

Atlas Project Members

- Jeffrey Adams
- Dan Barbasch
- Birne Binegar
- Bill Casselman
- Dan Ciubotaru
- Scott Crofts
- Fokko du Cloux
- Alfred Noel
- Tatiana Howard
- Alessandra Pantano
- Annegret Paul

- Patrick Polo
- Siddhartha Sahi
- Susana Salamanca
- John Stembridge
- Peter Trapa
- Marc van Leeuwen
- David Vogan
- Wai-Ling Yee
- Jiu-Kang Yu
- Gregg Zuckerman

Fix a real reductive group $G(\mathbb{R})$.

Fix a real reductive group $G(\mathbb{R})$.

Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit

Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Atlas of Lie Groups and Representations:

Theorem [... Vogan, 1980s]: There is a finite algorithm to compute the unitary dual of $G(\mathbb{R})$

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Atlas of Lie Groups and Representations: Take this idea seriously

p-adic groups

Fix a p-adic group *G*. **Question:** Is there a finite algorithm to compute:

() The unitary dual of G?

p-adic groups

Fix a p-adic group *G*. **Question:** Is there a finite algorithm to compute:

- The unitary dual of *G*?
- **2** The admissible dual of G?

p-adic groups

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- The unitary dual of *G*?
- **2** The admissible dual of G?
- Solution The discrete series of *G*?

p-adic groups

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- **()** The unitary dual of G?
- **2** The admissible dual of G?
- Solution The discrete series of *G*?
- The supercuspidal representations of G?

p-adic groups

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- **()** The unitary dual of G?
- **2** The admissible dual of G?
- Solution The discrete series of *G*?
- The supercuspidal representations of G?

(So far the answer seems to be no...)

Overview Admissible Dual Unipotent Representations and the Future Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Admissible Dual of $G(\mathbb{R})$ Recall $\widehat{G}_u \subset \widehat{G}_a$ (admissible dual)

Recall $\widehat{G}_u \subset \widehat{G}_a$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

Admissible Dual of $G(\mathbb{R})$ Recall $\widehat{G}_{\mu} \subset \widehat{G}_{a}$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

This is known (Langlands/Knapp/Zuckerman/Vogan)...

Admissible Dual of $G(\mathbb{R})$ Recall $\widehat{G}_{\mu} \subset \widehat{G}_{a}$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

This is known (Langlands/Knapp/Zuckerman/Vogan)... but very hard to compute.

Recall $\widehat{G}_u \subset \widehat{G}_a$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

This is known (Langlands/Knapp/Zuckerman/Vogan)... but very hard to compute.

Example: How many irreducible representations does the split real form of E_8 have at infinitesimal character ρ ?

Recall $\widehat{G}_u \subset \widehat{G}_a$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

This is known (Langlands/Knapp/Zuckerman/Vogan)... but very hard to compute.

Example: How many irreducible representations does the split real form of E_8 have at infinitesimal character ρ ?

Answer: 526,471

Recall $\widehat{G}_u \subset \widehat{G}_a$ (admissible dual)

Today: an algorithm to compute the admissible dual of $G(\mathbb{R})$.

This is known (Langlands/Knapp/Zuckerman/Vogan)... but very hard to compute.

Example: How many irreducible representations does the split real form of E_8 have at infinitesimal character ρ ?

Answer: 526,471

```
(2,157 \text{ of them} = .41\% \text{ are unitary})
```

() Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
- Specify a block B of irreducible representations of G(ℝ) (finite set)

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
- Specify a block B of irreducible representations of G(ℝ) (finite set)
- S Parametrize \mathcal{B}

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
- Specify a block B of irreducible representations of G(ℝ) (finite set)
- S Parametrize \mathcal{B}
- Solution Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
- Specify a block B of irreducible representations of G(ℝ) (finite set)
- S Parametrize \mathcal{B}
- Solution Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}
- \bigcirc Compute the unitary representations in \mathcal{B}

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
- Specify a block B of irreducible representations of G(ℝ) (finite set)
- S Parametrize \mathcal{B}
- Solution Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}
- \bigcirc Compute the unitary representations in \mathcal{B}

The atlas software does 1-6

- **(**) Input an arbitrary complex reductive algebraic group $G(\mathbb{C})$
- Specify a real form $G(\mathbb{R})$ of $G(\mathbb{C})$
- Solution Compute structure theory of $G(\mathbb{R})$ (Cartan subgroups, Weyl groups)
- Specify a block B of irreducible representations of G(ℝ) (finite set)
- S Parametrize \mathcal{B}
- Solution Compute Kazhdan-Lusztig-Vogan polynomials for \mathcal{B}
- \bigcirc Compute the unitary representations in \mathcal{B}

The atlas software does 1-6 (we're working on 7)

Fix an infinitesimal character λ

(for now $\lambda = \rho$, infinitesimal character of trivial representation)

Fix an infinitesimal character λ (for now $\lambda = \rho$, infinitesimal character of trivial representation) $\Pi(G, \rho) =$ irreducible admissible representations with infinitesimal character ρ $\Pi(G, \rho)$ is a finite set (Harish-Chandra).

