Regular Polyhedra in n Dimensions

Jeffrey Adams
SUM Conference

Brown University
March 14, 2015
Slides at www.liegroups.org

Platonic Solids

- What is a Platonic solid?
- Why are there exactly 5 of them?
- What about in other dimensions?

tetrahedron

cube octahedron

dodecahedron icosahedron
A Platonic Solid is a convex body such that:
- Each face is a regular polygon
- The faces are all identical
- The same number of faces meet at each vertex

Many proofs...
Consider the graph of P :

Euler: $F-E+V=2$

	F	E	V
tetrahedron	4	6	4
cube	6	12	8
octahedron	8	12	6
dodecahedron	12	30	20
icosahedron	20	30	12

Suppose m_{1} faces meet at each vertex $\left(m_{1}=3,4,5 \ldots\right)$
Each face is an m_{2}-gon ($m_{2}=3,4,5 \ldots$)
$m_{1} V=2 E, m_{2} F=2 E$
plug into $F-E+V=2 \rightarrow$

$$
\begin{aligned}
& \frac{2 E}{m_{2}}-E+\frac{2 E}{m_{1}}=2 \\
& \frac{1}{m_{2}}+\frac{1}{m_{1}}=\frac{1}{2}+\frac{1}{E}
\end{aligned}
$$

$3 \leq m_{1}, m_{2} \ldots m_{1}=6, m_{2}=3 \rightarrow \frac{1}{3}+\frac{1}{6}=\frac{1}{2}$ (contradiction)

Only solutions:

$$
3 \leq m_{1}, m_{2} \leq 5
$$

m_{1}	m_{2}	E	
3	3	6	tetrahedron
3	4	12	cube
4	3	12	octahedron
3	5	30	dodecahedron
5	3	30	icosahedron

$\left\{m_{1}, m_{2}\right\}$ is the Schläfli symbol of P

The faces and vertices being the same: the symmetry group of P acts transitively on faces, and on vertices.

The number of proper symmetries is $2 E$.
$G_{0}=$ proper symmetry group (rotations, not reflections)

	order of G_{0}	G_{0}
tetrahedron	12	A_{4}
cube/octahedron	24	S_{4}
dodecahedron/icosahedron	60	A_{5}

A polytope in \mathbb{R}^{n} is a finite, convex body P bounded by a finite number of hyperplanes.

Each hyperplane ($n-1$ dimensional plane) intersects P in an n - 1-dimensional polytope: a face F_{n-1}.

Repeat: $P \supset F_{n-1} \supset F_{n-2} \cdots \supset F_{k} \supset \cdots \supset F_{0}=$ vertex

Definition: A Regular Polyhedron is a convex polytope in \mathbb{R}^{n},such that the symmetry group acts transitively on the k-faces for all $0 \leq k \leq n$.

Each F_{k} is a k-dimensional regular polyhedron

Example: n-cube C_{n} or hypercube
Vertices $(\pm 1, \pm 1, \ldots, \pm 1)$
k-face: $(\overbrace{1, \ldots, 1}^{n-k}, \pm 1, \pm 1, \ldots, \pm 1)=C_{k}$

Symmetry group G:
S_{n} (permute the coordinates)
\mathbb{Z}_{2}^{n} (2^{n} sign changes)
$G=S_{n} \ltimes \mathbb{Z}_{2}^{n}$ (wreath product)

Equivalent definition:
A flag is a (maximal) nested sequence of faces:

$$
\text { vertex }=F_{0} \subset F_{1} \subset \cdots \subset F_{n-1} \subset F_{n}=P
$$

Each face F_{i} is a lower-dimensional regular polyhedron.

A Regular Polyhedron is a polytope whose symmetry group acts transitively on flags.

Any one flag can be taken to any other by a symmetry of P.

