ADMISSIBLE W-GRAPHS AND COMMUTING CARTAN MATRICES

John R. Stembridge 〈jrs@umich.edu〉

Contents

1. A Classification Problem
2. Why We Care (Kazhdan-Lusztig theory)
3. The Classification
4. Comments about the Proof

1.1 A Classification Problem

We want to classify commuting pairs of simply-laced Cartan matrices. ${ }^{1}$
What is a simply-laced Cartan matrix?

- 2 's on the diagonal; $-1,0$ off-diagonal;
- symmetric, positive definite.

Nicer to replace A with $2-A$ (adjacency matrix of Dynkin diagram).
Recall the familiar $A-D-E$ classification:

$$
\begin{gathered}
A_{n} \\
D_{n}(n \geqslant 4) \\
E_{n}(n=6,7,8)
\end{gathered}
$$

Note. We identify graphs with their adjacency matrices.

$$
A_{4} \equiv \bullet \bullet \longmapsto \longmapsto\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Important. We are not assuming that the graphs are connected!

[^0]
1.2 Admissible Cartan Pairs

Problem/Definition. Classify all admissible Cartan pairs (A, B) :

- A and B are simply-laced Dynkin diagrams on the same vertex set
- The vertex set may be partitioned into 4 blocks so that

- $A B=B A$.

Notes.

- Disjoint unions of ACP's are ACP's, so w.l.o.g. assume connected.
- If (A, B) is connected, the vertex partition is unique.
- Checking $A B=B A$ amounts to choosing vertices x, y in diagonally opposite blocks and comparing 2-step paths $x \rightarrow y$.

Definition. The dual of an $\operatorname{ACP}(A, B)$ is $(A, B)^{*}:=(B, A)$.

1.3 Examples

1. Tensor Product.

Choose connected Dynkin diagrams C, D.
Set $A:=C \otimes 1, B:=1 \otimes D$. Write $(A, B):=C \otimes D$.

Example: $\quad A_{3} \otimes A_{4}$

2. Twisted Product.

Choose a connected Dynkin diagram C with p black vertices, q white.
Construct four copies of C on $2 p+2 q$ vertices:

3. Many other possibilities, such as

Note. Every ACP has a type. Example 3 has type $\left(A_{5} D_{4}, A_{3}^{3}\right)$.

2.1 Why Do We Care?

The story begins with the theory of W-graphs.
Start with a Coxeter system $(W, S), S=\left\{s_{1}, \ldots, s_{n}\right\}$.
Ex: $W=S_{n+1}, s_{i}=(i, i+1)$.
Of primary interest are the finite Weyl groups.
Definition (Kazhdan-Lusztig). A W-graph is a triple (V, m, τ) s.t.

- V is a (finite) vertex set
- $m: V \times V \rightarrow \mathbb{Z}$ (matrix of edge weights; 0 means "no edge")
- $\tau: V \rightarrow\{$ subsets of $S\}$ (each vertex has a "descent set")
- The following defines a W-action on $\mathbb{Z} V$:

$$
s_{i}(v)=\left\{\begin{array}{cl}
v & \text { if } i \notin \tau(v), \tag{*}\\
-v+\sum_{u: i \notin \tau(u)} m(v \rightarrow u) u & \text { if } i \in \tau(v) .
\end{array}\right.
$$

Notes.

- We've set $q=1$; the Hecke algebra action has been hidden.
- $s_{i}^{2}=1$ is automatic; $(*) \Leftrightarrow$ braid relations.
- If $\tau(v) \subseteq \tau(u)$ then $m(v \rightarrow u):=0$ by convention.

The strongly connected components of a W-graph are called cells.
Cells are themselves W-graphs; they are the combinatorially irreducible W-graphs, but need not be algebraically irreducible.

2.2 The Kazhdan-Lusztig W-graph

The W-graphs that people care about are the ones that occur in representation theory (cf. the Kazhdan-Lusztig "Conjecture").
In the K-L construction, $\mathbb{Q} W$ has a distinguished basis $\left\{C_{w}: w \in W\right\}$.
The action of s_{i} on this basis has the structure of a W-graph, with

- vertex set W,
- $\tau(v):=\left\{i: \ell\left(s_{i} v\right)<\ell(v)\right\}$ for all $v \in W$,
- $m(u \rightarrow v):=\mu(u, v)+\mu(v, u)$ if $\tau(u) \nsubseteq \tau(v)$,
where $\mu(u, v):=$ coefficient of $q^{(\ell(v)-\ell(u)-1) / 2}$ in $P_{u, v}(q)$.
Remarks.
- For Weyl groups, we know that $P_{u, v}(q) \in \mathbb{Z} \geqslant 0[q]$, so $m(u \rightarrow v) \geqslant 0$.
- $\mu(u, v)$ is hard to compute without first computing $P_{u, v}(q)$.
- The cells of this W-graph are "left K-L cells".
- Left and right actions of W on $\mathbb{Q} W$ yield a $W \times W$-graph.
- The cells of the $(W \times W)$-graph are "two-sided K-L cells".
- There exist analogous graphs and cells associated with representations of real groups via K-L-V polynomials.

Goals.

- Understand the structure of K-L and K-L-V cells.
- What are the essential combinatorial features of these cells?
- Can they be determined without K-L(-V) polynomials?

