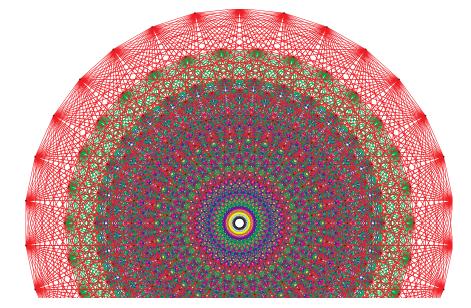
Atlas of Lie Groups and Representations



Atlas Project Members

- Jeffrey Adams
- Dan Barbasch
- Birne Binegar
- Bill Casselman
- Dan Ciubotaru
- Scott Crofts
- Fokko du Cloux
- Alfred Noel
- Tatiana Howard
- Alessandra Pantano
- Annegret Paul

- Patrick Polo
- Siddhartha Sahi
- Susana Salamanca
- John Stembridge
- Peter Trapa
- Marc van Leeuwen
 - David Vogan
 - Wai-Ling Yee
 - Jiu-Kang Yu
 - Gregg Zuckerman

Atlas Project Members, AIM, July 2007

G= real reductive group G (e.g. $GL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, SO(p, q)...)

Unitary dual of G: {irreducible unitary representations of G}/ \sim

Unitary dual of G: {irreducible unitary representations of G}/ \sim

Problem: Give a description of the unitary dual of real groups G

Unitary dual of G: {irreducible unitary representations of G}/ \sim

Problem: Give a description of the unitary dual of real groups G

Example: G compact - Weyl (1920s)

Unitary dual of G: {irreducible unitary representations of G}/ \sim

Problem: Give a description of the unitary dual of real groups G

Example: G compact - Weyl (1920s)

Example: $SL(2, \mathbb{R})$ - Bargmann (1947)

Unitary dual of G: {irreducible unitary representations of G}/ \sim

Problem: Give a description of the unitary dual of real groups G

Example: G compact - Weyl (1920s)

Example: $SL(2, \mathbb{R})$ - Bargmann (1947)

Example: $G = GL(n, \mathbb{R})$ - Vogan (1986)

Known Unitary Duals red: known black: not known

```
Type A: SL(n, \mathbb{R}), SL(n, \mathbb{H}), SU(n, 1), SU(n, 2), SL(n, \mathbb{C})
SU(p,q)(p,q>2)
Type B: SO(2n, 1), SO(2n + 1, 2), SO(2n + 1, \mathbb{C})
SO(p,q) (p,q \ge 3)
Type C: Sp(4, \mathbb{R}), Sp(n, 1), Sp(2n, \mathbb{C})
Sp(p,q) (p,q \ge 2)
Type D: SO(2n + 1, 1), SO(2n, 2), SO(2n, \mathbb{C})
SO(p,q) (p,q \ge 3), SO^*(2n) (n \ge 4)
Type E_6: E_6(F_4) = SL(3, Cayley)
E_6(Hermitian), E_6(split), E_6(quaternionic), E_6(\mathbb{C})
Type F_A: F_A(B_A)
F_4(split), F_4(\mathbb{C})
Type G_2: G_2(split), G_2(\mathbb{C})
E_7/E_8: nothing known
```

Overview

Theorem [... Vogan, 1980s]: Fix G. There is a finite algorithm to compute the unitary dual of G

It is not clear this algorithm can be made explicit

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Atlas of Lie Groups and Representations:

It is not clear this algorithm can be made explicit

It is not clear that it can be implemented on a computer

Atlas of Lie Groups and Representations:

Take this idea seriously

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

1 The unitary dual of G?

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- **1** The unitary dual of G?
- \bigcirc The admissible dual of G?

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- \bullet The unitary dual of G?
- 2 The admissible dual of *G*?
- The discrete series of *G*?

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- \bullet The unitary dual of G?
- **5** The discrete series of *G*?
- \bullet The supercuspidal representations of G?

Fix a p-adic group G.

Question: Is there a finite algorithm to compute:

- \bullet The unitary dual of G?
- **5** The discrete series of *G*?
- \bullet The supercuspidal representations of G?

(So far the answer seems to be no...)

Goals of the Atlas Project

 Tools for education: teaching Lie groups to graduate students and researchers

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas
- Tools for studying other problems in Lie groups

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas
- Tools for studying other problems in Lie groups
- Deepen our understanding of the mathematics

- Tools for education: teaching Lie groups to graduate students and researchers
- Tools for non-specialists who apply Lie groups in other areas
- Tools for studying other problems in Lie groups
- Deepen our understanding of the mathematics
- Compute the unitary dual

Outline of the lecture

Outline of the lecture

Constructing representations of Weyl Groups

Computing the signature of a quadratic form Explicitly computing the admissible dual KLV polynomials and the E_8 calculation Unipotent representations and the future

Outline of the lecture

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 1: Constructing Representations of a finite group G

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 1: Constructing Representations of a finite group G

Representation theory of G is "completely" determined by its character table.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 1: Constructing Representations of a finite group G

Representation theory of G is "completely" determined by its character table.

Problem: Given a finite group G and a row in the character table, write down matrices giving this representation.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 1: Constructing Representations of a finite group G

Representation theory of G is "completely" determined by its character table.

Problem: Given a finite group G and a row in the character table, write down matrices giving this representation.

Example: The character table of every Weyl group W is known.

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

W=Weyl group, simple reflections s_1, \ldots, s_n

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

W=Weyl group, simple reflections s_1, \ldots, s_n

Problem: Given a row in the character table of W, first entry N, give $n \ N \times N$ matrices such that $\pi(s_i) = A_i$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

W=Weyl group, simple reflections s_1, \ldots, s_n

Problem: Given a row in the character table of W, first entry N, give $n \ N \times N$ matrices such that $\pi(s_i) = A_i$

(Check defining relations of G and the traces)

W=Weyl group, simple reflections s_1, \ldots, s_n

Problem: Given a row in the character table of W, first entry N, give $n \ N \times N$ matrices such that $\pi(s_i) = A_i$

(Check defining relations of *G* and the traces)

Fact: can use matrices with integral entries (Springer correspondence)

