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Platonic Solids

tetrahedron cube octahedron

dodecahedron icosahedron

◮ What is a Platonic solid?

◮ Why are there exactly 5 of them?

◮ What about in other dimensions?



Platonic Solids

tetrahedron cube octahedron

dodecahedron icosahedron

A Platonic Solid is a convex body such that:

◮ Each face is a regular polygon

◮ The faces are all identical

◮ The same number of faces meet at each vertex



Why are there 5 Platonic Solids?

Many proofs. . .
Consider the graph of P :

Euler: F − E + V = 2

F E V

tetrahedron 4 6 4

cube 6 12 8

octahedron 8 12 6

dodecahedron 12 30 20

icosahedron 20 30 12



Why there are 5 Platonic Solids

Suppose m1 faces meet at each vertex (m1 = 3, 4, 5 . . . )

Each face is an m2-gon (m2 = 3, 4, 5 . . . )

m1V = 2E , m2F = 2E

plug into F − E + V = 2 →

2E

m2

− E +
2E

m1

= 2

1

m2

+
1

m1

=
1

2
+

1

E

3 ≤ m1,m2 . . . m1 = 6,m2 = 3 → 1

3
+ 1

6
= 1

2
(contradiction)



Why there are 5 Platonic Solids

Only solutions:

3 ≤ m1,m2 ≤ 5

m1 m2 E

3 3 6 tetrahedron

3 4 12 cube

4 3 12 octahedron

3 5 30 dodecahedron

5 3 30 icosahedron

{m1,m2} is the Schläfli symbol of P



Symmetry Groups

The faces and vertices being the same: the symmetry group of P

acts transitively on faces, and on vertices.

The number of proper symmetries is 2E .

G0= proper symmetry group (rotations, not reflections)

order of G0 G0

tetrahedron 12 A4

cube/octahedron 24 S4

dodecahedron/icosahedron 60 A5



Regular Polyhedra in Higher Dimension

A polytope in R
n is a finite, convex body P bounded by a finite

number of hyperplanes.

Each hyperplane (n − 1 dimensional plane) intersects P in an
n − 1-dimensional polytope: a face Fn−1.

Repeat: P ⊃ Fn−1 ⊃ Fn−2 · · · ⊃ Fk ⊃ · · · ⊃ F0 = vertex

Definition: A Regular Polyhedron is a convex polytope in R
n,such

that the symmetry group acts transitively on the k-faces for all
0 ≤ k ≤ n.

Each Fk is a k-dimensional regular polyhedron



Regular Polyhedra in Higher Dimension

Example: n-cube Cn or hypercube
Vertices (±1,±1, . . . ,±1)

k-face: (

n−k︷ ︸︸ ︷
1, . . . , 1,±1,±1, . . . ,±1) = Ck

Symmetry group G :
Sn (permute the coordinates)
Z

n
2

(2n sign changes)
G = Sn ⋉ Z

n
2

(wreath product)



Regular Polyhedra in Higher Dimension

Equivalent definition:
A flag is a (maximal) nested sequence of faces:

vertex = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = P

Each face Fi is a lower-dimensional regular polyhedron.

A Regular Polyhedron is a polytope whose symmetry group acts
transitively on flags.

Any one flag can be taken to any other by a symmetry of P .



Symmetry Group and Flags



Symmetry Group and Flags

Theorem: The Symmetry group of G act simply transitively on
Flags.

transitively: take any flag to any other

simply: Exactly one such symmetry (the only symmetry fixing a flag
is the identity)

G= full symmetry group⊃ G0 of index 2

G
1−1↔ {the set of flags}

order of G

tetrahedron 4 × 3 × 2 = 24

cube/octahedron 6 × 4 × 2 = 8 × 3 × 2 = 48

dodecahedron/icosahedron 12 × 5 × 2 = 20 × 3 × 2 = 120



Reflections

R
n with the usual inner product: 〈~v , ~w〉 = ~v · ~w .

α ∈ V→ sα :

sα(v) = v − 2〈v , α〉
〈α, α〉 α

Wα=hyperplane orthogonal to α (dimension n − 1)

sα(w) = w (w ∈ Wα)

sα(α) = −α



Two reflections give a rotation



Reflections in G

P is our regular polyhedron, with symmetry group G

fix a flag: F = F0 ⊂ F1 · · · ⊂ Fn

pi : center of mass of Fi

Define a reflection si :

si is reflection fixing the hyperplane through
p0, . . . , pi−1, p̂i , pi+1, . . . , pn

Theorem: si is a symmetry of P , fixing all faces Fj except for Fi .



Reflections of Polyhedra

Fixes
F0,F2

and
moves F1

Fixes F1,F2 and
moves F0



Reflections of Polyhedra

Theorem: si is a symmetry of P , fixing all faces Fj except for Fi .

Theorem: Every symmetry of P is a product of the reflections si

That is: you can move any flag F ′ to our fixed flag F by a series of
these reflections, changing one face Fi at a time.