Fix an infinitesimal character λ (for now $\lambda = \rho$, infinitesimal character of trivial representation)

 $\Pi(G, \rho)$ = irreducible admissible representations with infinitesimal character ρ

 $\Pi(G, \rho)$ is a finite set (Harish-Chandra).

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \rho)$

Fix an infinitesimal character λ

(for now $\lambda = \rho$, infinitesimal character of trivial representation)

 $\Pi(G, \rho)$ = irreducible admissible representations with infinitesimal character ρ

 $\Pi(G, \rho)$ is a finite set (Harish-Chandra).

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \rho)$

1) explicit: a computable combinatorial set

Fix an infinitesimal character λ

(for now $\lambda = \rho$, infinitesimal character of trivial representation)

 $\Pi(G, \rho)$ = irreducible admissible representations with infinitesimal character ρ

 $\Pi(G, \rho)$ is a finite set (Harish-Chandra).

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \rho)$

- 1) explicit: a computable combinatorial set
- 2) natural: make the Kazhdan-Lusztig-Vogan polynomials computable

Overview Admissible Dual Unipotent Representations and the Future

Three views of the Admissible Dual

The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Three views of the Admissible Dual The Langlands Classification

D-modules K orbits on G/B The Algorithm

Three pictures

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Three pictures

Langlands classification: induced from discrete series, characters of Cartan subgroups

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Three pictures

Langlands classification: induced from discrete series, characters of Cartan subgroups

 \mathcal{D} -modules: local systems on $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Three pictures

Langlands classification: induced from discrete series, characters of Cartan subgroups

 \mathcal{D} -modules: local systems on $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$

L-homomorphism: local systems on the space of admissible homomorphism of the Weil group into the dual group

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Three pictures

Langlands classification: induced from discrete series, characters of Cartan subgroups

 \mathcal{D} -modules: local systems on $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$

L-homomorphism: local systems on the space of admissible homomorphism of the Weil group into the dual group

For now assume G is simply connected, adjoint and Out(G) = 1(Examples: $G = G_2$, F_4 or E_8)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/BThe Algorithm

The Langlands Classification

Roughly: parametrize representations by characters of Cartan subgroups

Roughly: parametrize representations by characters of Cartan subgroups

(like the $R_T(\theta)$'s in Deligne-Lusztig's theory for finite groups)

Roughly: parametrize representations by characters of Cartan subgroups

(like the $R_T(\theta)$'s in Deligne-Lusztig's theory for finite groups) Definition:

 $\mathcal{C}(G(\mathbb{R}),\rho) = \{(H(\mathbb{R}),\chi)\}/G(\mathbb{R})$

 $H(\mathbb{R})$ =Cartan subgroup χ = character of $H(\mathbb{R})$ with $d\chi = \rho$

 $(H(\mathbb{R}), \chi) \to I(H(\mathbb{R}), \chi)$ =standard module (induced from discrete series of $M(\mathbb{R})$)

 $\rightarrow \pi(H(\mathbb{R}), \chi)$ (unique irreducible quotient)

 $(H(\mathbb{R}), \chi) \to I(H(\mathbb{R}), \chi)$ =standard module (induced from discrete series of $M(\mathbb{R})$)

 $\rightarrow \pi(H(\mathbb{R}), \chi)$ (unique irreducible quotient)

Theorem: The map $(H(\mathbb{R}), \chi) \to \pi(H(\mathbb{R}), \chi)$ induces a canonical bijection:

$$\Pi(G(\mathbb{R}),\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{C}(G,\rho)$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/BThe Algorithm

The Langlands Classification

This tells us what we need to compute:

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/BThe Algorithm

The Langlands Classification

This tells us what we need to compute:

1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)

- This tells us what we need to compute:
- 1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)
- 2) $H(\mathbb{R})/H(\mathbb{R})_0$

This tells us what we need to compute:

- 1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)
- 2) $H(\mathbb{R})/H(\mathbb{R})_0$
- 3) $W(G(\mathbb{R}), H(\mathbb{R})) = \operatorname{Norm}_{G(\mathbb{R})}(H(\mathbb{R}))/H(\mathbb{R}) \subset W$ (Knapp)

This tells us what we need to compute:

- 1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)
- 2) $H(\mathbb{R})/H(\mathbb{R})_0$
- 3) $W(G(\mathbb{R}), H(\mathbb{R})) = \operatorname{Norm}_{G(\mathbb{R})}(H(\mathbb{R}))/H(\mathbb{R}) \subset W$ (Knapp)

In particular:

 $|\Pi(G(\mathbb{R}),\rho)| = \sum_{i} |W/W(G(\mathbb{R}),H(\mathbb{R})_{i})||H(\mathbb{R})/H(\mathbb{R})_{i}|$

 $H(\mathbb{R})_1, \ldots, H(\mathbb{R})_n$ are representatives of the conjugacy classes of Cartan subgroups.

