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2) You only really understand something if you can program it on a
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Before we begin. . .

Note: Everything is in the context of G (C) is a connected complex
reductive group,

G (R) a real form of G (C)

K (R) ⊂ G (R) maximal compact, K (C) ⊂ G (C)

“forget about K (R)”:everything in terms of G (C),K (C):

Unless otherwise noted: (almost) everything in sight is complex
and complex algebraic
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Real Groups

2 Involutions of reductive groups, real groups

2.1 Cartan involution
2.2 1→ Int(G )→ Aut(G )→ Out(G )→ 1
2.3 Pinnings, splitting of the exact sequence
2.4 Inner classes of real forms

Example:
G = SL(n,C)

Out(G ) = Z2 = {1, γ}

Inner class of 1: {SU(p, q) | p + q = n}

Inner class of γ (γ(g) =t g−1):
SL(n,R), also SL(n/2,H)
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K

3 Maximal compact subgroup K (R)

3.1 Maximal compact subgroup
3.2 K (C) = G θ, K (R) compact
3.3 Component groups: K/K 0 = K (R)/K (R)0 = G (R)/G (R)0

3.4 K orbits on G/B (B=Borel subgroup)

Example: G = GL(n,C)

θ(g) = Jp,qgJ
−1
p,q ,

Jp,q = diag(Ip,−Iq),K = GL(p,C)× GL(q,C),

K (R) = U(p)× U(q), G (R) = U(p, q)

θ(g) =t g−1, K (C) = O(n,C), K (R) = O(n), G (R) = GL(n,R)

Theorem: G/B = G (C)/B(C) is a projective variety, with finitely
many K = K (C)-orbits

3.5 Real Cartan subgroups, (relative) Weyl groups
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Example G = Sp(12,R), M = GL(5,R)× SL(2,R)

atlas> G:=Sp(12,R)

Value: connected split real group with Lie algebra ’sp(12,R)’

atlas> set real_parabolics=all_real_parabolics (G)

Variable real_parabolics: [KGPElt]

atlas> #real_parabolics

Value: 64

atlas> void:for P@i in real_parabolics do if

ss_rank (Levi(P))=5 then prints(i, " ", Levi(P)) fi od

31 sl(6,R).gl(1,R)

47 sl(5,R).sl(2,R).gl(1,R)

55 sl(4,R).sp(4,R).gl(1,R)

59 sl(3,R).sp(6,R).gl(1,R)

61 sl(2,R).sp(8,R).gl(1,R)

62 sp(10,R).gl(1,R)

atlas> set P=real_parabolics[47]

Variable P: KGPElt

atlas> real_induce_irreducible(trivial(Levi(P)),G)

Value:

1*parameter(x=4898,lambda=[6,5,4,3,2,1]/1,nu=[2,2,1,1,1,0]/1)

1*parameter(x=4117,lambda=[5,6,1,3,4,0]/1,nu=[3,4,0,2,3,0]/2)

1*parameter(x=4116,lambda=[5,6,1,3,4,0]/1,nu=[3,4,0,2,3,0]/2)
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