Theorem: The Symmetry group of G act simply transitively on Flags.
transitively: take any flag to any other
simply: Exactly one such symmetry (the only symmetry fixing a flag is the identity)
$G=$ full symmetry group $\supset G_{0}$ of index 2

$$
G \stackrel{1-1}{\leftrightarrow}\{\text { the set of flags }\}
$$

	order of G
tetrahedron	$4 \times 3 \times 2=24$
cube/octahedron	$6 \times 4 \times 2=8 \times 3 \times 2=48$
dodecahedron/icosahedron	$12 \times 5 \times 2=20 \times 3 \times 2=120$

Reflections

\mathbb{R}^{n} with the usual inner product: $\langle\vec{v}, \vec{w}\rangle=\vec{v} \cdot \vec{w}$.
$\alpha \in V \rightarrow s_{\alpha}:$

$$
s_{\alpha}(v)=v-\frac{2\langle v, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha
$$

$W_{\alpha}=$ hyperplane orthogonal to α (dimension $n-1$)

$$
\begin{aligned}
s_{\alpha}(w) & =w \quad\left(w \in W_{\alpha}\right) \\
s_{\alpha}(\alpha) & =-\alpha
\end{aligned}
$$

P is our regular polyhedron, with symmetry group G
fix a flag: $\mathcal{F}=F_{0} \subset F_{1} \cdots \subset F_{n}$
p_{i} : center of mass of F_{i}
Define a reflection s_{i} :
s_{i} is reflection fixing the hyperplane through
$p_{0}, \ldots, p_{i-1}, \widehat{p_{i}}, p_{i+1}, \ldots, p_{n}$
Theorem: s_{i} is a symmetry of P, fixing all faces F_{j} except for F_{i}.

Reflections of Polyhedra

Fixes
F_{0}, F_{2}
and
moves F_{1}

Fixes F_{1}, F_{2} and moves F_{0}

Reflections of Polyhedra

Theorem: s_{i} is a symmetry of P, fixing all faces F_{j} except for F_{i}.
Theorem: Every symmetry of P is a product of the reflections s_{i}
That is: you can move any flag \mathcal{F}^{\prime} to our fixed flag \mathcal{F} by a series of these reflections, changing one face F_{i} at a time.

In other words: G is generated by $\left\{s_{0}, \ldots, s_{n-1}\right\}$

A Coxeter group is generated by "reflections":
Abstractly: G has generators s_{1}, \ldots, s_{n}, and relations

$$
s_{i}^{2}=1 ; \quad\left(s_{i} s_{j}\right)^{m_{i j}}=1 \quad\left(m_{i j}=2,3,4 \ldots, \infty\right)
$$

Encode this information in a Coxeter graph:
Connect node i to node j with

$$
\underset{i}{\circ} \stackrel{m_{i j}}{\circ}
$$

Convention for common cases:
$m_{i j}=2:\left(s_{i} s_{j}\right)^{2}=1, s_{i} s_{j}=s_{j} s_{i}$ (commute): no line $m_{i j}=3:\left(s_{i} s_{j}\right)^{3}=1$, unlabelled line

Coxeter Groups

Example:

$s_{i}^{2}=1,\left(s_{i} s_{i+1}\right)^{3}=1$, all other s_{i}, s_{j} commute
This is the symmetric group $S_{n+1}, \quad s_{i}=(i, i+1)=i \leftrightarrow i+1$
Very general construction (any graph with labels ≥ 2)

Finite Coxeter Groups

When is this abstract group finite?
Beautiful algebraic/geometric classification of these.

1. No loops
2. At most one branch point
3. $\circ \stackrel{a}{-} \circ \stackrel{b}{\circ} \Rightarrow a$ or $b \leq 3$
4. ...

This leads (quickly!) to the classification of finite Coxeter groups.

Classification of Finite Coxeter Groups

type	dimension	diagram	group
A_{n}	$n \geq 1$		S_{n+1}
B_{n} / C_{n}	$n \geq 2$	$\bigcirc-\ldots \cdots 0-0.4$	$S_{n} \ltimes \mathbb{Z}_{2}^{n}$
D_{n}	$n \geq 4$		$S_{n} \ltimes \mathbb{Z}_{2}^{n-1}$
$I_{2}(n)$	2	$\bigcirc{ }^{n} 0$	dihedral, order $2 n$
H_{3}	3	$\bigcirc-\ldots$	120
H_{4}	4	\bigcirc-_ ○-_ ○ 5	14,400
F_{4}	4	$\bigcirc-\ldots$	11,52
E_{6}	6		51,840
E_{7}	7		2,903,040
E_{8}	8		696,729,600

Question: Which of these groups can be the symmetry group of a regular polyhedron?