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $G(\mathbb{R}) = SL(2, \mathbb{R})$ Overview Admissible Dual Unipotent Representations and the Future K orbits on C For Algorithm

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example:

 $G(\mathbb{R})=SL(2,\mathbb{R})$

$$A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$$

$$W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$$

 Overview
 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

 The Algorithm
 The Algorithm

Example:

 $G(\mathbb{R})=SL(2,\mathbb{R})$

$$A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$$

$$W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$$

$$T = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos\theta \end{pmatrix} \simeq S^1, |H(\mathbb{R})/H(\mathbb{R})^0| = 1, W = 1$$

 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

Example: $G(\mathbb{R}) = SL(2, \mathbb{R})$ $A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$ $W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$ $T = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos\theta \end{pmatrix} \simeq S^{1}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 1, W = 1$ $\overbrace{2 \times 1}^{A} + \overbrace{1 \times 2}^{T} = 4$

 Overview
 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

 The Algorithm
 The Algorithm

Example: $G(\mathbb{R}) = SL(2, \mathbb{R})$ $A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$ $W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$ $T = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos\theta \end{pmatrix} \simeq S^{1}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 1, W = 1$ $\overbrace{2 \times 1}^{A} + \overbrace{1 \times 2}^{T} = 4$

 $SL(2, \mathbb{R})$ has 4 irreducible representations of infinitesimal character ρ

 Overview
 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

 The Algorithm
 The Algorithm

Example: $G = SL(2, \mathbb{R})$, infinitesimal character $=\rho$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

$\mathcal{D} ext{-modules}$

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

- $\mathcal{B} = G/B$ is the flag variety (complex projective variety)
- *K* acts on \mathcal{B} with finitely many orbits

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Roughly: Parametrize representations by orbits + local system on the orbit

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Roughly: Parametrize representations by orbits + local system on the orbit

Definition:

 $\mathcal{D}(G, K, \rho) = \{(x, \chi)\}/K$

 $x \in \mathcal{B}$ $\chi = \text{local system on } \mathcal{O} = K \cdot x$

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Roughly: Parametrize representations by orbits + local system on the orbit

Definition:

 $\mathcal{D}(G, K, \rho) = \{(x, \chi)\}/K$

 $x\in \mathcal{B}$

 $\chi =$ local system on $\mathcal{O} = K \cdot x$

= character of $\operatorname{Stab}(x)/\operatorname{Stab}(x)^0$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Theorem: (Vogan, Beilinson/Bernstein) There is a natural bijection

 $\Pi(G(\mathbb{R}),\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{D}(G,K,\rho)$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$ \mathcal{B} is the sphere $= \mathbb{C} \cup \infty$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$ \mathcal{B} is the sphere $= \mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$ \mathcal{B} is the sphere $= \mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$
$$K \ni z : w \to z^2 w$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$ \mathcal{B} is the sphere $= \mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$
$$K \ni z : w \to z^2 w$$

Three orbits: north pole (0), south pole (∞), open orbit (\mathbb{C}^{\times})

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$ \mathcal{B} is the sphere $= \mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$
$$K \ni z : w \to z^2 w$$

Three orbits: north pole (0), south pole (∞), open orbit (\mathbb{C}^{\times}) Isotropy group: $1, 1, \mathbb{Z}/2\mathbb{Z} \to 4$ representations

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

L-homomorphisms

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

L-homomorphisms

Weil group $W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle jzj^{-1} = \overline{z}, j^2 = -1$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

L-homomorphisms

Weil group
$$W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle \ jzj^{-1} = \overline{z}, j^2 = -1$$

Roughly (Langlands): parametrize representations by map of $W_{\mathbb{R}}$ into G^{\vee} (complex dual group)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

L-homomorphisms

Weil group
$$W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle \ jzj^{-1} = \overline{z}, j^2 = -1$$

Roughly (Langlands): parametrize representations by map of $W_{\mathbb{R}}$ into G^{\vee} (complex dual group)

Definition:

 $\mathcal{L}(G,\rho) = \{(\phi,\chi)\}/G^{\vee}$

 $\phi: W_{\mathbb{R}} \to G^{\vee}, (\phi(\mathbb{C}^{\times}) \text{ is semisimple, "infinitesimal character } \rho")$ $\chi = \text{local system on } \Omega^{\vee} = G^{\vee} \cdot \phi$ $= \text{character of Stab}(\phi)/\text{Stab}(\phi)^0$
Note: different real forms of *G* all have the same G^{\vee} (no *K* here). This version must take this into account (Vogan's super packets)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Note: different real forms of *G* all have the same G^{\vee} (no *K* here). This version must take this into account (Vogan's super packets)