In other words: G is generated by {s0, . . . , sn−1}



Coxeter Groups

A Coxeter group is generated by “reflections”:

Abstractly: G has generators s1, . . . , sn, and relations

s2
i = 1; (si sj)

mij = 1 (mij = 2, 3, 4 . . . ,∞)

Encode this information in a Coxeter graph:
Connect node i to node j with

◦
i

mij ◦
j

Convention for common cases:

mij = 2:(si sj)
2 = 1, si sj = sjsi (commute): no line

mij = 3:(si sj)
3 = 1, unlabelled line



Coxeter Groups

Example:

◦
1

◦
2

◦
3

. . . ◦
n−1

◦
n

s2
i = 1, (si si+1)

3 = 1, all other si , sj commute

This is the symmetric group Sn+1, si = (i , i + 1) = i ↔ i + 1

Very general construction (any graph with labels ≥ 2)

◦ 4

5

◦ ◦

◦ ◦



Finite Coxeter Groups

When is this abstract group finite?

Beautiful algebraic/geometric classification of these.

1. No loops

2. At most one branch point

3. ◦ a
— ◦ b

—◦ ⇒ a or b ≤ 3

4. . . .

This leads (quickly!) to the classification of finite Coxeter groups.



Classification of Finite Coxeter Groups

type dimension diagram group

An n ≥ 1 ◦ ◦ · · · ◦ ◦ ◦ Sn+1

Bn/Cn n ≥ 2 ◦ ◦ · · · ◦ ◦ 4 ◦ Sn ⋉ Z
n
2

Dn n ≥ 4 ◦

◦ ◦ · · · ◦ ◦ ◦

Sn ⋉ Z
n−1

2

I2(n) 2 ◦ n ◦ dihedral, order 2n

H3 3 ◦ ◦ 5 ◦ 120

H4 4 ◦ ◦ ◦ 5 ◦ 14,400

F4 4 ◦ ◦ 4 ◦ ◦ 11,52

E6 6 ◦

◦ ◦ ◦ ◦ ◦

51,840

E7 7 ◦

◦ ◦ ◦ ◦ ◦ ◦

2,903,040

E8 8 ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

696,729,600



Back to Regular Polyhedra

Question: Which of these groups can be the symmetry group of a
regular polyhedron?

Recall si moves only the i-dimensional face Fi .

Key fact 1: If j 6= i ± 1 then si sj = sjsi⇒
Answer: The graph is a line

◦ m12 ◦ m23 ◦ m34 ◦ · · · ◦
m(n−1)n ◦



Back to Regular Polyhedra

Key fact 2: si si+1 acts transitively on:

Fi−1 ⊂ {i − faces} ⊂ Fi+2

The number of these i-faces is mi : the Schläfli symbol of P

si si+1 has order mi



Example: Cube

si si+1 acts transitively on
Fi−1 ⊂ {i − faces} ⊂ Fi+2

s0s1

∅ ⊂ {vertices} ⊂ F2

m0 = 4

s1s2

F0 ⊂ {edges} ⊂ F3

m1 = 3



Example: 4-Cube

s2s3

F1 ⊂ {2-faces} ⊂ F4

m2 = 3

Schläfli symbol is{4, 3, 3}



Regular Polyhedra in n-dimensions

dimension Polyhedron diagram G

2 n-gon ◦ n ◦ dihedral

n ≥ 2 n-simplex ◦ ◦ · · · ◦ ◦ Sn+1

n ≥ 3 n-cube

n-octahedron ◦ ◦ · · · ◦ ◦ 4 ◦ Sn ⋉ Z
n
2

3 icosahedron

dodecahedron ◦ ◦ 5 ◦ 120

4 600 cell

120 cell ◦ ◦ ◦ 5 ◦ 14,400

4 24 cell ◦ ◦ 4 ◦ ◦ 1,152



Other polyhedra with lots of symmetries?

See Coxeter’s beautiful classics Regular Polytopes and Regular
Complex Polytopes

Example: root system of type A3

Take the G = S4-orbit of a midpoint of an edge of the cube:



The Archimedean Solids

Exercise: Compute the symmetry group of each of these.



What about the other Coxeter groups?

type dimension diagram group

An n ≥ 1 ◦ ◦ · · · ◦ ◦ ◦ Sn+1

Bn/Cn n ≥ 2 ◦ ◦ · · · ◦ ◦ 4 ◦ Sn ⋉ Z
n
2

Dn n ≥ 4 ◦

◦ ◦ · · · ◦ ◦ ◦

Sn ⋉ Z
n−1

2

I2(n) 2 ◦ n ◦ dihedral, order 2n

H3 3 ◦ ◦ 5 ◦ 120

H4 4 ◦ ◦ ◦ 5 ◦ 14,400

F4 4 ◦ ◦ 4 ◦ ◦ 11,52

E6 6 ◦

◦ ◦ ◦ ◦ ◦

51,840

E7 7 ◦

◦ ◦ ◦ ◦ ◦ ◦

2,903,040

E8 8 ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

696,729,600



The root system E8

E8:

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

G = W (E8), |G | = 696,729,600

E8 root system:

~v = (a1, a2, . . . , a8) ⊂ R
8

◮ all ai ∈ Z or all ai ∈ Z+ 1

2

◮

∑
ai ∈ 2Z

◮ ||~v ||2 = 2

Exercise: This gives 240 vectors of length
√

2 in R
8.

Question: What does this polyhedron look like?

Project it into R
2



The root system E8

Frontspiece of Regular Complex Polytopes by H.S.M. Coxeter

The complex polytope 3{3}3{3}3{3}3 drawn by Peter McMullen



The root system E8