Recall s_{i} moves only the i-dimensional face F_{i}.
Key fact 1: If $j \neq i \pm 1$ then $s_{i} s_{j}=s_{j} s_{i} \Rightarrow$
Answer: The graph is a line

$$
\circ \stackrel{m_{12}}{-} \stackrel{m_{23}}{\square} \stackrel{m_{34}}{\square} \circ \frac{m_{(n-1) n}}{} \circ
$$

Key fact 2: $s_{i} s_{i+1}$ acts transitively on:

$$
F_{i-1} \subset\{i-\text { faces }\} \subset F_{i+2}
$$

The number of these i-faces is m_{i} : the Schläfli symbol of P
$s_{i} s_{i+1}$ has order m_{i}

$$
\begin{aligned}
& s_{i} s_{i+1} \text { acts transitively on } \\
& F_{i-1} \subset\{i-\text { faces }\} \subset F_{i+2}
\end{aligned}
$$

$s_{0} s_{1}$
$\emptyset \subset\{$ vertices $\} \subset F_{2}$
$m_{0}=4$

$$
\begin{array}{r}
s_{2} s_{3} \\
F_{1} \subset\{2 \text {-faces }\} \subset F_{4} \\
m_{2}=3
\end{array}
$$

Schläfli symbol is $\{4,3,3\}$

dimension	Polyhedron	diagram	G
2	n-gon	$\bigcirc \ldots$	dihedral
$n \geq 2$	n-simplex	\bigcirc-_ $0 \cdots \circ$ - 0	S_{n+1}
$n \geq 3$		$\bigcirc-\ldots 0-10$	$S_{n} \ltimes \mathbb{Z}_{2}^{n}$
3	icosahedron dodecahedron	$\bigcirc-\bigcirc$	120
4	$\begin{aligned} & 600 \text { cell } \\ & 120 \text { cell } \end{aligned}$	- 0.	14,400
4	24 cell	$\bigcirc-\ldots \xrightarrow{4} \circ$ -	1,152

See Coxeter's beautiful classics Regular Polytopes and Regular Complex Polytopes
Example: root system of type A_{3}
Take the $G=S_{4}$-orbit of a midpoint of an edge of the cube:

ТHE ARCHIMEDEAN SOLIDS

TRUNCATED CUBOCTOHEDRON

SNUB CUBE

RHOMBICOSIDODECAHEDRON

ICOSIDODECAHEDRON

TRUNCATED ICOSIDODECAHEDRON

truncated dodecahedron

SNUB DODECAHEDRON

Exercise: Compute the symmetry group of each of these.

What about the other Coxeter groups?

type	dimension	diagram	group
A_{n}	$n \geq 1$		S_{n+1}
B_{n} / C_{n}	$n \geq 2$	$\bigcirc-0 \cdots 0-0.4$	$S_{n} \ltimes \mathbb{Z}_{2}^{n}$
D_{n}	$n \geq 4$		$S_{n} \ltimes \mathbb{Z}_{2}^{n-1}$
$I_{2}(n)$	2	$\bigcirc \xrightarrow{n} 0$	dihedral, order $2 n$
H_{3}	3	$\bigcirc-\ldots \bigcirc$	120
H_{4}	4	$\bigcirc-\ldots-\ldots$	14,400
F_{4}	4	\bigcirc - 0.4 - 0	11,52
E_{6}	6		51,840
E_{7}	7	-	2,903,040
E_{8}	8		696,729,600

$E_{8}:$
$G=W\left(E_{8}\right),|G|=696,729,600$
E_{8} root system:
$\vec{v}=\left(a_{1}, a_{2}, \ldots, a_{8}\right) \subset \mathbb{R}^{8}$

- all $a_{i} \in \mathbb{Z}$ or all $a_{i} \in \mathbb{Z}+\frac{1}{2}$
- $\sum a_{i} \in 2 \mathbb{Z}$
- $\|\vec{v}\|^{2}=2$

Exercise: This gives 240 vectors of length $\sqrt{2}$ in \mathbb{R}^{8}.
Question: What does this polyhedron look like?
Project it into \mathbb{R}^{2}

Frontspiece of Regular Complex Polytopes by H.S.M. Coxeter

The complex polytope $3\{3\} 3\{3\} 3\{3\} 3$ drawn by Peter McMullen

THE ROOT SYSTEM E_{8}