Theorem: There is a natural bijection

$$\coprod_{i} \Pi(G(\mathbb{R})_{i},\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{L}(G,\rho)$$

where $G_1(\mathbb{R}), \ldots, G_n(\mathbb{R})$ are the real forms of *G*. (this version: book by A/Barbasch/Vogan)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Recapitulation

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Recapitulation

(1) Character Data (orbits of $G(\mathbb{R})$ on Cartans):

$$\Pi(G(\mathbb{R}),\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{C}(G(\mathbb{R})) = \{(H(\mathbb{R}),\chi)\}/G(\mathbb{R})$$

(2) \mathcal{D} -modules (orbits \mathcal{O} of K on G/B):

$$\Pi(G(\mathbb{R}),\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{D}(G,K,\rho) = \{(x,\chi)\}/K$$

(3) L-homomorphisms (orbits Ω^{\vee} of G^{\vee} on L-homomorphisms):

$$\prod_{i=1}^{n} \Pi(G(\mathbb{R})_{i},\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{L}(G,\rho) = \{(\phi,\chi)\}/G^{\vee}$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

In each case there is some geometric data, and a character of a finite abelian group (two-group)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

In each case there is some geometric data, and a character of a finite abelian group (two-group)

We'd rather talk about orbits than characters of $(\mathbb{Z}/2\mathbb{Z})^n$ (Matching the three pictures: easy up to χ)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Drop the χ 's and get sets of representations:

Drop the χ 's and get sets of representations:

Definition: Orbit Ω^{\vee} of G^{\vee} on L-homomorphisms \rightarrow L-packet

$\Pi_L(G(\mathbb{R}), \Omega^{\vee})$

(or $\coprod_i \Pi_L(G(\mathbb{R})_i, \Omega))$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Drop the χ 's and get sets of representations:

Definition: Orbit Ω^{\vee} of G^{\vee} on L-homomorphisms \rightarrow L-packet

$\Pi_L(G(\mathbb{R}), \Omega^{\vee})$

(or $\coprod_i \Pi_L(G(\mathbb{R})_i, \Omega)$) **Definition**: Orbit \mathcal{O} of K on $G/B \to \mathbb{R}$ -packet

 $\Pi_R(G(\mathbb{R}),\mathcal{O})$

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B} , G^{\vee} orbit on L-homomorphisms)

via

 $(\mathcal{O}, \Omega^{\vee}) \to \Pi_R(G(\mathbb{R}), \mathcal{O}) \cap \Pi_L(G(\mathbb{R}), \Omega^{\vee})$

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B} , G^{\vee} orbit on L-homomorphisms)

via

 $(\mathcal{O}, \Omega^{\vee}) \to \Pi_R(G(\mathbb{R}), \mathcal{O}) \cap \Pi_L(G(\mathbb{R}), \Omega^{\vee})$

Which pairs?...

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

K-orbits on the dual side

Something remarkable happens:

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as *K* orbits on G/B on the dual side.

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as *K* orbits on G/B on the dual side.

 $K_1^{\vee}, \ldots, K_n^{\vee}$ = complexified maximal compacts of real forms of G^{\vee} .

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as *K* orbits on G/B on the dual side.

 $K_1^{\vee}, \dots, K_n^{\vee}$ = complexified maximal compacts of real forms of G^{\vee} . $\mathcal{B}^{\vee} = G^{\vee}/B^{\vee}$

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as *K* orbits on G/B on the dual side.

 $K_1^{\vee}, \ldots, K_n^{\vee}$ = complexified maximal compacts of real forms of G^{\vee} . $\mathcal{B}^{\vee} = G^{\vee}/B^{\vee}$

Proposition: There is a natural bijection:

$$\mathcal{L} \longleftrightarrow^{1-1} \prod_{i=1}^n K_i^{\vee} \backslash \mathcal{B}^{\vee}$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

Symmetric Picture

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B}, K^{\vee} orbit on \mathcal{B}^{\vee})

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

Symmetric Picture

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B}, K^{\vee} orbit on \mathcal{B}^{\vee})

Note: This symmetry is Vogan Duality.

Symmetric Picture

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

 $(K \text{ orbit on } \mathcal{B}, K^{\vee} \text{ orbit on } \mathcal{B}^{\vee})$

Note: This symmetry is Vogan Duality.

