ADMISSIBLE W-GRAPHS AND COMMUTING CARTAN MATRICES

JOHN R. STEMBRIDGE $\langle jrs@umich.edu \rangle$

Contents

- 1. A Classification Problem
- 2. Why We Care (Kazhdan-Lusztig theory)
- 3. The Classification
- 4. Comments about the Proof

1.1 A Classification Problem

We want to classify commuting pairs of simply-laced Cartan matrices.¹ What is a simply-laced Cartan matrix?

- 2's on the diagonal; -1, 0 off-diagonal;
- symmetric, positive definite.

Nicer to replace A with 2 - A (adjacency matrix of Dynkin diagram). Recall the familiar A-D-E classification:

NOTE. We identify graphs with their adjacency matrices.

IMPORTANT. We are not assuming that the graphs are connected!

1.2 Admissible Cartan Pairs

PROBLEM/DEFINITION. Classify all admissible Cartan pairs (A, B):

- \bullet A and B are simply-laced Dynkin diagrams on the same vertex set
- The vertex set may be partitioned into 4 blocks so that

• AB = BA.

NOTES.

- Disjoint unions of ACP's are ACP's, so w.l.o.g. assume connected.
- If (A, B) is connected, the vertex partition is unique.
- Checking AB = BA amounts to choosing vertices x, y in diagonally opposite blocks and comparing 2-step paths $x \to y$.

DEFINITION. The **dual** of an ACP (A, B) is $(A, B)^* := (B, A)$.

1.3 Examples

1. Tensor Product.

Choose **connected** Dynkin diagrams C, D.

Set $A := C \otimes 1$, $B := 1 \otimes D$. Write $(A, B) := C \otimes D$.

Example: $A_3 \otimes A_4$

2. Twisted Product.

Choose a connected Dynkin diagram C with p black vertices, q white. Construct four copies of C on 2p + 2q vertices:

3. Many other possibilities, such as

NOTE. Every ACP has a **type**. Example 3 has type (A_5D_4, A_3^3) .

2.1 Why Do We Care?

The story begins with the theory of W-graphs.

Start with a Coxeter system $(W, S), S = \{s_1, \ldots, s_n\}.$

Ex: $W = S_{n+1}, s_i = (i, i+1).$

Of primary interest are the finite Weyl groups.

DEFINITION (Kazhdan-Lusztig). A W-graph is a triple (V, m, τ) s.t.

- V is a (finite) vertex set
- $m: V \times V \to \mathbb{Z}$ (matrix of edge weights; 0 means "no edge")
- $\tau: V \to \{ \text{subsets of } S \}$ (each vertex has a "descent set")
- The following defines a W-action on $\mathbb{Z}V$:

$$s_i(v) = \begin{cases} v & \text{if } i \notin \tau(v), \\ -v + \sum_{u:i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$
(*)

NOTES.

- We've set q = 1; the Hecke algebra action has been hidden.
- $s_i^2 = 1$ is automatic; (*) \Leftrightarrow braid relations.
- If $\tau(v) \subseteq \tau(u)$ then $m(v \to u) := 0$ by convention.

The strongly connected components of a W-graph are called **cells**.

Cells are themselves W-graphs; they are the combinatorially irreducible W-graphs, but need not be algebraically irreducible.

2.2 The Kazhdan-Lusztig W-graph

The W-graphs that people care about are the ones that occur in representation theory (cf. the Kazhdan-Lusztig "Conjecture"). In the K-L construction, $\mathbb{Q}W$ has a distinguished basis $\{C_w : w \in W\}$. The action of s_i on this basis has the structure of a W-graph, with

- vertex set W,
- $\tau(v) := \{i : \ell(s_i v) < \ell(v)\}$ for all $v \in W$,
- $m(u \to v) := \mu(u, v) + \mu(v, u)$ if $\tau(u) \not\subseteq \tau(v)$,

where $\mu(u, v) :=$ coefficient of $q^{(\ell(v) - \ell(u) - 1)/2}$ in $P_{u,v}(q)$.

Remarks.

- For Weyl groups, we know that $P_{u,v}(q) \in \mathbb{Z}^{\geq 0}[q]$, so $m(u \to v) \geq 0$.
- $\mu(u, v)$ is hard to compute without first computing $P_{u,v}(q)$.
- The cells of this W-graph are "left K-L cells".
- Left and right actions of W on $\mathbb{Q}W$ yield a $W \times W$ -graph.
- The cells of the $(W \times W)$ -graph are "two-sided K-L cells".

• There exist analogous graphs and cells associated with representations of real groups via K-L-V polynomials.

GOALS.

- Understand the structure of K-L and K-L-V cells.
- What are the essential combinatorial features of these cells?
- Can they be determined without K-L(-V) polynomials?