Character table of $W(E_8)$

Class		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Size	İ	1	1	120	120	3150	3780	3780	37800	37800	113400	2240	4480	89600	268800	15120
Order		1	2	2	2	2	2	2	2	2	2	3	3	3	3	4
	+	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	+	1	1	-1	-1	1	1	1	-1	-1	1	1	1	1	1	1
	+	8	-8	-6	6	0	4	-4	2	-2	0	5	-4	-1	2	0
	+	8	-8	6	-6	0	4	-4	-2	2	0	5	-4	-1	2	0
X.5	+	28	28	14	14	-4	4	4	-2	-2	-4	10	10	1	1	4
X.6	+	28	28	-14	-14	-4	4	4	2	2	-4	10	10	1	1	4
X.7	+	35	35	21	21	3	11	11	5	5	3	14	5	-1	2	-5
X.8	+	35	35	-21	-21	3	11	11	-5	-5	3	14	5	-1	2	-5
X.9	+	50	50	20	20	18	10	10	4	4	2	5	5	-4	5	10
X.100			4200	0	0	104	40	40	0	0		-120	15	-12	6	-40
X.101			4200	420	420	-24	40	40	4	4	8	-30	-30	15	-3	40
X.102	+	4480	4480	0	0	-128	0	0	0	0	0	-80	-44	-20	4	64
X.103					378	0	60	-60	30	-30	0	-81	0	0	0	0
X.104	+	4536	-4536	378	-378	0	60	-60	-30	30	0	-81	0	0	0	0
X.105	+	4536	4536	0	0	-72	-72	-72	0	0	24	0	81	0	0	-24
X.106	+	5600	-5600	0	0	0	-80	80	0	0	0	-10	-100	2	-4	0
X.107	+	5600	-5600	-280	280	0	-80	80	8	-8	0	20	20	11	2	0
X.108	+	5600	-5600	280	-280	0	-80	80	-8	8	0	20	20	11	2	0
X.109	+	5670	5670	0	0	-90	-90	-90	0	0	6	0	-81	0	0	6
X.110	+	6075	6075	405	405	27	-45	-45	-27	-27	-21	0	0	0	0	-45
X.111	+	6075	6075	-405	-405	27	-45	-45	27	27	-21	0	0	0	0	-45
X.112	+	7168	-7168	0	0	0	0	0	0	0	0	-128	16	-32	-8	0

Example: one matrix from a 30-dimensional representation of $W(E_6)$

```
0.-1/8.0.0.0.-15/8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/8.0.0.0.0.0.0.0.0.0
0.0.-1/8.0.0.0.-15/8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/8.0.0.0.0.0.0.0.
0.0.0.0.-1/8.0.0.0.-15/8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/8.0.0.0.0.0.
0.-3/8.0.0.0.3/8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1/8.0.0.0.0.0.0.0.0.
0,0,-3/8,0,0,0,3/8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/8,0,0,0,0,0,0,0,0
0,0,0,-3/8,0,0,0,3/8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/8,0,0,0,0,0,0,0
0.0.0.0.-3/8.0.0.0.3/8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1/8.0.0.0.0.0.
0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0.3/4.0.0.0.5/4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/4.0.0.0.0.0.0.0.0.0.
0.0.3/4.0.0.0.5/4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/4.0.0.0.0.0.0.0.
0,0,0,3/4,0,0,0,5/4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/4,0,0,0,0,0,0
0.0.0.0.3/4.0.0.0.5/4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.3/4.0.0.0.0.0.0.
```

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Constructing Representations

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Constructing Representations

Obvious algorithm: decompose a larger representation (like the regular representation)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Constructing Representations

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem: $W(E_8)$ dim(regular representation)=696,729,600²

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Constructing Representations

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem: $W(E_8)$

dim(regular representation)=696,729,600² multiplicity of largest irreducible is 7,168

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Constructing Representations

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem: $W(E_8)$

dim(regular representation)=696,729,600² multiplicity of largest irreducible is 7,168

Decompose tensor products of the reflection representation (meataxe) A: integral models through E_7 , some representations of $W(E_8)$

Constructing Representations

Obvious algorithm: decompose a larger representation (like the regular representation)

Problem: $W(E_8)$

dim(regular representation)=696,729,600² multiplicity of largest irreducible is 7,168

Decompose tensor products of the reflection representation (meataxe) A: integral models through E_7 , some representations of $W(E_8)$

Construct π by constructing its restriction to a subgroup, and building up.

John Stembridge: \mathbb{Q} -models including $W(E_8)$ (for $W(E_8)$, LCD(denominators) \leq 594)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 2: Testing positive semidefinitness

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 2: Testing positive semidefinitness

 π irreducible admissible representation of G

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 2: Testing positive semidefinitness

 π irreducible admissible representation of G Is π unitary?...

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Project 2: Testing positive semidefinitness

 π irreducible admissible representation of G

Is π unitary?...

Problem: $M = n \times n$ rational symmetric matrix. Is M positive semidefinite?

Project 2: Testing positive semidefinitness

 π irreducible admissible representation of G

Is π unitary?...

Problem: $M = n \times n$ rational symmetric matrix. Is M positive semidefinite?

Positive semidefinite:

- 1) $(v, v) = vMv^t \ge 0$ for all v
- 2) or all eigenvalues are ≥ 0
- 3) or det(all principal minors) ≥ 0 (2ⁿ of them)

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Eigenvalues (Mathematica):

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Eigenvalues (Mathematica):

$$\frac{11}{3} + \frac{235^{\frac{2}{3}}}{3(241 + 9i\sqrt{34})^{\frac{1}{3}}} + \frac{\left(5(241 + 9i\sqrt{34})\right)^{\frac{1}{3}}}{3}$$

$$\frac{11}{3} - \frac{235^{\frac{2}{3}}(1 + i\sqrt{3})}{6(241 + 9i\sqrt{34})^{\frac{1}{3}}} - \frac{\left(1 - i\sqrt{3}\right)\left(5(241 + 9i\sqrt{34})\right)^{\frac{1}{3}}}{6}$$

$$\frac{11}{3} - \frac{235^{\frac{2}{3}}(1 - i\sqrt{3})}{6(241 + 9i\sqrt{34})^{\frac{1}{3}}} - \frac{\left(1 + i\sqrt{3}\right)\left(5(241 + 9i\sqrt{34})\right)^{\frac{1}{3}}}{6}$$

What is wrong with computers

$$M = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 7 \end{pmatrix}$$

Eigenvalues (Mathematica):

$$\frac{11}{3} + \frac{235^{\frac{2}{3}}}{3(241 + 9i\sqrt{34})^{\frac{1}{3}}} + \frac{\left(5(241 + 9i\sqrt{34})\right)^{\frac{1}{3}}}{3}$$

$$\frac{11}{3} - \frac{235^{\frac{2}{3}}(1 + i\sqrt{3})}{6(241 + 9i\sqrt{34})^{\frac{1}{3}}} - \frac{\left(1 - i\sqrt{3}\right)\left(5(241 + 9i\sqrt{34})\right)^{\frac{1}{3}}}{6}$$

$$\frac{11}{3} - \frac{235^{\frac{2}{3}}(1 - i\sqrt{3})}{6(241 + 9i\sqrt{34})^{\frac{1}{3}}} - \frac{\left(1 + i\sqrt{3}\right)\left(5(241 + 9i\sqrt{34})\right)^{\frac{1}{3}}}{6}$$

=
$$\{10.79 + 0.i, -0.34 + 4.44 \times 10^{-16}i, 0.54 - 4.44 \times 10^{-16}i\}$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Testing positive semidefinitness

M $n \times n$ symmetric, rational $\sigma(M) = (p, z, q)$ number of (positive, zero, negative) eigenvalues

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Testing positive semidefinitness

M $n \times n$ symmetric, rational $\sigma(M) = (p, z, q)$ number of (positive, zero, negative) eigenvalues $f_M(x)$ = characteristic polynomial

