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PLATONIC SOLIDS

2\

tetrahedron cube octahedron

dodecahedron  icosahedron

» What is a Platonic solid?
» Why are there exactly 5 of them?
» What about in other dimensions?



PLATONIC SOLIDS

tetrahedron cube octahedron

dodecahedron icosahedron

A Platonic Solid is a convex body such that:

» Each face is a regular polygon
» The faces are all identical

» The same number of faces meet at each vertex



WHY ARE THERE 5 PLATONIC SOLIDS?

Many proofs. . .
Consider the graph of P:

Euler: F—E+V =2
F|E |V
tetrahedron 4 16 | 4
cube 6 | 12| 8
octahedron 8 |12 | 6
dodecahedron | 12 | 30 | 20
icosahedron | 20 | 30 | 12

ceoeqar



WHY THERE ARE 5 PLATONIC SOLIDS

Suppose m; faces meet at each vertex (m; = 3,4,5...)
Each face is an mp-gon (m2 = 3,4,5...)
mV =2E, mF =2E
pluginto F—E+V =2—
2F 2F

S _E4+ = =2
mo my

1+1 1
my mi 2

3<m,mp... my=6m=3— % + % = % (contradiction)



WHY THERE ARE 5 PLATONIC SOLIDS

Only solutions:

3<my,m <5

m | m | E
6 tetrahedron
12 cube

12 | octahedron
30 | dodecahedron
3 | 30 | icosahedron

{my, my} is the Schlafli symbol of P
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SYMMETRY GROUPS

The faces and vertices being the same: the symmetry group of P
acts transitively on faces, and on vertices.

The number of proper symmetries is 2E.
Go= proper symmetry group (rotations, not reflections)

order of Gy | Gg
tetrahedron 12 As
cube/octahedron 24 S4
dodecahedron/icosahedron 60 As




REGULAR POLYHEDRA IN HIGHER DIMENSION

A polytope in R" is a finite, convex body P bounded by a finite
number of hyperplanes.

Each hyperplane (n — 1 dimensional plane) intersects P in an
n — 1-dimensional polytope: a face F, 1.

Repeat: PD F,_1 D Fh_2--- D Fx D -+ D Fy = vertex

Definition: A Regular Polyhedron is a convex polytope in R”, such
that the symmetry group acts transitively on the k-faces for all
0< k<n.

Each Fy is a k-dimensional regular polyhedron



REGULAR POLYHEDRA IN HIGHER DIMENSION

Example: n-cube C, or hypercube

Vertices (+1,+1,...,+1)
n—k

—
k-face: (1,...,1,+1,£1,...,41)

Ck

Symmetry group G:

Sn (permute the coordinates)
75 (2" sign changes)

G = S, x Z5 (wreath product)



REGULAR POLYHEDRA IN HIGHER DIMENSION

Equivalent definition:
A flag is a (maximal) nested sequence of faces:

vertex=FgCF C---CF,_1CF,=P

Each face F; is a lower-dimensional regular polyhedron.

-y

B

A Regular Polyhedron is a polytope whose symmetry group acts
transitively on flags.

Any one flag can be taken to any other by a symmetry of P.



SYMMETRY GROUP AND FLAGS
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SYMMETRY GROUP AND FLAGS

Theorem: The Symmetry group of G act simply transitively on
Flags.

transitively: take any flag to any other

simply: Exactly one such symmetry (the only symmetry fixing a flag
is the identity)

G= full symmetry groupD Gy of index 2

= {the set of flags}

order of G
tetrahedron 4x3x2=24
cube/octahedron 6x4x2=8x3x2=48
dodecahedron/icosahedron | 12 x 5 x 2 =20 x 3 x 2 =120




REFLECTIONS
R"™ with the usual inner product: (V,w) = v - w.

a€eV—s,:

W, =hyperplane orthogonal to a (dimension n — 1)

sa(w)=w (weW,)

sa(@) = —«




TWO REFLECTIONS GIVE A ROTATION

GG
IO

rotation



REFLECTIONS IN G

P is our regular polyhedron, with symmetry group G
fixaflagg F=FR CF---CF,

p; . center of mass of F;

Define a reflection s;:

s; is reflection fixing the hyperplane through
Pos - - - 7piflal/)\f7pf+17 <5 Pn

Theorem: s; is a symmetry of P, fixing all faces F; except for F;.



REFLECTIONS OF POLYHEDRA

Fixes
F07 FZ
g P and
[ ) moves
N
e P
¢ ¢

Fixes Fy, F» and
moves Fy

o O



REFLECTIONS OF POLYHEDRA

Theorem: s; is a symmetry of P, fixing all faces F; except for F;.
Theorem: Every symmetry of P is a product of the reflections s;

That is: you can move any flag 7’ to our fixed flag F by a series of
these reflections, changing one face F; at a time.