This reduces the problem to:

Parametrize *K* orbits on $\mathcal{B} = G/B$

(applied to G and G^{\vee})

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

K orbits on G/B

Definition:

$$\mathcal{X} = \{x \in \operatorname{Norm}_G(H) \mid x^2 = 1\}/H$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

K orbits on G/B

Definition:

$$\mathcal{X} = \{x \in \operatorname{Norm}_G(H) \mid x^2 = 1\}/H$$

(Finite set; maps to W_2 = involutions in W)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

K orbits on G/B

Definition:

$$\mathcal{X} = \{x \in \operatorname{Norm}_G(H) \mid x^2 = 1\}/H$$

(Finite set; maps to W_2 = involutions in W)

Proposition: There is a natural bijection

$$\mathcal{X} \stackrel{1-1}{\longleftrightarrow} \coprod_i K_i \backslash \mathcal{B}$$

(union over real forms, corresponding K_1, \ldots, K_n)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules **K** orbits on G/B The Algorithm

Sketch of Proof

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/BThe Algorithm

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/BThe Algorithm

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/BThe Algorithm

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

 $(x, B) \sim_G (x_i, B') \quad \{(x_i, B)\} \simeq K_i \setminus \mathcal{B}$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

 $(x, B) \sim_G (x_i, B') \quad \{(x_i, B)\} \simeq K_i \setminus \mathcal{B}$

(2) Every *B* is conjugate to B_0 :

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

$$(x, B) \sim_G (x_i, B') \quad \{(x_i, B)\} \simeq K_i \setminus \mathcal{B}$$

(2) Every *B* is conjugate to B_0 :

 $(x, B) \sim_G (x', B_0) \to x' \in \mathcal{X} \quad (\text{wlog } x' \in \text{Norm}(H))$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

$K \setminus G/B$ for $Sp(4, \mathbb{R})$ and SO(3, 2):

 $Sp(4, \mathbb{R})$:

0:	1	2	6	4	[nn]	0	0	
1:	0	3	6	5	[nn]	0	0	
2:	2	0	*	4	[cn]	0	0	
3:	3	1	*	5	[cn]	0	0	
4:	8	4	*	*	[Cr]	2	1	2
5:	9	5	*	*	[Cr]	2	1	2
6:	6	7	*	*	[rC]	1	1	1
7:	7	6	10	*	[nC]	1	2	2,1,2
8:	4	9	*	10	[Cn]	2	2	1,2,1
9:	5	8	*	10	[Cn]	2	2	1,2,1
10:	10	10	*	*	[rr]	3	3	1,2,1,2

SO(3, 2):

0:	0	1	3	2	[nn]	0	0	
1:	1	0	*	2	[cn]	0	0	
2:	5	2	*	*	[Cr]	2	1	2
3:	3	4	*	*	[rC]	1	1	1
4:	4	3	б	*	[nC]	1	2	2,1,2
5:	2	5	*	б	[Cn]	2	2	1,2,1
6:	б	б	*	*	[rr]	3	3	1,2,1,2

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

Structure of G

 \mathcal{X} gives structure of G: real forms, Cartan subgroups, Weyl groups

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules Korbits on G/B The Algorithm

Structure of G

 \mathcal{X} gives structure of G: real forms, Cartan subgroups, Weyl groups (assume G is adjoint, inner class of compact group)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Structure of G

 \mathcal{X} gives structure of G: real forms, Cartan subgroups, Weyl groups

(assume G is adjoint, inner class of compact group)

Proposition

- 1) Real forms of $G \stackrel{1-1}{\longleftrightarrow} \mathcal{X}_1 / W$ (\mathcal{X}_1 = fiber over $1 \in W$)
- 2) Cartan subgroups in all real forms: \mathcal{X}/W
- 3) $W(G(\mathbb{R}), H(\mathbb{R})) = \operatorname{Stab}_W(x)$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

 $\mathcal{X} \in x$
Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

 $\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x)$

 Overview
 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

 The Algorithm
 The Algorithm

The Parameter Space \mathcal{Z}

$\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x) \to \Theta_{x,H} = \Theta_x|_{\mathfrak{H}}$

	Three views of the Admissible Dual				
Overview	The Langlands Classification				
Admissible Dual	D-modules				
Unipotent Representations and the Future	K orbits on G/B				
A A	The Algorithm				

The Parameter Space \mathcal{Z}

 $\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x) \to \Theta_{x,H} = \Theta_x|_{\mathfrak{H}}$ By symmetry define $\mathcal{X}^{\vee}, \mathcal{X}^{\vee} \ni y \to \Theta_{y,H^{\vee}}$

The Parameter Space \mathcal{Z}

$$\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x) \to \Theta_{x,H} = \Theta_x|_{\mathfrak{H}}$$

By symmetry define $\mathcal{X}^{\vee}, \mathcal{X}^{\vee} \ni y \to \Theta_{y,H^{\vee}}$

Definition:

$$\mathcal{Z} = \{(x, y) \mid \in \mathcal{X} \times \mathcal{X}^{\vee} \mid \Theta_{x, H}^{t} = -\Theta_{y, H^{\vee}} \}$$

 Overview
 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

 The Algorithm
 The Algorithm

The Parameter Space \mathcal{Z}

 $\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x) \to \Theta_{x,H} = \Theta_x|_{\mathfrak{H}}$ By symmetry define $\mathcal{X}^{\vee}, \mathcal{X}^{\vee} \ni y \to \Theta_{y,H^{\vee}}$ Definition:

$$\mathcal{Z} = \{(x, y) \mid \in \mathcal{X} \times \mathcal{X}^{\vee} \mid \Theta_{x, H}^{t} = -\Theta_{y, H^{\vee}} \}$$

$$\mathcal{Z} \subset \prod_i K_i ackslash \mathcal{B} imes \prod_j K_j^{ee} ackslash \mathcal{B}^{ee}$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

