \(w \in W_{2}, s_{\alpha} w=w s_{\alpha}\),
\[
w \rightarrow w^{\prime}=s_{\alpha} w \in W_{2}
\]
lifts to
\[
x \rightarrow x^{\prime}=\sigma_{\alpha} x
\]
(Multivalued due to choice of \(\sigma_{\alpha}: x^{\prime}\) or \(\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}\) )
This is the Cayley transform

Overview

\section*{Admissible Dual}

Unipotent Representations and the Future

Three views of the Admissible Dual
The Langlands Classification
D -modules
K orbits on G/B
The Algorithm

\(K \backslash G / B\) for \(S O(5,5)\)

Overview
Admissible Dual
Unipotent Representations and the Future

Three views of the Admissible Dual
The Langlands Classification
\(\mathcal{D}\)-modules
K orbits on G/B
The Algorithm


\section*{Example: SL(2)/PGL(2)}
\(P G L(2, \mathbb{C})\) :

\section*{Example: SL(2)/PGL(2)}
\(P G L(2, \mathbb{C})\) :
\(\mathcal{X}=\{I, \operatorname{diag}(-1,-1,1), w\} \rightarrow\)

\section*{Example: SL(2)/PGL(2)}
\(P G L(2, \mathbb{C})\) :
\(\mathcal{X}=\{I, \operatorname{diag}(-1,-1,1), w\} \rightarrow\)
\(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C}):\left\{\mathbb{C}^{\times}, \infty\right\},\{\cdot\}\)

\section*{Example: SL(2)/PGL(2)}
\(P G L(2, \mathbb{C})\) :
\(\mathcal{X}=\{I, \operatorname{diag}(-1,-1,1), w\} \rightarrow\)
\(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C}):\left\{\mathbb{C}^{\times}, \infty\right\},\{\cdot\}\)
\(S L(2, \mathbb{C})\) :

\section*{Example: SL(2)/PGL(2)}
\(P G L(2, \mathbb{C})\) :
\(\mathcal{X}=\{I, \operatorname{diag}(-1,-1,1), w\} \rightarrow\)
\(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C}):\left\{\mathbb{C}^{\times}, \infty\right\},\{\cdot\}\)
\(S L(2, \mathbb{C}): \mathcal{X}=\{ \pm I, \pm \operatorname{diag}(i,-i), w\} \rightarrow\)

\section*{Example: SL(2)/PGL(2)}
\(P G L(2, \mathbb{C})\) :
\(\mathcal{X}=\{I, \operatorname{diag}(-1,-1,1), w\} \rightarrow\)
\(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C}):\left\{\mathbb{C}^{\times}, \infty\right\},\{\cdot\}\)
\(S L(2, \mathbb{C}): \mathcal{X}=\{ \pm I, \pm \operatorname{diag}(i,-i), w\} \rightarrow\)
\(K(\mathbb{C})\) orbits on \(G(\mathbb{C}) / B(\mathbb{C}):\left\{\mathbb{C}^{\times}, \infty, 0\right\},\{\cdot\},\{\cdot\}\)

Overview
Admissible Dual Unipotent Representations and the Future

Three views of the Admissible Dual
The Langlands Classification
\(\mathcal{D}\)-modules
K orbits on G/B
The Algorithm

Example: SL(2)/PGL(2)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \(\mathcal{O}\) & x & \(x^{2}\) & \(K\) & \(G_{x}(\mathbb{R})\) & \(\lambda\) & rep & \(\mathcal{O}^{\vee}\) & y & \(y^{2}\) & \(K^{\vee}\) & \(G_{y}^{\vee}(\mathbb{R})\) & \(\lambda\) & rep \\
\hline\(\cdot\) & I & I & G & \(S U(2,0)\) & \(\rho\) & \(\mathbb{C}\) & \(\mathbb{C}^{\times}\) & w & I & \(O(2, \mathbb{C})\) & \(\operatorname{SO(2,1)}\) & \(2 \rho\) & \(P S_{+}\) \\
\hline\(\cdot\) & -I & I & G & \(S U(0,2)\) & \(\rho\) & \(\mathbb{C}\) & \(\mathbb{C}^{\times}\) & w & I & \(O(2, \mathbb{C})\) & \(\operatorname{SO(2,1)}\) & \(2 \rho\) & \(P S_{-}\) \\
\hline\(\{0\}\) & t & -I & \(\mathbb{C}^{\times}\) & \(S U(1,1)\) & \(\rho\) & \(\mathrm{DS}+\) & \(\mathbb{C}^{\times}\) & w & I & \(O(2, \mathbb{C})\) & \(\operatorname{SO(2,1)}\) & \(\rho\) & \(\mathbb{C}\) \\
\hline\(\{\infty\}\) & -t & -I & \(\mathbb{C}^{\times}\) & \(S U(1,1)\) & \(\rho\) & \(\mathrm{DS}-\) & \(\mathbb{C}^{\times}\) & w & I & \(O(2, \mathbb{C})\) & \(\operatorname{so(2,1)}\) & \(\rho\) & sgn \\
\hline \(\mathbb{C}^{\times}\) & w & -I & \(\mathbb{C}^{\times}\) & \(S U(1,1)\) & \(\rho\) & \(\mathbb{C}\) & \(\{\infty\}\) & t & I & \(O(2, \mathbb{C})\) & \(\operatorname{SO(2,1)}\) & \(\rho\) & DS \\
\hline \(\mathbb{C}^{\times}\) & w & I & \(O(2, \mathbb{C})\) & \(S U(1,1)\) & \(\rho\) & \(P S\) & \(\cdot\) & I & I & \(G^{\vee}\) & \(\operatorname{SO(3)}\) & \(\rho\) & \(\mathbb{C}\) \\
\hline
\end{tabular}

