Regular Polyhedra in n Dimensions

Jeffrey Adams SUM Conference Brown University March 14, 2015 Slides at www.liegroups.org

PLATONIC SOLIDS

dodecahedron icosahedron

- What is a Platonic solid?
- Why are there exactly 5 of them?
- What about in other dimensions?

PLATONIC SOLIDS

dodecahedron icosahedron

A Platonic Solid is a convex body such that:

- Each face is a regular polygon
- The faces are all identical
- The same number of faces meet at each vertex

Why are there 5 Platonic Solids?

Why there are 5 Platonic Solids

Suppose m_1 faces meet at each vertex $(m_1 = 3, 4, 5...)$ Each face is an m_2 -gon $(m_2 = 3, 4, 5...)$ $m_1V = 2E, m_2F = 2E$

plug into $F - E + V = 2 \rightarrow$

$$\frac{2E}{m_2} - E + \frac{2E}{m_1} = 2$$

$$\frac{1}{m_2} + \frac{1}{m_1} = \frac{1}{2} + \frac{1}{E}$$

 $3 \le m_1, m_2 \dots m_1 = 6, m_2 = 3 \rightarrow \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ (contradiction)

Only solutions:

 $3 \leq m_1, m_2 \leq 5$

m_1	m_2	E	
3	3	6	tetrahedron
3	4	12	cube
4	3	12	octahedron
3	5	30	dodecahedron
5	3	30	icosahedron

 $\{m_1, m_2\}$ is the Schläfli symbol of P

The faces and vertices being the same: the symmetry group of P acts transitively on faces, and on vertices.

The number of proper symmetries is 2E.

 G_0 = proper symmetry group (rotations, not reflections)

	order of G_0	G ₀
tetrahedron	12	A_4
cube/octahedron	24	S ₄
dodecahedron/icosahedron	60	A_5

A polytope in \mathbb{R}^n is a finite, convex body *P* bounded by a finite number of hyperplanes.

Each hyperplane (n - 1 dimensional plane) intersects P in an n - 1-dimensional polytope: a face F_{n-1} .

Repeat: $P \supset F_{n-1} \supset F_{n-2} \cdots \supset F_k \supset \cdots \supset F_0 =$ vertex

Definition: A Regular Polyhedron is a convex polytope in \mathbb{R}^n , such that the symmetry group acts transitively on the *k*-faces for all $0 \le k \le n$.

Each F_k is a k-dimensional regular polyhedron

REGULAR POLYHEDRA IN HIGHER DIMENSION

Example: *n*-cube C_n or hypercube Vertices $(\pm 1, \pm 1, \dots, \pm 1)$ *k*-face: $(1, \dots, 1, \pm 1, \pm 1, \dots, \pm 1) = C_k$

Symmetry group G: S_n (permute the coordinates) \mathbb{Z}_2^n (2ⁿ sign changes) $G = S_n \ltimes \mathbb{Z}_2^n$ (wreath product)

REGULAR POLYHEDRA IN HIGHER DIMENSION

Equivalent definition: A flag is a (maximal) nested sequence of faces:

$$vertex = F_0 \subset F_1 \subset \cdots \subset F_{n-1} \subset F_n = P$$

Each face F_i is a lower-dimensional regular polyhedron.

A Regular Polyhedron is a polytope whose symmetry group acts transitively on flags.

Any one flag can be taken to any other by a symmetry of P.

Symmetry Group and Flags

Theorem: The Symmetry group of G act simply transitively on Flags.

transitively: take any flag to any other

simply: Exactly one such symmetry (the only symmetry fixing a flag is the identity)

G =full symmetry group $\supset G_0$ of index 2

 $G \stackrel{1-1}{\leftrightarrow} \{ \text{the set of flags} \}$

	order of G
tetrahedron	$4 \times 3 \times 2 = 24$
cube/octahedron	$6 \times 4 \times 2 = 8 \times 3 \times 2 = 48$
dodecahedron/icosahedron	$12 \times 5 \times 2 = 20 \times 3 \times 2 = 120$

Reflections

 $\alpha \in V \rightarrow s_{\alpha}$:

 \mathbb{R}^n with the usual inner product: $\langle ec{v}, ec{w}
angle = ec{v} \cdot ec{w}.$

$$s_{\alpha}(v) = v - rac{2\langle v, lpha
angle}{\langle lpha, lpha
angle} lpha$$

 W_{α} =hyperplane orthogonal to α (dimension n-1)

Two reflections give a rotation

 ${\it P}$ is our regular polyhedron, with symmetry group ${\it G}$

fix a flag:
$$\mathcal{F} = F_0 \subset F_1 \cdots \subset F_n$$

 p_i : center of mass of F_i

Define a reflection s_i :

 s_i is reflection fixing the hyperplane through $p_0, \ldots, p_{i-1}, \widehat{p_i}, p_{i+1}, \ldots, p_n$

Theorem: s_i is a symmetry of *P*, fixing all faces F_j except for F_i .