Testing positive semidefinitness

M $n \times n$ symmetric, rational $\sigma(M) = (p, z, q)$ number of (positive, zero, negative) eigenvalues $f_M(x)$ = characteristic polynomial

$$f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$$

Testing positive semidefinitness

M $n \times n$ symmetric, rational $\sigma(M) = (p, z, q)$ number of (positive, zero, negative) eigenvalues $f_M(x)$ = characteristic polynomial

$$f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$$

 $v = (a_0, \dots, a_n) (a_i \in \mathbb{R})$

Testing positive semidefinitness

 $M n \times n$ symmetric, rational $\sigma(M) = (p, z, q)$ number of (positive, zero, negative) eigenvalues $f_M(x)$ = characteristic polynomial $f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$ $v = (a_0, \ldots, a_n) (a_i \in \mathbb{R})$ $\sigma(v) = (p, z, q)$: p = number of sign changes: $(...a_i, 0, ..., 0, a_i ...)$ $(a_i a_i < 0)$ z = number of zeroes at the beginning q = number of sign changes using $f_M(-x)$

Testing positive semidefinitness

 $M n \times n$ symmetric, rational $\sigma(M) = (p, z, q)$ number of (positive, zero, negative) eigenvalues $f_M(x)$ = characteristic polynomial $f_M(x) = a_0 + a_1 x + \dots, a_{n-1} x^{n-1} + a_n x^n$ $v = (a_0, \ldots, a_n) (a_i \in \mathbb{R})$ $\sigma(v) = (p, z, q)$: p = number of sign changes: $(...a_i, 0, ..., 0, a_i ...)$ $(a_i a_i < 0)$

z = number of zeroes at the beginning

q = number of sign changes using $f_M(-x)$

Lemma (Descartes' rule of signs)

$$\sigma(M) = \sigma(f_M)$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

David Saunders, Zhendong Wan (Delaware), A: Compute the characteristic polynomial $\operatorname{mod} p$ + Chinese Remainder Theorem \rightarrow compute $\sigma(M)$

David Saunders, Zhendong Wan (Delaware), A:

Compute the characteristic polynomial $\operatorname{mod} p$ + Chinese Remainder Theorem \rightarrow compute $\sigma(M)$

Results (size of entries $\leq 2^n$)

n time
200 1 minute
1,000 3 hours
7,168 1 cpu year (projected)

David Saunders, Zhendong Wan (Delaware), A:

Compute the characteristic polynomial mod p + Chinese Remainder Theorem \rightarrow compute $\sigma(M)$

Results (size of entries $\leq 2^n$)

n time
200 1 minute
1,000 3 hours
7,168 1 cpu year (projected)

Note: Embarassingly parallelizable

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary Dual

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary Dual

What is wrong with computers II

Spherical Unitary Dual

What is wrong with computers II

$$\int \sin^{10}(x) \cos(x) dx = [Mathematica]:$$

Spherical Unitary Dual

What is wrong with computers II

$$\int \sin^{10}(x) \cos(x) dx = [Mathematica]:$$

$$\frac{21}{512}\sin(x) - \frac{15}{512}\sin(3x) + \frac{15}{512}\sin(35x) - \frac{5}{1024}\sin(7x) + \frac{11}{11264}\sin(9x) + C$$

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary dual

G=classical real or split p-adic group \widehat{G}_{sph} = spherical unitary dual: irreducible unitary representations containing a K-fixed vector.

Spherical Unitary dual

G=classical real or split p-adic group

 \widehat{G}_{sph} = spherical unitary dual: irreducible unitary representations containing a K-fixed vector.

Subset of $\mathfrak{A}(\mathbb{C})^*$ (reduces to $\mathfrak{A}(\mathbb{R})^* \simeq \mathbb{R}^n$)

Dan Barbasch: beautiful conceptual description of \widehat{G}_{sph} (in terms of geometry on the dual side)

Constructing Representations of Weyl Groups Positive Semidefinite Matrices Spherical Unitary Dual

Spherical Unitary dual

G=classical real or split p-adic group

 \widehat{G}_{sph} = spherical unitary dual: irreducible unitary representations containing a K-fixed vector.

Subset of $\mathfrak{A}(\mathbb{C})^*$ (reduces to $\mathfrak{A}(\mathbb{R})^* \simeq \mathbb{R}^n$)

Dan Barbasch: beautiful conceptual description of \widehat{G}_{sph} (in terms of geometry on the dual side)

Barbasch/Ciubotaru: Also results for exceptional groups; confirmed by atlas computations

Spherical Unitary dual via atlas

G: split, p-adic

Atlas: computes the spherical unitary dual \widehat{G}_{sph} Example G= G_2

```
(0,0,0)

(-3/8,-3/8,3/4)

(-1/4,-1/2,3/4)

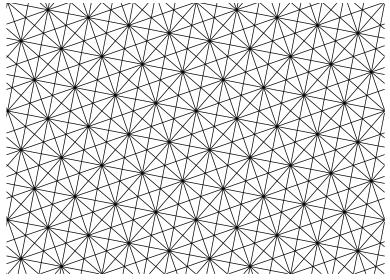
(-1/6,-5/12,7/12)

(-1/2,-1/2,1)

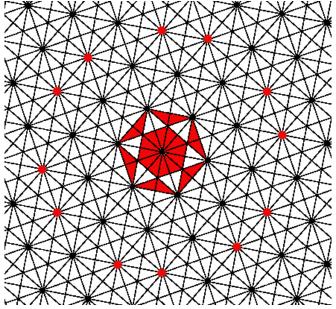
(-1,-2,3)

(0,-1,1)

(-1/3,-1/3,2/3)
```



Example: Hyperplanes in $\mathfrak{a}(\mathbb{R})^*$ for G_2



Example: Spherical unitary dual of G_2 (Vogan, Barbasch, Atlas)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Unitary Dual

G = real reductive group for example $GL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, Spin(p, q), $E_8(split)$,...)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Unitary Dual

G = real reductive group for example $GL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, Spin(p, q), $E_8(split)$,...)

Representation: (π, \mathcal{H}) of G on a Hilbert space \mathcal{H} (continuous)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Unitary Dual

G = real reductive group for example $GL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, Spin(p, q), $E_8(split)$,...)

Representation: (π, \mathcal{H}) of G on a Hilbert space \mathcal{H} (continuous)

Unitary: $\langle \pi(g)v, \pi(g)v' \rangle = \langle v, v' \rangle \ (v, v' \in \mathcal{H}, g \in G)$

Unitary Dual

G = real reductive group for example $GL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, Spin(p, q), $E_8(split)$,...)

Representation: (π, \mathcal{H}) of G on a Hilbert space \mathcal{H} (continuous)

Unitary:
$$\langle \pi(g)v, \pi(g)v' \rangle = \langle v, v' \rangle \ (v, v' \in \mathcal{H}, g \in G)$$

 $\widehat{G}_u = \{ \text{irreducible unitary representations of } G \} / \sim$ (unitary equivalence)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Admissible Dual

K=maximal compact subgroup of G

Admissible Representation: dim $\operatorname{Hom}_K(\sigma, \mathcal{H}) \leq \infty$ (all σ)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Admissible Dual

K=maximal compact subgroup of GAdmissible Representation: dim $\operatorname{Hom}_K(\sigma, \mathcal{H}) \leq \infty$ (all σ)

 $\widehat{G}_a = \{ \text{ irreducible admissible representations of } G \} / \sim (\text{infinitesimal equivalence})$

Admissible Dual

K=maximal compact subgroup of G

Admissible Representation: dim $\operatorname{Hom}_K(\sigma, \mathcal{H}) \leq \infty$ (all σ)

 $\widehat{G}_a = \{ \text{ irreducible admissible representations of } G \} / \sim (\text{infinitesimal equivalence})$

Equivalently:

Definition: A (\mathfrak{g}, K) -module is a vector space V, with compatible representations of \mathfrak{g} and K.