2.3 Admissible W-Graphs

Definition. A W-graph is admissible if it

- has $\mathbb{Z} \geqslant 0$ weights,
- is bipartite (cf. $\ell(u)-\ell(v)-1 \in 2 \mathbb{Z}$), and
- is edge-symmetric: $m(u \rightarrow v)=m(v \rightarrow u)$ if $\tau(u) \Phi \tau(v)$.

Note. If $\tau(u) \$ \tau(v)$, then $m(u \rightarrow v)=m(v \rightarrow u) \in\{0,1\}$.
Main Contention. These axioms come close to capturing what is essential about K-L(-V) cells. There do exist admissible cells that are not K-L-V, but all admissible cells seem to be built from the same "molecules."

Problem. Classify all admissible W-cells.
Solved: $A_{9}, D_{6}, E_{6}, H_{3}, \ldots$
Problem. Are there finitely many admissible W-cells?
What does all of this have to do with classifying ACP's?
Theorem. The nontrivial admissible $I_{2}(m)$-cells are the simply-laced Dynkin diagrams with Coxeter number $h \mid m$.

Example. The D_{4} diagram is a G_{2}-cell (Coxeter number 6).

Note. The Dynkin diagram A_{m-1} is the only nontrivial K-L $I_{2}(m)$-cell.

The admissible D_{4}-cells (three are not K-L):

2.4 The Reducibility Issue

Obstacle. It does not suffice to assume that W is irreducible!
There exist "interesting" $\left(W_{1} \times W_{2}\right)$-cells that are not tensor products.
Example. The nontrivial two-sided K-L cell for $I_{2}(m)$ is $A_{m-1} \times A_{m-1}$.

Proposition. The nontrivial admissible $\left(I_{2}(p) \times I_{2}(q)\right)$-cells are the connected ACP's (A, B) such that each component of A has Coxeter number dividing p, and each component of B has Coxeter number dividing q.

Remark. All components of A necessarily have the same Coxeter number.

3.1 Bindings

First, a mechanism for breaking connected ACP's (A, B) into smaller pieces.
Decompose A into connected components A^{1}, \ldots, A^{ℓ}.
Set $B_{i j}:=$ edges of B that connect A^{i} and A^{j}.

FACT. If $B_{i j} \neq \varnothing$, then $\left(A^{i} \cup A^{j}, B_{i j}\right)$ is itself a connected ACP.
Proof. Commutativity is a local condition.
Definition. If A has exactly two components A^{1} and A^{2}, then (A, B) is a binding of A^{1} and A^{2}.

Corollary. It suffices to classify all bindings of connected diagrams, and then determine all ways they can be combined into larger ACP's.

Note. The dual of a binding need not be a binding.

Here, the dual of a D_{4}, A_{5} binding reduces to two A_{3}, A_{3} bindings.
Definition. (A, B) is irreducible if A and B both have two components.

3.2 Classifying Bindings

Lemma 1. The irreducible bindings are twisted products $C \times C$, along with two (self-dual) exceptional bindings: $D_{5} \boxtimes A_{7}$ and $E_{7} \boxtimes D_{10}$.
$D_{5} \boxtimes A_{7}:$

What about other (reducible) bindings?

Definition. Parallel binding: $C \equiv C:=C \otimes A_{2} . \quad A_{3} \equiv A_{3}:$

Lemma 2. A complete list of bindings of $A-D-E$ diagrams is as follows:

- $C \times C, \quad C \equiv C, \quad D_{5} \boxtimes A_{7}, \quad E_{7} \boxtimes D_{10}$,
- $D_{n+1} * A_{2 n-1}:=\left(A_{3} \times A_{3} \equiv A_{3} \equiv \cdots \equiv A_{3}\right)^{*} \quad(n \geqslant 3)$,
- $E_{6} * E_{6}:=\left(A_{3} \equiv A_{3} \times A_{3} \equiv A_{3}\right)^{*}$,
- $D_{6} * D_{6}:=\left(A_{4} \times A_{4} \equiv A_{4}\right)^{*}$,
- $E_{8} * E_{8}:=\left(A_{4} \times A_{4} \equiv A_{4} \equiv A_{4}\right)^{*}$.

3.3 The Classification

Theorem. The connected ACP's are as follows:

- $C \otimes D, \quad C \times C, \quad D_{5} \boxtimes A_{7}, \quad E_{7} \boxtimes D_{10}$,
- $D_{n+1} \equiv \cdots \equiv D_{n+1} \equiv D_{n+1} * A_{2 n-1}$,
- $D_{n+1} * A_{2 n-1} \equiv A_{2 n-1} \equiv \cdots \equiv A_{2 n-1}$,
- $D_{n+1} \equiv D_{n+1} * A_{2 n-1} \equiv A_{2 n-1}=\left(E_{6} * E_{6} \equiv E_{6} \equiv \cdots \equiv E_{6}\right)^{*}$,
- $D_{6} * D_{6}, \quad D_{6} * D_{6} \equiv D_{6}, \quad D_{6} * D_{6} \equiv D_{6} \equiv D_{6}=\left(E_{8} * E_{8} \equiv E_{8}\right)^{*}$,
- $E_{8} * E_{8}, \quad E_{6} \equiv E_{6} * E_{6} \equiv E_{6}, \quad E_{8} * E_{8} \equiv E_{8} \equiv E_{8}$.

[^0]: ${ }^{1}$ A lie!