Reflections of Polyhedra

Theorem: s_i is a symmetry of P, fixing all faces F_j except for F_i . Theorem: Every symmetry of P is a product of the reflections s_i That is: you can move any flag \mathcal{F}' to our fixed flag \mathcal{F} by a series of these reflections, changing one face F_i at a time. In other words: G is generated by $\{s_0, \ldots, s_{n-1}\}$ A Coxeter group is generated by "reflections":

Abstractly: G has generators s_1, \ldots, s_n , and relations

$$s_i^2 = 1;$$
 $(s_i s_j)^{m_{ij}} = 1$ $(m_{ij} = 2, 3, 4..., \infty)$

Encode this information in a Coxeter graph: Connect node i to node j with

$$\circ \frac{m_{ij}}{i} \circ j$$

Convention for common cases:

$$m_{ij} = 2:(s_i s_j)^2 = 1$$
, $s_i s_j = s_j s_i$ (commute): no line
 $m_{ij} = 3:(s_i s_j)^3 = 1$, unlabelled line

COXETER GROUPS

Example:

$$\begin{array}{c} \circ & \hline & \circ \\ 1 & 2 & 3 \end{array} \qquad \begin{array}{c} \circ & & \circ \\ n-1 & n \end{array}$$

 $s_i^2 = 1, (s_i s_{i+1})^3 = 1$, all other s_i, s_j commute

This is the symmetric group S_{n+1} , $s_i = (i, i+1) = i \leftrightarrow i+1$

Very general construction (any graph with labels \geq 2)

When is this abstract group finite?

Beautiful algebraic/geometric classification of these.

- 1. No loops
- 2. At most one branch point

3.
$$\circ \frac{a}{-} \circ \frac{b}{-} \circ \Rightarrow a \text{ or } b \leq 3$$

4. ...

This leads (quickly!) to the classification of finite Coxeter groups.

CLASSIFICATION OF FINITE COXETER GROUPS

type	dimension	diagram	group
An	$n \ge 1$	o o o o o	S_{n+1}
B_n/C_n	$n \ge 2$	o o o o o	$S_n \ltimes \mathbb{Z}_2^n$
D _n	<i>n</i> ≥ 4	0	$S_n \ltimes \mathbb{Z}_2^{n-1}$
		o o o o o	
$I_2(n)$	2	0 <u>n</u> 0	dihedral, order 2 <i>n</i>
H ₃	3	o o o	120
H_4	4	o o o o	14,400
F ₄	4	o o o o	11,52
E ₆	6	0	51,840
		o o o o o	
E ₇	7	0	2,903,040
		o o o o o	
E ₈	8	°	696,729,600
		○ ○ ○ ○ ○ ○	

Question: Which of these groups can be the symmetry group of a regular polyhedron?

Recall s_i moves only the *i*-dimensional face F_i .

Key fact 1: If $j \neq i \pm 1$ then $s_i s_j = s_j s_i \Rightarrow$

Answer: The graph is a line

$$\circ \underbrace{m_{12}}_{0} \circ \underbrace{m_{23}}_{0} \circ \underbrace{m_{34}}_{0} \circ \cdots \circ \underbrace{m_{(n-1)n}}_{0} \circ$$

Key fact 2: $s_i s_{i+1}$ acts transitively on:

 $F_{i-1} \subset \{i - \mathsf{faces}\} \subset F_{i+2}$

The number of these i-faces is m_i : the Schläfli symbol of P $s_i s_{i+1}$ has order m_i

EXAMPLE: CUBE

EXAMPLE: 4-CUBE

$$F_1 \subset \{ extsf{2-faces}\} \subset F_4$$

 $m_2 = 3$
Schläfli symbol is $\{4, 3, 3\}$

dimension	Polyhedron	diagram	G
2	n-gon	0 <u>n</u> 0	dihedral
$n \ge 2$	n-simplex	0 0 0	S_{n+1}
<i>n</i> ≥ 3	n-cube n-octahedron	o o o o o	$S_n \ltimes \mathbb{Z}_2^n$
3	icosahedron dodecahedron	o o o	120
4	600 cell 120 cell	o o o o	14,400
4	24 cell	o <u> </u>	1,152

OTHER POLYHEDRA WITH LOTS OF SYMMETRIES?

See Coxeter's beautiful classics Regular Polytopes and Regular Complex Polytopes

Example: root system of type A_3

Take the $G = S_4$ -orbit of a midpoint of an edge of the cube:

THE ARCHIMEDEAN SOLIDS

Exercise: Compute the symmetry group of each of these.

WHAT ABOUT THE OTHER COXETER GROUPS?

type	dimension	diagram	group
A _n	$n \ge 1$	o <u> </u>	S_{n+1}
B_n/C_n	$n \ge 2$	o o o o 4 o	$S_n \ltimes \mathbb{Z}_2^n$
D _n	<i>n</i> ≥ 4	0	$S_n \ltimes \mathbb{Z}_2^{n-1}$
		o <u> </u>	
$I_2(n)$	2	0 <u>n</u> 0	dihedral, order 2 <i>n</i>
H ₃	3	o o o	120
H ₄	4	o o o o	14,400
F ₄	4	o o o o	11,52
E ₆	6	°.	51,840
		o o o o o	
E ₇	7	0	2,903,040
		o o o o o	
E ₈	8	0	696,729,600
		○ ○ ○ ○ ○ ○	

The root system E_8

 E_8 :

Exercise: This gives 240 vectors of length $\sqrt{2}$ in \mathbb{R}^8 . Question: What does this polyhedron look like? Project it into \mathbb{R}^2

The root system E_8

Frontspiece of Regular Complex Polytopes by H.S.M. Coxeter

The complex polytope $3{3}3{3}3{3}3$ drawn by Peter McMullen

The root system E_8