In other words: G is generated by {sp,...,sp,—1}



COXETER (GROUPS

A Coxeter group is generated by “reflections™

Abstractly: G has generators s1,...,s,, and relations

Si2 = ]., (5,’5j)mij =1 (mu = 27374' . ‘700)

Encode this information in a Coxeter graph:
Connect node i to node j with

Convention for common cases:
mjj = 2:(sis;)? = 1, sisj = sjs; (commute): no line

mjj = 3:(5,-5j)3 =1, unlabelled line



COXETER (GROUPS

Example:

o o
1 2 3 n—1 n

s,-2 =1,(sisiv1)® =1, all other s;, sj commute
This is the symmetric group Spy1, si=(i,i+1)=i<i+1

Very general construction (any graph with labels > 2)




FINITE COXETER GROUPS

When is this abstract group finite?

Beautiful algebraic/geometric classification of these.

. No loops

. At most one branch point

1
2
a b
3. o0—o0o—o0 =aorb<3
4

This leads (quickly!) to the classification of finite Coxeter groups.



CLASSIFICATION OF FINITE COXETER GROUPS

type dimension diagram group
An nz 1 o 0--:0 o o Sn—&—l
Bn/Cn n Z 2 o O - [0} o 4 o Sn X Zg
D, n>4 o Sy X Zgil
h(n) 2 o—"_o dihedral, order 2n
H3 3 le) le) 5 e} 120
H4 4 le) e} le) 5 le) 147400
Fy4 4 o ot 4 o 11,52
Ee 6 o 51,840
E 7 . 2,903,040

|
Eg 8 ‘ 696,729,600




BACK TO REGULAR POLYHEDRA

Question: Which of these groups can be the symmetry group of a
regular polyhedron?

Recall s; moves only the i-dimensional face F;.
Key fact 1: If j # i =1 then s;s; = sj5,=

Answer: The graph is a line

mi2 m23 m3q M(n—1)n




BACK TO REGULAR POLYHEDRA

Key fact 2: s;s;11 acts transitively on:

Fi—1 C {i —faces} C Fii2

The number of these i-faces is m;: the Schlafli symbol of P

sisi+1 has order m;



EXAMPLE: CUBE

siSi11 acts transitively on

Fi—1 C {i —faces} C Fii2
5051

5152

() C {vertices} C F Fo C {edges} C F3
mg =4 m =3

L/
D




EXAMPLE: 4-CUBE

5253

F1 C {2-faces} C Fy4

my = 3

Schlafli symbol is{4, 3,3}




REGULAR POLYHEDRA IN n-DIMENSIONS

dimension | Polyhedron diagram G
2 n-gon 0" 4 dihedral
n>?2 n-simplex 6.0 o Snt1
n>3 | rebe orio—o b o | SpXZ8
3 dodecahedion °o—>—o 120
4 120 cel o020 | 14400
4 24 cell ot ¢ o 1,152




OTHER POLYHEDRA WITH LOTS OF SYMMETRIES?

See Coxeter's beautiful classics Regular Polytopes and Regular
Complex Polytopes

Example: root system of type As
Take the G = S4-orbit of a midpoint of an edge of the cube:




THE ARCHIMEDEAN SOLIDS

oYV

TRUNCATED TETRAHEDRON CUBOCTOHEDRON TRUNCATED CUBE TRUNCATED OCTOHEDRON ~ RHOMBICUBOCTOHEDRON
TRUNCATED CUBOCTOHEDRON SNUB CUBE ICOSIDODECAHEDRON TRUNCATED DODECAHEDRON

TRUNCATED ICOSAHEDRON RHOMBICOSIDODECAHEDRON TRUNCATED ICOSIDODECAHEDRON SNUB DODECAHEDRON

Exercise: Compute the symmetry group of each of these.



WHAT ABOUT THE OTHER COXETER GROUPS?

type dimension diagram group
An n> 1 o o---0 o Sn+1
B,/ Cy n>?2 o 6.0 o2 Spx Z§
D, n>4 . Sy X Zgil
h(n) 2 o o dihedral, order 2n
Hs 3 o o—2 o 120
H4 4‘ le) e} le) 5 147400
Fy 4 o ot 4 o 11,52
Ee 6 o 51,840
E 7 2,903,040

|
Eg 8 i 696,729,600




THE ROOT SYSTEM £Eg

Eg:

(¢] e} e} (e] (¢] o}

G = W(Es), |G| = 696,729,600
Eg root system:
V= (a1,a,...,a3) C R®

»allajeZor alla; €Z+ 13

> > ai€2Z

> [[V][? =2
Exercise: This gives 240 vectors of length v/2 in R8.
Question: What does this polyhedron look like?
Project it into R?



THE ROOT SYSTEM £Eg

Frontspiece of Regular Complex Polytopes by H.S.M. Coxeter

The complex polytope 3{3}3{3}3{3}3 drawn by Peter McMullen



THE ROOT SYSTEM £Eg

iy
i

W

—
=
7
S\UVHIPW

—

N

7
%