 $\widehat{G}_a = \{\text{irreducible admissible } (\mathfrak{g}, K)\text{-modules}\}/\sim$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Other Duals

Tempered Dual \widehat{G}_t : support of Plancherel measure, giving regular representation $L^2(G)$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Other Duals

Tempered Dual \widehat{G}_t : support of Plancherel measure, giving regular representation $L^2(G)$

Discrete Series \widehat{G}_d : occurring as direct summands of $L^2(G)$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Other Duals

Tempered Dual \widehat{G}_t : support of Plancherel measure, giving regular representation $L^2(G)$

Discrete Series \widehat{G}_d : occurring as direct summands of $L^2(G)$

Hermitian Dual \widehat{G}_h : (\mathfrak{g}, K) -modules preserving a Hermitian form (not necessarily positive definite)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Tempered/Unitary/Hermitian/Admissible

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Tempered/Unitary/Hermitian/Admissible

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

 \widehat{G}_d , \widehat{G}_t : known (Harish-Chandra)

 \widehat{G}_a : known (Langlands/Knapp-Zuckerman/Vogan)

 \widehat{G}_h : known (Knapp-Zuckerman)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Tempered/Unitary/Hermitian/Admissible

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

 \widehat{G}_d , \widehat{G}_t : known (Harish-Chandra)

 \widehat{G}_a : known (Langlands/Knapp-Zuckerman/Vogan)

 \widehat{G}_h : known (Knapp-Zuckerman)

To compute \widehat{G}_u :

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

Tempered/Unitary/Hermitian/Admissible

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

 \widehat{G}_d , \widehat{G}_t : known (Harish-Chandra)

 \widehat{G}_a : known (Langlands/Knapp-Zuckerman/Vogan)

 \widehat{G}_h : known (Knapp-Zuckerman)

To compute \widehat{G}_u :

For each representation in $\widehat{G}_h - \widehat{G}_t$, test whether the unique invariant Hermitian form is positive definite.

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

Tempered/Unitary/Hermitian/Admissible

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

 \widehat{G}_d , \widehat{G}_t : known (Harish-Chandra)

 \widehat{G}_a : known (Langlands/Knapp-Zuckerman/Vogan)

 \widehat{G}_h : known (Knapp-Zuckerman)

To compute \widehat{G}_u :

For each representation in $\widehat{G}_h - \widehat{G}_t$, test whether the unique invariant Hermitian form is positive definite.

Not clear: a finite algorithm for this for even for a single π

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Tempered/Unitary/Hermitian/Admissible

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

 \widehat{G}_d , \widehat{G}_t : known (Harish-Chandra)

 \widehat{G}_a : known (Langlands/Knapp-Zuckerman/Vogan)

 \widehat{G}_h : known (Knapp-Zuckerman)

To compute \widehat{G}_u :

For each representation in $\widehat{G}_h - \widehat{G}_t$, test whether the unique invariant Hermitian form is positive definite.

Not clear: a finite algorithm for this for even for a single π

Uncountably many π to test

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Example: $G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$

Family of (spherical) representations parametrized by $\nu \in \mathbb{C}$

Example:
$$G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$$

Family of (spherical) representations parametrized by $\nu \in \mathbb{C}$

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Example:
$$G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$$

Family of (spherical) representations parametrized by $\nu \in \mathbb{C}$

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Irreducible for $v \neq \pm 1, \pm 3, \dots$

Example:
$$G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$$

Family of (spherical) representations parametrized by $\nu \in \mathbb{C}$

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Irreducible for $v \neq \pm 1, \pm 3, \dots$

Unitary for $\nu \in i\mathbb{R}$ and $-1 \leq \nu \leq 1$

Example:
$$G = SL(2, \mathbb{R}), V = L^2(\mathbb{R})$$

Family of (spherical) representations parametrized by $\nu \in \mathbb{C}$

$$\pi_{\nu}(g)f(x) = |-bx+d|^{-1-\nu}f((ax-c)/(-bx+d))$$

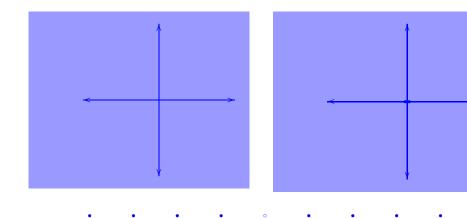
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Irreducible for $v \neq \pm 1, \pm 3, \dots$

Unitary for $\nu \in i\mathbb{R}$ and $-1 \leq \nu \leq 1$

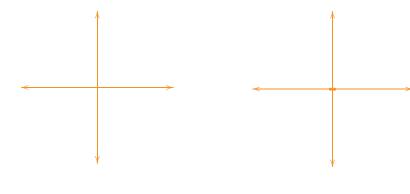
Note: \langle , \rangle is not the usual one for $-1 \le \nu \le 1, \nu \ne 0$

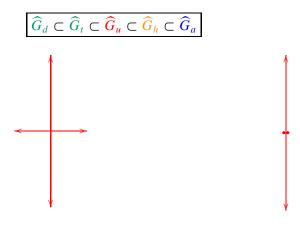
$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$

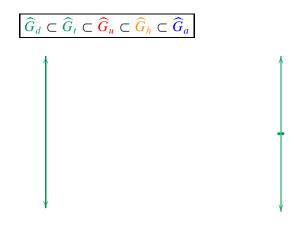


Admissible dual

$$\widehat{G}_d \subset \widehat{G}_t \subset \widehat{G}_u \subset \widehat{G}_h \subset \widehat{G}_a$$







Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

First step:

Problem: Explicitly compute \widehat{G}_a

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

First step:

Problem: Explicitly compute \widehat{G}_a

Known by Langlands, Knapp/Zuckerman, Vogan

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

First step:

Problem: Explicitly compute \widehat{G}_a

Known by Langlands, Knapp/Zuckerman, Vogan

Example: How many irreducible representations does the split real form of E_8 have at infinitesimal character ρ ?

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

First step:

Problem: Explicitly compute \widehat{G}_a

Known by Langlands, Knapp/Zuckerman, Vogan

Example: How many irreducible representations does the split real

form of E_8 have at infinitesimal character ρ ?

Answer: 526,471

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

First step:

Problem: Explicitly compute \widehat{G}_a

Known by Langlands, Knapp/Zuckerman, Vogan

Example: How many irreducible representations does the split real form of E_8 have at infinitesimal character ρ ?

Answer: 526,471

(2,157 of them = .41% are unitary)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Computing the Admissible Dual

Fix an infinitesimal character λ .