Theorem: There is a natural bijection:

$$\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \prod_{i=1}^{n} \Pi(G(\mathbb{R})_{i}, \rho)$$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

Theorem: There is a natural bijection:

$$\mathcal{Z} \xleftarrow{1-1} \prod_{i=1}^{n} \Pi(G(\mathbb{R})_i, \rho)$$

Recall $\mathcal{Z} = \{(x, y)\}$

 $x \in \mathcal{X} = \{x \in \operatorname{Norm}_G(H) | x^2 = 1\}/H$ $y \in \mathcal{X}^{\vee} =$ same thing on dual side

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

Theorem: There is a natural bijection:

$$\mathcal{Z} \xleftarrow{1-1} \prod_{i=1}^{n} \Pi(G(\mathbb{R})_i, \rho)$$

Recall $\mathcal{Z} = \{(x, y)\}$

 $x \in \mathcal{X} = \{x \in \operatorname{Norm}_G(H) \mid x^2 = 1\}/H$ $y \in \mathcal{X}^{\vee} = \text{same thing on dual side}$

(Canonical up to characters of $G_{qs}(\mathbb{R})/G_{qs}(\mathbb{R})^0$, $G_{qs}^{\vee}(\mathbb{R})/G_{qs}^{\vee}(\mathbb{R})^0$)

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

General Groups

General Groups

For simplicity we assumed (recall $G = G(\mathbb{C})$):

- G is simply connected
- **2** G is adjoint
- $\bigcirc \text{Out}(G) = 1$

General Groups

For simplicity we assumed (recall $G = G(\mathbb{C})$):

- G is simply connected
- G is adjoint
- $\bigcirc \text{Out}(G) = 1$

In general:

- Fix an inner class of real forms
- **2** Need twists $G^{\Gamma} = G \rtimes \Gamma$, $G^{\vee} \rtimes \Gamma$ ($\Gamma = \text{Gal}(\mathbb{C}/\mathbb{R})$)
- Solution Require $x^2 \in Z(G)$ (not $x^2 = 1$)
- Need several infinitesimal characters
- Need strong real forms

The General Algorithm

$$\mathcal{X} = \{x \in \operatorname{Norm}_{G^{\Gamma} \setminus G}(H) \mid x^2 \in Z(G)\}/H$$

 \mathcal{X}^{\vee} similarly, $\mathcal{Z} = \{(x, y) \mid ...\} \subset \mathcal{X} \times \mathcal{X}^{\vee}$ as before.

Theorem: There is a natural bijection

$$\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \prod_{i \in S} \Pi(G(\mathbb{R})_i, \Lambda)$$

 Λ = certain set of infinitesimal characters *S* is the set of "strong real forms"

Reference: Algorithms for Representation Theory of Real Reductive Groups, preprint (www.liegroups.org), Fokko du Cloux, A

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Cayley Transforms and Cross Actions

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

In our picture:

1) W acts by conjugation on \mathcal{X} and \mathcal{Z} : cross action

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

In our picture:

1) W acts by conjugation on \mathcal{X} and \mathcal{Z} : cross action

2) $w \in W_2$, $s_\alpha w = w s_\alpha$,

$$w \to w' = s_{\alpha} w \in W_2$$

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

In our picture:

1) W acts by conjugation on \mathcal{X} and \mathcal{Z} : cross action

2) $w \in W_2, s_\alpha w = w s_\alpha$,

$$w \to w' = s_{\alpha} w \in W_2$$

lifts to

$$x \to x' = \sigma_a x$$

(Multivalued due to choice of σ_a : x' or $\{x'_1, x'_2\}$) This is the Cayley transform

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

 $K \setminus G/B$ for SO(5, 5)

 Overview
 Three views of the Admissible Dual

 Overview
 The Langlands Classification

 Admissible Dual
 D-modules

 Unipotent Representations and the Future
 K orbits on G/B

 The Algorithm
 The Algorithm

Closeup of SO(5, 5) graph

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: SL(2)/PGL(2)

$PGL(2, \mathbb{C})$:

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: SL(2)/PGL(2)

 $PGL(2, \mathbb{C})$:

 $\mathcal{X} = \{I, \operatorname{diag}(-1, -1, 1), w\} \rightarrow$

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: SL(2)/PGL(2)

 $PGL(2, \mathbb{C})$:

 $\mathcal{X} = \{I, \operatorname{diag}(-1, -1, 1), w\} \rightarrow$

 $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$: { \mathbb{C}^{\times} , ∞ }, { \cdot }

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: SL(2)/PGL(2)

