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1.1 A Classification Problem

We want to classify commuting pairs of simply-laced Cartan matrices.1

What is a simply-laced Cartan matrix?

• 2’s on the diagonal; −1, 0 off-diagonal;

• symmetric, positive definite.

Nicer to replace A with 2 − A (adjacency matrix of Dynkin diagram).

Recall the familiar A-D-E classification:

An

Dn (n > 4)

En (n = 6, 7, 8)

Note. We identify graphs with their adjacency matrices.

A4 ≡ ≡







0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0







Important. We are not assuming that the graphs are connected!

1A lie!



1.2 Admissible Cartan Pairs

Problem/Definition. Classify all admissible Cartan pairs (A, B):

• A and B are simply-laced Dynkin diagrams on the same vertex set

• The vertex set may be partitioned into 4 blocks so that

A

B

B

A

• AB = BA.

Notes.

• Disjoint unions of ACP’s are ACP’s, so w.l.o.g. assume connected.

• If (A, B) is connected, the vertex partition is unique.

• Checking AB = BA amounts to choosing vertices x, y in diagonally

opposite blocks and comparing 2-step paths x → y.

Definition. The dual of an ACP (A, B) is (A, B)∗ := (B, A).



1.3 Examples

1. Tensor Product.

Choose connected Dynkin diagrams C, D.

Set A := C ⊗ 1, B := 1 ⊗ D. Write (A, B) := C ⊗ D.

Example: A3 ⊗ A4

2. Twisted Product.

Choose a connected Dynkin diagram C with p black vertices, q white.

Construct four copies of C on 2p + 2q vertices:

C×C :=

q

qp

p

A4×A4 =

3. Many other possibilities, such as

Note. Every ACP has a type. Example 3 has type (A5D4 , A3
3).



2.1 Why Do We Care?

The story begins with the theory of W -graphs.

Start with a Coxeter system (W, S), S = {s1, . . . , sn}.

Ex: W = Sn+1, si = (i, i + 1).

Of primary interest are the finite Weyl groups.

Definition (Kazhdan-Lusztig). A W -graph is a triple (V, m, τ ) s.t.

• V is a (finite) vertex set

• m : V × V → Z (matrix of edge weights; 0 means “no edge”)

• τ : V → {subsets of S} (each vertex has a “descent set”)

• The following defines a W -action on ZV :

si(v) =

{

v if i /∈ τ (v),

−v +
∑

u:i/∈τ(u) m(v → u)u if i ∈ τ (v).
(*)

Notes.

• We’ve set q = 1; the Hecke algebra action has been hidden.

• s2
i = 1 is automatic; (∗) ⇔ braid relations.

• If τ (v) ⊆ τ (u) then m(v → u) := 0 by convention.

The strongly connected components of a W -graph are called cells.

Cells are themselves W -graphs; they are the combinatorially irreducible

W -graphs, but need not be algebraically irreducible.



2.2 The Kazhdan-Lusztig W -graph

The W -graphs that people care about are the ones that occur in represen-

tation theory (cf. the Kazhdan-Lusztig “Conjecture”).

In the K-L construction, QW has a distinguished basis {Cw : w ∈ W}.

The action of si on this basis has the structure of a W -graph, with

• vertex set W ,

• τ (v) := {i : `(siv) < `(v)} for all v ∈ W ,

• m(u → v) := µ(u, v) + µ(v, u) if τ (u) 6⊆ τ (v),

where µ(u, v) := coefficient of q(`(v)−`(u)−1)/2 in Pu,v(q).

Remarks.

• For Weyl groups, we know that Pu,v(q) ∈ Z>0[q], so m(u → v) > 0.

• µ(u, v) is hard to compute without first computing Pu,v(q).

• The cells of this W -graph are “left K-L cells”.

• Left and right actions of W on QW yield a W × W -graph.

• The cells of the (W × W )-graph are “two-sided K-L cells”.

• There exist analogous graphs and cells associated with representations

of real groups via K-L-V polynomials.

Goals.

• Understand the structure of K-L and K-L-V cells.

• What are the essential combinatorial features of these cells?

• Can they be determined without K-L(-V) polynomials?