 $\Pi(G, \lambda)$ = irreducible admissible representations with infinitesimal character λ

 $\Pi(G, \lambda)$ is a finite set (Harish-Chandra). For now assume λ is regular and integral

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Computing the Admissible Dual

Fix an infinitesimal character λ .

 $\Pi(G, \lambda)$ = irreducible admissible representations with infinitesimal character λ

 $\Pi(G, \lambda)$ is a finite set (Harish-Chandra). For now assume λ is regular and integral

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \lambda)$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Computing the Admissible Dual

Fix an infinitesimal character λ .

 $\Pi(G, \lambda)$ = irreducible admissible representations with infinitesimal character λ

 $\Pi(G, \lambda)$ is a finite set (Harish-Chandra). For now assume λ is regular and integral

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \lambda)$

1) explicit: a computable combinatorial set

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Computing the Admissible Dual

Fix an infinitesimal character λ .

 $\Pi(G, \lambda)$ = irreducible admissible representations with infinitesimal character λ

 $\Pi(G, \lambda)$ is a finite set (Harish-Chandra). For now assume λ is regular and integral

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \lambda)$

- 1) explicit: a computable combinatorial set
- 2) natural: make the Kazhdan-Lusztig-Vogan polynomials computable

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Computing the Admissible Dual

Fix an infinitesimal character λ .

 $\Pi(G, \lambda)$ = irreducible admissible representations with infinitesimal character λ

 $\Pi(G, \lambda)$ is a finite set (Harish-Chandra). For now assume λ is regular and integral

More precise problem: Give an explicit, natural parametrization of $\Pi(G, \lambda)$

- 1) explicit: a computable combinatorial set
- 2) natural: make the Kazhdan-Lusztig-Vogan polynomials computable

Requirement 2) comes down to:

3) make Cayley transforms and the cross action evident

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Fokko du Cloux

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

What Fokko did

Abstract Mathematics Lie Groups Representation Theory ightarrow Algorithm ightarrow Software Combinatorial Set ightharpoonup C++ code

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

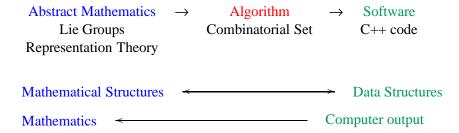
What Fokko did

Abstract Mathematics Lie Groups Representation Theory ightarrow Algorithm ightarrow Software Combinatorial Set ightharpoonup C++ code

Mathematical Structures

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

What Fokko did



Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The class of groups

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The class of groups

 $G=G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group

[Data structure: (root data) pair of $m \times n$ integral matrices, m=rank, n=semisimple rank]

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The class of groups

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group

[Data structure: (root data) pair of $m \times n$ integral matrices, m=rank, n=semisimple rank]

 $G(\mathbb{R})$ =real form of G

 $K(\mathbb{R})$ =maximal compact subgroup of $G(\mathbb{R})$ = $G(\mathbb{R})^{\theta}$, θ = Cartan involution

The class of groups

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group

[Data structure: (root data) pair of $m \times n$ integral matrices, m=rank, n=semisimple rank]

- $G(\mathbb{R})$ =real form of G
- $K(\mathbb{R})$ =maximal compact subgroup of $G(\mathbb{R})$ = $G(\mathbb{R})^{\theta}$, θ = Cartan involution

 $K = K(\mathbb{C}) = G^{\theta}$ (θ extends to holomorphic involution of G)

The class of groups

 $G = G(\mathbb{C})$ = arbitrary complex, connected, reductive algebraic group

[Data structure: (root data) pair of $m \times n$ integral matrices, m=rank, n=semisimple rank]

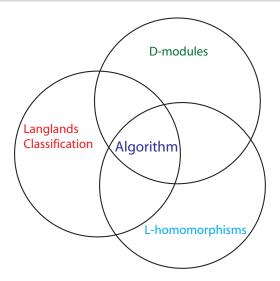
$$G(\mathbb{R})$$
 =real form of G

$$K(\mathbb{R})$$
 =maximal compact subgroup of $G(\mathbb{R})$
= $G(\mathbb{R})^{\theta}$, θ = Cartan involution

$$K = K(\mathbb{C}) = G^{\theta}$$
 (θ extends to holomorphic involution of G)

For now assume G is simply connected, adjoint and Out(G) = 1 (Examples: $G = G_2$, F_4 or E_8)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm



Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Take $\lambda = \rho$: $\Pi(G(\mathbb{R}), \rho)$ = irreducible admissible representations with infinitesimal character ρ (same as the trivial representation)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Take $\lambda = \rho$: $\Pi(G(\mathbb{R}), \rho)$ = irreducible admissible representations with infinitesimal character ρ (same as the trivial representation)

Langlands classification: induced from discrete series, characters of Cartan subgroups

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Take $\lambda = \rho$: $\Pi(G(\mathbb{R}), \rho)$ = irreducible admissible representations with infinitesimal character ρ (same as the trivial representation)

Langlands classification: induced from discrete series, characters of Cartan subgroups

 \mathcal{D} -modules: local systems on $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Take $\lambda = \rho$: $\Pi(G(\mathbb{R}), \rho)$ = irreducible admissible representations with infinitesimal character ρ (same as the trivial representation)

Langlands classification: induced from discrete series, characters of Cartan subgroups

 \mathcal{D} -modules: local systems on $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$

L-homomorphism: local systems on the space of admissible homomorphism of the Weil group into the dual group

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Take $\lambda = \rho$: $\Pi(G(\mathbb{R}), \rho)$ = irreducible admissible representations with infinitesimal character ρ (same as the trivial representation)

Langlands classification: induced from discrete series, characters of Cartan subgroups

 \mathcal{D} -modules: local systems on $K(\mathbb{C})$ orbits on $G(\mathbb{C})/B(\mathbb{C})$

L-homomorphism: local systems on the space of admissible homomorphism of the Weil group into the dual group

Many contributors, including Beilinson, Bernstein, Zuckerman, Knapp, Vogan, Hecht/Miličić/Schmid/Wolf... (in particular relating these pictures)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Langlands Classification

Roughly: parametrize representations by characters of Cartan subgroups

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Langlands Classification

Roughly: parametrize representations by characters of Cartan subgroups

(like the $R_T(\theta)$'s in Deligne-Lusztig's theory for finite groups)

The Langlands Classification

Roughly: parametrize representations by characters of Cartan subgroups

(like the $R_T(\theta)$'s in Deligne-Lusztig's theory for finite groups)

Definition:

$$\mathcal{C}(G(\mathbb{R}), \rho) = \{(H(\mathbb{R}), \chi)\}/G(\mathbb{R})$$

$$H(\mathbb{R})$$
=Cartan subgroup $\chi = \text{character of } H(\mathbb{R}) \text{ with } d\chi = \rho$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Langlands Classification

 $(H(\mathbb{R}), \chi) \to I(H(\mathbb{R}), \chi)$ =standard module (induced from discrete series of $M(\mathbb{R})$)

 $\to \pi(H(\mathbb{R}), \chi)$ (unique irreducible quotient)

The Langlands Classification

 $(H(\mathbb{R}), \chi) \to I(H(\mathbb{R}), \chi)$ =standard module (induced from discrete series of $M(\mathbb{R})$)