 $PGL(2, \mathbb{C})$:

 $\mathcal{X} = \{I, \operatorname{diag}(-1, -1, 1), w\} \rightarrow$

 $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$: { \mathbb{C}^{\times} , ∞ }, {·}

 $SL(2, \mathbb{C})$:

Overview The L: Admissible Dual D-mo Unipotent Representations and the Future K orbi

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: SL(2)/PGL(2)

 $PGL(2, \mathbb{C})$:

 $\mathcal{X} = \{I, \operatorname{diag}(-1, -1, 1), w\} \rightarrow$

 $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$: { \mathbb{C}^{\times} , ∞ }, { \cdot }

 $SL(2, \mathbb{C}): \mathcal{X} = \{\pm I, \pm \operatorname{diag}(i, -i), w\} \rightarrow$

Example: SL(2)/PGL(2)

 $PGL(2, \mathbb{C})$:

 $\mathcal{X} = \{I, \operatorname{diag}(-1, -1, 1), w\} \rightarrow$

 $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$: { \mathbb{C}^{\times} , ∞ }, { \cdot }

 $SL(2,\mathbb{C}): \mathcal{X} = \{\pm I, \pm \operatorname{diag}(i,-i), w\} \rightarrow$

 $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$: { \mathbb{C}^{\times} , ∞ , 0}, { \cdot }, { \cdot },

	Three views of the Admissible Dual
Overview	The Langlands Classification
Admissible Dual	D-modules
Unipotent Representations and the Future	K orbits on G/B
* *	The Algorithm

Example: SL(2)/PGL(2)

О	x	<i>x</i> ²	K	$G_{X}(\mathbb{R})$	λ	rep	\mathcal{O}^{\vee}	у	y^2	K^{\vee}	$G_y^{\vee}(\mathbb{R})$	λ	rep
•	Ι	Ι	G	SU(2,0)	ρ	\mathbb{C}	$\mathbb{C}^{ imes}$	w	Ι	$O(2,\mathbb{C})$	SO(2, 1)	2ρ	PS_+
	-I	Ι	G	SU(0,2)	ρ	C	$\mathbb{C}^{ imes}$	w	Ι	$O(2,\mathbb{C})$	SO(2, 1)	2ρ	PS_
{0}	t	-I	C×	SU(1,1)	ρ	DS+	$\mathbb{C}^{ imes}$	w	Ι	$O(2,\mathbb{C})$	SO(2, 1)	ρ	\mathbb{C}
$\{\infty\}$	-t	-I	C×	SU(1,1)	ρ	DS_	$\mathbb{C}^{ imes}$	w	Ι	$O(2,\mathbb{C})$	SO(2, 1)	ρ	sgn
$\mathbb{C}^{ imes}$	w	-I	\mathbb{C}^{\times}	SU(1, 1)	ρ	\mathbb{C}	$\{\infty\}$	t	Ι	$O(2,\mathbb{C})$	SO(2, 1)	ρ	DS
$\mathbb{C}^{ imes}$	w	Ι	$O(2,\mathbb{C})$	SU(1, 1)	ρ	PS	•	Ι	Ι	G^{\vee}	SO(3)	ρ	\mathbb{C}

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

SL(2)/PGL(2) via atlas output

```
main: type
Lie type: Al sc s
main: block
(weak) real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
possible (weak) dual real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
entering block construction ...
2
done
Name an output file (return for stdout, ? to abandon):
0(0,1): 1 (2,*) [i1] 0
1(1,1): 0 (2,*) [i1] 0
2(2,0): 2 (*,*) [r1] 1 1
```

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: $Sp(4, \mathbb{R})$

```
main: type
Lie type: C2 sc s
main: block
(weak) real forms are:
0: sp(2)
1: sp(1,1)
2: sp(4,R)
enter your choice: 2
possible (weak) dual real forms are:
0: so(5)
1: so(4,1)
2: so(2,3)
enter your choice: 2
entering block construction ...
10
done
Name an output file (return for stdout, ? to abandon):
               2
                   (6, *) (4, *) [i1,i1] 0
0(0,6):
          1
1(1,6):
           0
               3
                   (6, *) (5, *) [i1,i1] 0
2(2,6):
           2 0
                   (*,*) (4,*)
                                      [ic,i1] 0
3(3,6):
           3 1
                     *, *)
                           (5,*)
                                      [ic,i1] 0
4(4,4):
           8
               4
                     *, *) (*, *)
                                      [C+,r1] 1
                                                 2
5(5,4):
           9
               5
                    (*,*) (*,*)
                                      [C+,r1] 1
                                                  2
6(6,5):
           6
               7
                    (*, *) (*, *)
                                      [r1,C+] 1
                                                 1
7(7,2):
           7
              6
                   (10.11)
                           (*, *)
                                      [i2,C-]
                                              2
                                                 2,1,2
8(8,3):
           4
               9
                   (*, *)
                           (10, *)
                                      [C-,i1] 2 1,2,1
               8
                           (10, *)
                                      [C-,i1] 2 1,2,1
9(9,3):
           5
                     *, *)
              10
                                      [r2,r1] 3 1,2,1,2
10(10,0):
          11
                     *, *)
                           (*,*)
11(10.1):
          10
              11
                     *, *)
                            (*, *)
                                      [r2,rn]
                                             3 1.2.1.2
```