2.3 Admissible W-Graphs

DEFINITION. A W-graph is admissible if it

- has $\mathbb{Z}^{\geq 0}$ weights,
- is bipartite (cf. $\ell(u) \ell(v) 1 \in 2\mathbb{Z}$), and
- is edge-symmetric: $m(u \to v) = m(v \to u)$ if $\tau(u) \ \ \tau(v)$.

NOTE. If $\tau(u) \ \ \tau(v)$, then $m(u \to v) = m(v \to u) \in \{0, 1\}$.

MAIN CONTENTION. These axioms come close to capturing what is essential about K-L(-V) cells. There do exist admissible cells that are not K-L-V, but all admissible cells seem to be built from the same "molecules."

PROBLEM. Classify all admissible W-cells.

Solved: $A_9, D_6, E_6, H_3, ...$

PROBLEM. Are there finitely many admissible W-cells?

What does all of this have to do with classifying ACP's?

THEOREM. The nontrivial admissible $I_2(m)$ -cells are the simply-laced Dynkin diagrams with Coxeter number $h \mid m$.

EXAMPLE. The D_4 diagram is a G_2 -cell (Coxeter number 6).

NOTE. The Dynkin diagram A_{m-1} is the only nontrivial K-L $I_2(m)$ -cell.

(1)

(2)

The admissible D_4 -cells (three are not K-L):

(0)

2.4 The Reducibility Issue

OBSTACLE. It does not suffice to assume that W is irreducible!

There exist "interesting" $(W_1 \times W_2)$ -cells that are not tensor products.

EXAMPLE. The nontrivial two-sided K-L cell for $I_2(m)$ is $A_{m-1} \times A_{m-1}$.

PROPOSITION. The nontrivial admissible $(I_2(p) \times I_2(q))$ -cells are the connected ACP's (A, B) such that each component of A has Coxeter number dividing p, and each component of B has Coxeter number dividing q.

REMARK. All components of A necessarily have the same Coxeter number.

3.1 Bindings

First, a mechanism for breaking connected ACP's (A, B) into smaller pieces. Decompose A into connected components A^1, \ldots, A^{ℓ} . Set $B_{ij} :=$ edges of B that connect A^i and A^j .

FACT. If $B_{ij} \neq \emptyset$, then $(A^i \cup A^j, B_{ij})$ is itself a connected ACP.

Proof. Commutativity is a local condition. \Box

DEFINITION. If A has exactly two components A^1 and A^2 , then (A, B) is a **binding** of A^1 and A^2 .

COROLLARY. It suffices to classify all bindings of connected diagrams, and then determine all ways they can be combined into larger ACP's. NOTE. The dual of a binding need not be a binding.

Here, the dual of a D_4 , A_5 binding reduces to two A_3 , A_3 bindings. DEFINITION. (A, B) is **irreducible** if A and B both have two components.

3.2 Classifying Bindings

LEMMA 1. The irreducible bindings are twisted products $C \times C$, along with two (self-dual) exceptional bindings: $D_5 \boxtimes A_7$ and $E_7 \boxtimes D_{10}$.

What about other (reducible) bindings?

DEFINITION. Parallel binding: $C \equiv C := C \otimes A_2$. $A_3 \equiv A_3$:

LEMMA 2. A complete list of bindings of A-D-E diagrams is as follows:

- $C \times C$, $C \equiv C$, $D_5 \boxtimes A_7$, $E_7 \boxtimes D_{10}$,
- $D_{n+1} * A_{2n-1} := (A_3 \times A_3 \equiv A_3 \equiv \dots \equiv A_3)^* \quad (n \ge 3),$
- $E_6 * E_6 := (A_3 \equiv A_3 \times A_3 \equiv A_3)^*,$
- $D_6 * D_6 := (A_4 \times A_4 \equiv A_4)^*,$
- $E_8 * E_8 := (A_4 \times A_4 \equiv A_4 \equiv A_4)^*$.

3.3 The Classification

THEOREM. The connected ACP's are as follows:

- $C \otimes D$, $C \times C$, $D_5 \boxtimes A_7$, $E_7 \boxtimes D_{10}$,
- $D_{n+1} \equiv \cdots \equiv D_{n+1} \equiv D_{n+1} * A_{2n-1}$,
- $D_{n+1} * A_{2n-1} \equiv A_{2n-1} \equiv \cdots \equiv A_{2n-1}$,
- $D_{n+1} \equiv D_{n+1} * A_{2n-1} \equiv A_{2n-1} = (E_6 * E_6 \equiv E_6 \equiv \dots \equiv E_6)^*,$
- $D_6 * D_6$, $D_6 * D_6 \equiv D_6$, $D_6 * D_6 \equiv D_6 \equiv D_6 \equiv (E_8 * E_8 \equiv E_8)^*$,
- $E_8 * E_8$, $E_6 \equiv E_6 * E_6 \equiv E_6$, $E_8 * E_8 \equiv E_8 \equiv E_8$.