 $\to \pi(H(\mathbb{R}), \chi)$ (unique irreducible quotient)

Theorem: The map $(H(\mathbb{R}), \chi) \to \pi(H(\mathbb{R}), \chi)$ induces a canonical bijection:

$$\Pi(G(\mathbb{R}),\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{C}(G,\rho)$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Langlands Classification

Atlas Project

This tells us what we need to compute:

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Langlands Classification

This tells us what we need to compute:

1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Langlands Classification

This tells us what we need to compute:

- 1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)
- 2) $H(\mathbb{R})/H(\mathbb{R})_0$

The Langlands Classification

This tells us what we need to compute:

- 1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)
- 2) $H(\mathbb{R})/H(\mathbb{R})_0$
- 3) $W(G(\mathbb{R}), H(\mathbb{R})) = \text{Norm}_{G(\mathbb{R})}(H(\mathbb{R}))/H(\mathbb{R}) \subset W$ (Knapp)

The Langlands Classification

This tells us what we need to compute:

- 1) Conjugacy classes of Cartan subgroups of $G(\mathbb{R})$ (Kostant)
- 2) $H(\mathbb{R})/H(\mathbb{R})_0$
- 3) $W(G(\mathbb{R}), H(\mathbb{R})) = \text{Norm}_{G(\mathbb{R})}(H(\mathbb{R}))/H(\mathbb{R}) \subset W$ (Knapp)

In particular:

$$|\Pi(G(\mathbb{R}), \rho)| = \sum_{i} |W/W(G(\mathbb{R}), H(\mathbb{R})_{i})||H(\mathbb{R})/H(\mathbb{R})_{i}|$$

 $H(\mathbb{R})_1, \ldots, H(\mathbb{R})_n$ are representatives of the conjugacy classes of Cartan subgroups.

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

$$G(\mathbb{R}) = SL(2, \mathbb{R})$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

$$G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$$

 $W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$

$$G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$$

$$W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$$

$$T = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos\theta \end{pmatrix} \simeq S^1, |H(\mathbb{R})/H(\mathbb{R})^0| = 1, W = 1$$

$$G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$$

$$W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$$

$$W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$$

$$T = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos\theta \end{pmatrix} \simeq S^1, |H(\mathbb{R})/H(\mathbb{R})^0| = 1, W = 1$$

$$\overbrace{2 \times 1}^{A} + \overbrace{1 \times 2}^{T} = 4$$

Example:

$$G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$A(\mathbb{R}) = \operatorname{diag}(x, \frac{1}{x}) \simeq \mathbb{R}^{\times}, |H(\mathbb{R})/H(\mathbb{R})^{0}| = 2,$$

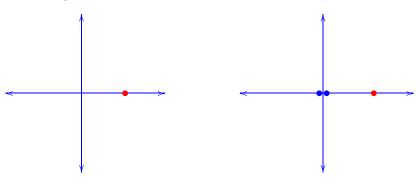
 $W(G(\mathbb{R}), H(\mathbb{R})) = W = \mathbb{Z}/2\mathbb{Z}$

$$T = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos\theta \end{pmatrix} \simeq S^1, |H(\mathbb{R})/H(\mathbb{R})^0| = 1, W = 1$$

$$\overbrace{2 \times 1}^{A} + \overbrace{1 \times 2}^{T} = 4$$

 $SL(2,\mathbb{R})$ has 4 irreducible representations of infinitesimal character ρ

Example: $G = SL(2, \mathbb{R})$, infinitesimal character = ρ



Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

\mathcal{D} -modules

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

\mathcal{D} -modules

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

\mathcal{D} -modules

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Roughly: Parametrize representations by orbits + local system on the orbit

\mathcal{D} -modules

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Roughly: Parametrize representations by orbits + local system on the orbit

Definition:

$$\mathcal{D}(G, K, \rho) = \{(x, \chi)\}/K$$

$$x \in \mathcal{B}$$

 $\chi = \text{local system on } \mathcal{O} = K \cdot x$

\mathcal{D} -modules

 $\mathcal{B} = G/B$ is the flag variety (complex projective variety)

K acts on \mathcal{B} with finitely many orbits

Roughly: Parametrize representations by orbits + local system on the orbit

Definition:

$$\mathcal{D}(G, K, \rho) = \{(x, \chi)\}/K$$

$$x \in \mathcal{B}$$

 $\chi = \text{local system on } \mathcal{O} = K \cdot x$
 $= \text{character of Stab}(x)/\text{Stab}(x)^0$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Theorem: (Vogan, Beilinson/Bernstein) There is a natural bijection

$$\Pi(G(\mathbb{R}),\rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{D}(G,K,\rho)$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Example:
$$G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$$

 \mathcal{B} is the sphere = $\mathbb{C} \cup \infty$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Example:
$$G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$\mathcal{B}$$
 is the sphere = $\mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Example:
$$G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$\mathcal{B}$$
 is the sphere = $\mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$

$$K \ni z : w \to z^2 w$$

Example:
$$G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$\mathcal{B}$$
 is the sphere = $\mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$

$$K \ni z : w \to z^2 w$$

Three orbits: north pole (0), south pole (∞), open orbit (\mathbb{C}^{\times})

Example:
$$G = SL(2, \mathbb{C}), G(\mathbb{R}) = SL(2, \mathbb{R})$$

$$\mathcal{B}$$
 is the sphere = $\mathbb{C} \cup \infty$

$$K = SO(2, \mathbb{C}) \simeq \mathbb{C}^{\times}$$

$$K \ni z : w \to z^2 w$$

Three orbits: north pole (0), south pole (∞), open orbit (\mathbb{C}^{\times})

Isotropy group: $1,1,\mathbb{Z}/2\mathbb{Z} \to 4$ representations

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

L-homomorphisms

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

L-homomorphisms

Weil group
$$W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle \ jzj^{-1} = \overline{z}, j^2 = -1$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

L-homomorphisms

Weil group
$$W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle \ jzj^{-1} = \overline{z}, j^2 = -1$$

Roughly (Langlands): parametrize representations by map of $W_{\mathbb{R}}$ into G^{\vee} (complex dual group)

L-homomorphisms

Weil group
$$W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle \ jzj^{-1} = \overline{z}, j^2 = -1$$

Roughly (Langlands): parametrize representations by map of $W_{\mathbb{R}}$ into G^{\vee} (complex dual group)

Definition:

$$\mathcal{L}(G,\rho) = \{(\phi,\chi)\}/G^{\vee}$$

$$\phi: W_{\mathbb{R}} \to G^{\vee}$$
, $(\phi(\mathbb{C}^{\times}))$ is semisimple, "infinitesimal character ρ ") $\chi = \text{local system on } \Omega^{\vee} = G^{\vee} \cdot \phi$ = character of $\text{Stab}(\phi)/\text{Stab}(\phi)^0$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Note: different real forms of G all have the same G^{\vee} (no K here). This version must take this into account (Vogan's super packets)

Note: different real forms of G all have the same G^{\vee} (no K here). This version must take this into account (Vogan's super packets)