Three views of the Admissible Dual The Langlands Classification \mathcal{D} -modules K orbits on G/B The Algorithm

Example: E_8

```
real: type
Lie type: E8 sc s
main: blocksizes
               compact quaternionic split
compact
               0
                        0
                                      1
quaternionic
                        3,150
                                      73,410
               0
split
               1
                        73,410
                                      453,060
```

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

*) Fix a block ${\mathcal B}$

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

*) Fix a block \mathcal{B} (block)

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

*) Fix a block \mathcal{B} (block)

*) Fix nilpotent orbit \mathcal{O} for \mathfrak{g}^{\vee} . Let $S = \{i_1, \ldots, i_r\}$ be the nodes of Dynkin diagram labelled 2. Let $\lambda =$ corresponding infinitesimal character.

Unipotent Representations

1) $\mathcal{O} \to \sigma$ (special representation of *W*)
O → σ (special representation of *W*)
Find all cells *C* ⊂ *B*

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$ (wcells)
- 3) List cells *C* containing the special representation $\sigma \otimes \text{sgn}$

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$ (wcells)
- 3) List cells *C* containing the special representation $\sigma \otimes \text{sgn}$ (wgraph + calculation with character table of *W*)
- 4) For each such C list $\pi \in C$ with $\tau(\pi) = S$ (block)

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$ (wcells)
- 3) List cells *C* containing the special representation $\sigma \otimes \text{sgn}$

(wgraph + calculation with character table of W)

4) For each such C list $\pi \in C$ with $\tau(\pi) = S$ (block)

5) Push these to λ

David Vogan has carried this out for E_8

(70 nilpotent orbits; 20 even ones; 143 unipotent representations with integral infinitesimal character for $E_8(split)$)

Conjecture (Arthur): These representations are unitary.

block dual to split group:			
Rep (x,y)	length	Cartan	roots
133 (133,320205)	0	0	[i1,i1,i1,i1,i1,i1,i1,i1]
140 (140,320204)	1	1	[i1,i1,i1,i1,i1,i1,C+,r1]
42248 (40972,306175)	16	3	[C+,i1,C+,i1,C+,C+,C+,C-]
82083 (77494,287709)	21	6	[C-,C+,rn,C+,rn,C+,rn,C+]
124391(114466,263402)	24	2	[i1,C+,i1,i1,C+,C+,C-,i1]
124432(114507,263398)	24	2	[i1,i1,C+,C+,C-,i1,C+,i1]
132306(120375,257307)	25	3	[C+,C+,i1,i1,C+,C+,C-,C+]
191385(168884,220459)	29	1	[i1,i1,i1,i1,i1,i1,i1,c-]
198367(172894,213960)	30	4	[C-,C+,C+,C+,C+,C+,C+,C+,C+]
205069(179284,210683)	30	2	[r1,i1,C+,i1,i1,i1,i1,C-]
225144(192668,195053)	32	5	[i1,rn,i1,C+,rn,C+,rn,C-]
233376(200324,190190)	32	2	[C-,i1,C+,C-,C+,C+,C-,C+]
233395(200343,190188)	32	2	[C-,C+,i1,i1,i1,C-,C+,C+]
237240(201594,186548)	33	б	[rn,C-,C+,C+,C+,C+,C+,C+,C+]
243756(206740,180794)	33	3	[C+,i1,C+,C+,C-,C+,i1,C+]
244076(207060,180688)	33	3	[C+,C+,C+,C-,C+,C+,C+,C-]
252552(212118,174728)	34	4	[C+,C+,C+,C+,C-,C+,C+,C+]
258013(216823,170023)	34	3	[C+,C+,C+,i1,i1,i1,C-,C+]
258048(216858,170012)	34	3	[C+,i1,i2,C+,C-,C+,i1,C+]
288684(238673,147429)	36	2	[C+,i1,i1,i1,i1,C-,C+,i1]
309166(250360,129909)	38	4	[C+,C-,C+,C+,C+,C+,C+,C+,C-]
320784(257336,120344)	39	4	[C+,C+,C+,i2,C-,C+,C+,C+]
453058(320205, 133)	64	9	[r2,r2,r2,r2,r2,r2,r2,r2]
block dual to compact	group:		
0 (0, 320205)	0	0	[ic,ic,ic,ic,ic,ic,ic,ic]

Overview Admissible Dual Unipotent Representations and the Future

What next?

• Put in λ

• Put in λ

• K-structure of representations

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations
- The Unitary Dual ??