\section*{\(S L(2) / P G L(2)\) via atlas output}
```

main: type
Lie type: A1 sc s
main: block
(weak) real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
possible (weak) dual real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
entering block construction ...
2
done
Name an output file (return for stdout, ? to abandon):
0(0,1): 1 (2,*) [i1] 0
1(1,1): 0 (2,*) [i1] 0
2(2,0): 2 (*,*) [r1] 1 1

```

The Langlands Classification
\(\mathcal{D}\)-modules
K orbits on G/B
The Algorithm

\section*{Example: \(\operatorname{Sp}(4, \mathbb{R})\)}
```

main: type
Lie type: C2 sc s
main: block
(weak) real forms are:
0: sp(2)
1: sp(1,1)
2: sp(4,R)
enter your choice: 2
possible (weak) dual real forms are:
0: so(5)
1: so(4,1)
2: so (2,3)
enter your choice: 2
entering block construction ...
10
done

```


\section*{Example: \(E_{8}\)}

\section*{real: type}

Lie type: E8 sc s
main: blocksizes
\begin{tabular}{llll} 
& compact quaternionic & split \\
compact & 0 & 0 & 1 \\
quaternionic & 0 & 3,150 & 73,410 \\
split & 1 & 73,410 & 453,060
\end{tabular}

\section*{Unipotent Representations}

Proposition: From the output of at las one can list the special unipotent representations associated to a given nilpotent orbit.

\section*{Unipotent Representations}

Proposition: From the output of at las one can list the special unipotent representations associated to a given nilpotent orbit. Sketch

\section*{Unipotent Representations}

Proposition: From the output of at las one can list the special unipotent representations associated to a given nilpotent orbit. Sketch
*) Fix a block \(\mathcal{B}\)

\section*{Unipotent Representations}

Proposition: From the output of at las one can list the special unipotent representations associated to a given nilpotent orbit. Sketch
*) Fix a block \(\mathcal{B}\) (block)

\section*{Unipotent Representations}

Proposition: From the output of at las one can list the special unipotent representations associated to a given nilpotent orbit.

\section*{Sketch}
*) Fix a block \(\mathcal{B}\) (block)
*) Fix nilpotent orbit \(\mathcal{O}\) for \(\mathfrak{g}^{\vee}\). Let \(S=\left\{i_{1}, \ldots, i_{r}\right\}\) be the nodes of Dynkin diagram labelled 2. Let \(\lambda=\) corresponding infinitesimal character.

\section*{Unipotent Representations}

\section*{Unipotent Representations}
1) \(\mathcal{O} \rightarrow \sigma\) (special representation of \(W)\)

Unipotent Representations
1) \(\mathcal{O} \rightarrow \sigma\) (special representation of \(W\) )
2) Find all cells \(C \subset \mathcal{B}\)

Unipotent Representations
1) \(\mathcal{O} \rightarrow \sigma\) (special representation of \(W\) )
2) Find all cells \(C \subset \mathcal{B}\) (wcells)
3) List cells \(C\) containing the special representation \(\sigma \otimes \operatorname{sgn}\)

\section*{Unipotent Representations}
1) \(\mathcal{O} \rightarrow \sigma\) (special representation of \(W\) )
2) Find all cells \(C \subset \mathcal{B}\) (wcells)
3) List cells \(C\) containing the special representation \(\sigma \otimes \operatorname{sgn}\)
(wgraph + calculation with character table of \(W\) )
4) For each such \(C\) list \(\pi \in C\) with \(\tau(\pi)=S \quad\) (block)

\section*{Unipotent Representations}
1) \(\mathcal{O} \rightarrow \sigma\) (special representation of \(W\) )
2) Find all cells \(C \subset \mathcal{B}\) (wcells)
3) List cells \(C\) containing the special representation \(\sigma \otimes \operatorname{sgn}\)
(wgraph + calculation with character table of \(W\) )
4) For each such \(C\) list \(\pi \in C\) with \(\tau(\pi)=S \quad\) (block)
5) Push these to \(\lambda\)

David Vogan has carried this out for \(E_{8}\)
(70 nilpotent orbits; 20 even ones; 143 unipotent representations with integral infinitesimal character for \(E_{8}(\) split \()\) )
Conjecture (Arthur): These representations are unitary.