Theorem: There is a natural bijection

$$\coprod_{i} \Pi(G(\mathbb{R})_{i}, \rho) \stackrel{\mathsf{1-1}}{\longleftrightarrow} \mathcal{L}(G, \rho)$$

where $G_1(\mathbb{R}), \ldots, G_n(\mathbb{R})$ are the real forms of G. (this version: book by A/Barbasch/Vogan)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Recapitulation

Recapitulation

(1) Character Data (orbits of $G(\mathbb{R})$ on Cartans):

$$\Pi(G(\mathbb{R}), \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{C}(G(\mathbb{R})) = \{(H(\mathbb{R}), \chi)\}/G(\mathbb{R})$$

(2) \mathcal{D} -modules (orbits \mathcal{O} of K on G/B):

$$\Pi(G(\mathbb{R}), \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{D}(G, K, \rho) = \{(x, \chi)\}/K$$

(3) L-homomorphisms (orbits Ω^{\vee} of G^{\vee} on L-homomorphisms):

$$\coprod_{i=1}^{n} \Pi(G(\mathbb{R})_{i}, \rho) \stackrel{1-1}{\longleftrightarrow} \mathcal{L}(G, \rho) = \{(\phi, \chi)\}/G^{\vee}$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

In each case there is some geometric data, and a character of a finite abelian group (two-group)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

In each case there is some geometric data, and a character of a finite abelian group (two-group)

We'd rather talk about orbits than characters of $(\mathbb{Z}/2\mathbb{Z})^n$ (Matching the three pictures: easy up to χ)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Drop the χ 's and get sets of representations:

Drop the χ 's and get sets of representations:

Definition: Orbit Ω^{\vee} of G^{\vee} on L-homomorphisms \to L-packet

$$\Pi_L(G(\mathbb{R}), \Omega^{\vee})$$

(or
$$\coprod_i \Pi_L(G(\mathbb{R})_i, \Omega)$$
)

Drop the χ 's and get sets of representations:

Definition: Orbit Ω^{\vee} of G^{\vee} on L-homomorphisms \to L-packet

$$\Pi_L(G(\mathbb{R}), \mathbf{\Omega}^{\vee})$$

(or
$$\coprod_i \Pi_L(G(\mathbb{R})_i, \Omega)$$
)

Definition: Orbit \mathcal{O} of K on $G/B \to \mathbb{R}$ -packet

$$\Pi_R(G(\mathbb{R}),\mathcal{O})$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Corollary:
$$\Pi(G(\mathbb{R}), \rho)$$
 is parametrized by a subset of pairs

(
$$K$$
 orbit on \mathcal{B} , G^{\vee} orbit on L-homomorphisms)

via

$$(\mathcal{O}, \Omega^{\vee}) \to \Pi_{R}(G(\mathbb{R}), \mathcal{O}) \cap \Pi_{L}(G(\mathbb{R}), \Omega^{\vee})$$

Theorem (Vogan): The intersection of an L-packet and an R-packet is at most one element.

Corollary:
$$\Pi(G(\mathbb{R}), \rho)$$
 is parametrized by a subset of pairs

(*K* orbit on
$$\mathcal{B}$$
, G^{\vee} orbit on L-homomorphisms)

via

$$(\mathcal{O}, \Omega^{\vee}) \to \Pi_R(G(\mathbb{R}), \mathcal{O}) \cap \Pi_L(G(\mathbb{R}), \Omega^{\vee})$$

Which pairs?...

Unitary Dual Other Duals Three views of the Admissible Dual **K orbits on G/B** The Algorithm

K-orbits on the dual side

Something remarkable happens:

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

K-orbits on the dual side

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as K orbits on G/B on the dual side.

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

K-orbits on the dual side

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as K orbits on G/B on the dual side.

 $K_1^{\vee}, \ldots, K_n^{\vee} =$ complexified maximal compacts of real forms of G^{\vee} .

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

K-orbits on the dual side

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as K orbits on G/B on the dual side.

$$K_1^{\vee}, \ldots, K_n^{\vee} = \text{complexified maximal compacts of real forms of } G^{\vee}.$$

$$\mathcal{B}^\vee = G^\vee/B^\vee$$

K-orbits on the dual side

Something remarkable happens:

 G^{\vee} orbits of L-homomorphisms are exactly the same thing as K orbits on G/B on the dual side.

 $K_1^{\vee}, \ldots, K_n^{\vee} = \text{complexified maximal compacts of real forms of } G^{\vee}.$

$$\mathcal{B}^{\vee} = G^{\vee}/B^{\vee}$$

Proposition: There is a natural bijection:

$$\mathcal{L} \stackrel{1-1}{\longleftrightarrow} \coprod_{i=1}^{n} K_{i}^{\vee} \backslash \mathcal{B}^{\vee}$$

Unitary Dual Other Duals Three views of the Admissible Dual **K orbits on G/B** The Algorithm

Symmetric Picture

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B} , K^{\vee} orbit on \mathcal{B}^{\vee})

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

Symmetric Picture

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B} , K^{\vee} orbit on \mathcal{B}^{\vee})

Note: This symmetry is Vogan Duality.

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

Symmetric Picture

Corollary: $\Pi(G(\mathbb{R}), \rho)$ is parametrized by a subset of pairs

(*K* orbit on \mathcal{B} , K^{\vee} orbit on \mathcal{B}^{\vee})

Note: This symmetry is Vogan Duality.

This reduces the problem to:

Parametrize K orbits on $\mathcal{B} = G/B$

(applied to G and G^{\vee})

Unitary Dual Other Duals Three views of the Admissible Dual **K orbits on G/B** The Algorithm

K orbits on G/B

Definition:

$$\mathcal{X} = \{x \in \text{Norm}_G(H) \mid x^2 = 1\}/H$$

Unitary Dual
Other Duals
Three views of the Admissible Dual
K orbits on G/B
The Algorithm

K orbits on G/B

Definition:

$$\mathcal{X} = \{x \in \text{Norm}_G(H) \mid x^2 = 1\}/H$$

(Finite set; maps to W_2 = involutions in W)

K orbits on G/B

Definition:

$$\mathcal{X} = \{x \in \text{Norm}_G(H) \mid x^2 = 1\}/H$$

(Finite set; maps to W_2 = involutions in W)

Proposition: There is a natural bijection

$$\mathcal{X} \stackrel{\mathsf{1-1}}{\longleftrightarrow} \coprod_i K_i \backslash \mathcal{B}$$

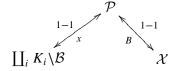
(union over real forms, corresponding K_1, \ldots, K_n)

Unitary Dual Other Duals Three views of the Admissible Dual **K** orbits on **G/B** The Algorithm

Sketch of Proof

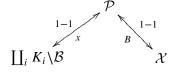
Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$



Sketch of Proof

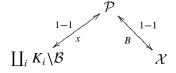
$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$



Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$

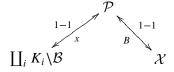


Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$



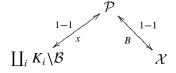
Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

$$(x, B) \sim_G (x_i, B') \{(x_i, B)\} \simeq K_i \setminus \mathcal{B}$$

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$



Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

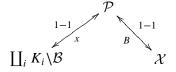
(1) Every x is conjugate to some x_i :

$$(x, B) \sim_G (x_i, B') \{(x_i, B)\} \simeq K_i \setminus \mathcal{B}$$

(2) Every B is conjugate to B_0 :