2.3 Admissible W -Graphs

Definition. A W -graph is admissible if it

• has Z>0 weights,

• is bipartite (cf. `(u) − `(v) − 1 ∈ 2Z), and

• is edge-symmetric: m(u → v) = m(v → u) if τ (u) ⊂
⊃ τ (v).

Note. If τ (u) ⊂
⊃ τ (v), then m(u → v) = m(v → u) ∈ {0, 1}.

Main Contention. These axioms come close to capturing what is essen-

tial about K-L(-V) cells. There do exist admissible cells that are not K-L-V,

but all admissible cells seem to be built from the same “molecules.”

Problem. Classify all admissible W -cells.

Solved: A9, D6, E6, H3, . . .

Problem. Are there finitely many admissible W -cells?

What does all of this have to do with classifying ACP’s?

Theorem. The nontrivial admissible I2(m)-cells are the simply-laced

Dynkin diagrams with Coxeter number h | m.

Example. The D4 diagram is a G2-cell (Coxeter number 6).

2

2 2

1

Note. The Dynkin diagram Am−1 is the only nontrivial K-L I2(m)-cell.



The admissible D4-cells (three are not K-L):
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2.4 The Reducibility Issue

Obstacle. It does not suffice to assume that W is irreducible!

There exist “interesting” (W1 × W2)-cells that are not tensor products.

Example. The nontrivial two-sided K-L cell for I2(m) is Am−1 × Am−1.

A4×A4 =

Proposition. The nontrivial admissible (I2(p) × I2(q))-cells are the con-

nected ACP’s (A, B) such that each component of A has Coxeter number

dividing p, and each component of B has Coxeter number dividing q.

1,3 1,4

2,3 2,4

Remark. All components of A necessarily have the same Coxeter number.



3.1 Bindings

First, a mechanism for breaking connected ACP’s (A, B) into smaller pieces.

Decompose A into connected components A1, . . . , A`.

Set Bij := edges of B that connect Ai and Aj .

A1 A2 A3 A4

Fact. If Bij 6= ∅, then (Ai ∪ Aj , Bij) is itself a connected ACP.

Proof. Commutativity is a local condition. �

Definition. If A has exactly two components A1 and A2, then (A, B) is

a binding of A1 and A2.

Corollary. It suffices to classify all bindings of connected diagrams,

and then determine all ways they can be combined into larger ACP’s.

Note. The dual of a binding need not be a binding.

=

Here, the dual of a D4, A5 binding reduces to two A3, A3 bindings.

Definition. (A, B) is irreducible if A and B both have two components.



3.2 Classifying Bindings

Lemma 1. The irreducible bindings are twisted products C×C, along with

two (self-dual) exceptional bindings: D5 � A7 and E7 � D10.

D5 � A7:

What about other (reducible) bindings?

Definition. Parallel binding: C ≡ C := C⊗A2. A3 ≡ A3 :

Lemma 2. A complete list of bindings of A-D-E diagrams is as follows:

• C × C, C ≡ C, D5 � A7, E7 � D10,

• Dn+1 ∗ A2n−1 := (A3 × A3 ≡ A3 ≡ · · · ≡ A3)
∗ (n > 3),

• E6 ∗ E6 := (A3 ≡ A3 × A3 ≡ A3)
∗,

• D6 ∗ D6 := (A4 × A4 ≡ A4)
∗,

• E8 ∗ E8 := (A4 × A4 ≡ A4 ≡ A4)
∗.

D5 ∗ A7 : E8 ∗ E8 :



3.3 The Classification

Theorem. The connected ACP’s are as follows:

• C ⊗ D, C × C, D5 � A7, E7 � D10,

• Dn+1 ≡ · · · ≡ Dn+1 ≡ Dn+1 ∗ A2n−1,

• Dn+1 ∗ A2n−1 ≡ A2n−1 ≡ · · · ≡ A2n−1,

• Dn+1 ≡ Dn+1 ∗ A2n−1 ≡ A2n−1 = (E6 ∗ E6 ≡ E6 ≡ · · · ≡ E6)
∗,

• D6 ∗ D6, D6 ∗ D6 ≡ D6, D6 ∗ D6 ≡ D6 ≡ D6 = (E8 ∗ E8 ≡ E8)
∗,

• E8 ∗ E8, E6 ≡ E6 ∗ E6 ≡ E6, E8 ∗ E8 ≡ E8 ≡ E8.