\section*{Unipotent Representations and the Future}
block dual to split group:
\begin{tabular}{|c|c|c|c|}
\hline Rep (x,y) & length & Cartan & roots \\
\hline 133 ( 133,320205) & 0 & 0 & [i1, i1, i1, i1, i1, i1, i1, i1] \\
\hline 140 ( 140,320204) & 1 & 1 & [i1, i1, i1, i1, i1, i1, C+, r1] \\
\hline 42248 ( 40972,306175) & 16 & 3 & [ \(\mathrm{C}+, \mathrm{i1}, \mathrm{C}+, \mathrm{i} 1, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-]\) \\
\hline 82083 ( 77494,287709) & 21 & 6 & [ \(\mathrm{C}-, \mathrm{C}+, \mathrm{rn}, \mathrm{C}+, \mathrm{rn}, \mathrm{C}+, \mathrm{rn}, \mathrm{C}+\) ] \\
\hline \(124391(114466,263402)\) & 24 & 2 & [i1, C+, i1, i1, C+, C+, C-, i1] \\
\hline \(124432(114507,263398)\) & 24 & 2 & [i1, i1, C+, C+, C-, i1, \(\mathrm{C}+, \mathrm{il}]\) \\
\hline 132306 (120375, 257307) & 25 & 3 & [ \(\mathrm{C}+, \mathrm{C}+, \mathrm{i} 1, \mathrm{i} 1, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-, \mathrm{C}+\) ] \\
\hline 191385 (168884, 220459) & 29 & 1 & [i1, i1, i1, i1, i1, i1, i1, \(\mathrm{C}-\) ] \\
\hline 198367 (172894,213960) & 30 & 4 & [ \(\mathrm{C}-, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+\) ] \\
\hline \(205069(179284,210683)\) & 30 & 2 & [r1, i1, C+, i1, i1, i1, i1, C-] \\
\hline \(225144(192668,195053)\) & 32 & 5 & [i1,rn, i1, \(\mathrm{C}+, \mathrm{rn}, \mathrm{C}+, \mathrm{rn}, \mathrm{C}-\) ] \\
\hline 233376 (200324,190190) & 32 & 2 & [ \(\mathrm{C}-, \mathrm{i} 1, \mathrm{C}+, \mathrm{C}-, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-, \mathrm{C}+\) ] \\
\hline 233395 (200343,190188) & 32 & 2 & [ \(\mathrm{C}-, \mathrm{C}+, \mathrm{i} 1, \mathrm{i} 1, \mathrm{i} 1, \mathrm{C}-, \mathrm{C}+, \mathrm{C}+\) ] \\
\hline 237240 (201594,186548) & 33 & 6 & [rn, C-, C+, C+ , C+ , C+ , C+, C+] \\
\hline \(243756(206740,180794)\) & 33 & 3 & [ \(\mathrm{C}+, \mathrm{i} 1, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-, \mathrm{C}+, \mathrm{il}, \mathrm{C}+\) ] \\
\hline 244076 (207060,180688) & 33 & 3 & [ \(\mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-]\) \\
\hline \(252552(212118,174728)\) & 34 & 4 & [ \(\mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+\) ] \\
\hline 258013 (216823,170023) & 34 & 3 & [ \(\mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{i} 1, \mathrm{i} 1, \mathrm{i} 1, \mathrm{C}-, \mathrm{C}+\) ] \\
\hline 258048(216858,170012) & 34 & 3 & [C+, i1, i2, C+, C-, C+, i1, C+] \\
\hline \(288684(238673,147429)\) & 36 & 2 & [ \(\mathrm{C}+, \mathrm{i1}, \mathrm{i} 1, \mathrm{i} 1, \mathrm{i}, \mathrm{C}-, \mathrm{C}+, \mathrm{i1}]\) \\
\hline 309166(250360,129909) & 38 & 4 & [ \(\mathrm{C}+, \mathrm{C}-, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{C}-]\) \\
\hline 320784 (257336,120344) & 39 & 4 & [ \(\mathrm{C}+, \mathrm{C}+, \mathrm{C}+, \mathrm{i} 2, \mathrm{C}-, \mathrm{C}+, \mathrm{C}+, \mathrm{C}+\) ] \\
\hline \[
453058(320205,133)
\] & 64 & 9 & \([r 2, r 2]\) \\
\hline
\end{tabular}
block dual to compact group:
0 (0, 320205) 0
0 [ic,ic,ic,ic,ic,ic,ic,ic]

\section*{What next?}
- Put in \(\lambda\)

\section*{What next?}
- Put in \(\lambda\)
- K-structure of representations

\section*{What next?}
- Put in \(\lambda\)
- K-structure of representations
- Singular and non-integral infinitesimal character

\section*{What next?}
- Put in \(\lambda\)
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)

\section*{What next?}
- Put in \(\lambda\)
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software

\section*{What next?}
- Put in \(\lambda\)
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations

\section*{What next?}
- Put in \(\lambda\)
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations
- The Unitary Dual ??```