Sketch of Proof

$$\mathcal{P} = \{(x, B)\}/G \ (x^2 = 1, B = \text{Borel})$$



Fix representatives x_1, \ldots, x_n of \mathcal{X}/G (i.e. real forms) Fix $B_0 \supset H$

(1) Every x is conjugate to some x_i :

$$(x, B) \sim_G (x_i, B') \{(x_i, B)\} \simeq K_i \setminus \mathcal{B}$$

(2) Every B is conjugate to B_0 :

$$(x, B) \sim_G (x', B_0) \to x' \in \mathcal{X} \quad (\text{wlog } x' \in \text{Norm}(H))$$

$K \setminus G/B$ for $Sp(4, \mathbb{R})$ and SO(3, 2):

$Sp(4,\mathbb{R})$:

```
0:
                               [nn]
                                          0
 1:
                                          0
                               [nn]
 2:
                               [cn]
                                          0
 3:
                               [cn]
 4:
                               [Cr]
                                              2
 5:
                               [Cr]
                                          1
                                              2
 6:
                               [rC]
                                      1
                                          1
                                              1
 7:
                     10
                               [nC]
                                             2,1,2
 8:
               9
                         10
                               [Cn]
                                             1,2,1
 9:
                         10
                               [Cn]
                                             1,2,1
10:
        10
             10
                               [rr]
                                             1,2,1,2
```

SO(3, 2):

```
0:
                        [nn]
                                   0
1:
          0
                        [cn]
                                   0
          2
2:
       5
                        [Cr]
                                      2
3:
                        [rC]
          3
4:
                6
                        [nC]
                                      2,1,2
5:
                        [Cn]
                                      1,2,1
6:
          6
                        [rr]
                                      1,2,1,2
```

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

 $\mathcal{X} \in \mathcal{X}$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

$$\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x)$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

$$\mathcal{X} \in \mathcal{X} \to \Theta_{\mathcal{X}} = \operatorname{int}(\mathcal{X}) \to \Theta_{\mathcal{X},H} = \Theta_{\mathcal{X}}|_{\mathfrak{H}}$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

$$\mathcal{X} \in x \to \Theta_x = \operatorname{int}(x) \to \Theta_{x,H} = \Theta_x|_{\mathfrak{H}}$$

By symmetry define
$$\mathcal{X}^{\vee}$$
, $\mathcal{X}^{\vee} \ni y \to \Theta_{y,H^{\vee}}$

The Parameter Space Z

$$\mathcal{X} \in \mathcal{X} \to \Theta_{\mathcal{X}} = \operatorname{int}(\mathcal{X}) \to \Theta_{\mathcal{X},H} = \Theta_{\mathcal{X}}|_{\mathfrak{H}}$$

By symmetry define \mathcal{X}^{\vee} , $\mathcal{X}^{\vee} \ni y \to \Theta_{y,H^{\vee}}$

Definition:

$$\mathcal{Z} = \{(x, y) \mid \in \mathcal{X} \times \mathcal{X}^{\vee} \mid \Theta_{x, H}^{t} = -\Theta_{y, H^{\vee}}\}$$

The Parameter Space \mathcal{Z}

$$\mathcal{X} \in \mathcal{X} \to \Theta_{\mathcal{X}} = \operatorname{int}(\mathcal{X}) \to \Theta_{\mathcal{X},H} = \Theta_{\mathcal{X}}|_{\mathfrak{H}}$$

By symmetry define \mathcal{X}^{\vee} , $\mathcal{X}^{\vee} \ni y \to \Theta_{y,H^{\vee}}$

Definition:

$$\mathcal{Z} = \{(x, y) \mid \in \mathcal{X} \times \mathcal{X}^{\vee} \mid \Theta_{x, H}^{t} = -\Theta_{y, H^{\vee}} \}$$

$$\mathcal{Z} \subset \coprod_{i} K_{i} \backslash \mathcal{B} \times \coprod_{j} K_{j}^{\vee} \backslash \mathcal{B}^{\vee}$$

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

The Parameter Space \mathcal{Z}

Theorem: There is a natural bijection:

$$\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \coprod_{i=1}^n \Pi(G(\mathbb{R})_i, \rho)$$

The Parameter Space \mathcal{Z}

Theorem: There is a natural bijection:

$$\mathcal{Z} \stackrel{\text{1--1}}{\longleftrightarrow} \coprod_{i=1}^n \Pi(G(\mathbb{R})_i, \rho)$$

Recall
$$\mathcal{Z} = \{(x, y)\}$$

 $x \in \mathcal{X} = \{x \in \text{Norm}_G(H) \mid x^2 = 1\}/H$
 $y \in \mathcal{X}^{\vee} = \text{same thing on dual side}$

The Parameter Space \mathcal{Z}

Theorem: There is a natural bijection:

$$\mathcal{Z} \stackrel{\text{1--1}}{\longleftrightarrow} \coprod_{i=1}^n \Pi(G(\mathbb{R})_i, \rho)$$

Recall
$$\mathcal{Z} = \{(x, y)\}$$

$$x \in \mathcal{X} = \{x \in \text{Norm}_G(H) \mid x^2 = 1\}/H$$

 $y \in \mathcal{X}^{\vee} = \text{same thing on dual side}$

(Canonical up to characters of
$$G_{qs}(\mathbb{R})/G_{qs}(\mathbb{R})^0$$
, $G_{qs}^{\vee}(\mathbb{R})/G_{qs}^{\vee}(\mathbb{R})^0$)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

General Groups

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

General Groups

For simplicity we assumed (recall $G = G(\mathbb{C})$):

- lacktriangledown G is simply connected
- \bigcirc G is adjoint
- **3** Out(G) = 1

General Groups

For simplicity we assumed (recall $G = G(\mathbb{C})$):

- G is simply connected
- G is adjoint
- **3** Out(G) = 1

In general:

- Fix an inner class of real forms
- **2** Need twists $G^{\Gamma} = G \rtimes \Gamma$, $G^{\vee} \rtimes \Gamma$ ($\Gamma = \operatorname{Gal}(\mathbb{C}/\mathbb{R})$)
- Need several infinitesimal characters
- Need strong real forms

The General Algorithm

$$\mathcal{X} = \{x \in \text{Norm}_{G^{\Gamma} \setminus G}(H) \mid x^2 \in Z(G)\}/H$$

$$\mathcal{X}^{\vee}$$
 similarly, $\mathcal{Z} = \{(x, y) \mid \dots\} \subset \mathcal{X} \times \mathcal{X}^{\vee}$ as before.

Theorem: There is a natural bijection

$$\mathcal{Z} \stackrel{1-1}{\longleftrightarrow} \coprod_{i \in S} \Pi(G(\mathbb{R})_i, \Lambda)$$

 Λ = certain set of infinitesimal characters S is the set of "strong real forms"

Reference: Algorithms for Representation Theory of Real Reductive Groups, preprint (www.liegroups.org), Fokko du Cloux, A

Block of the trivial representation of $Sp(4, \mathbb{R})$

```
0(0,6):
               [i1,i1]
            0
1(1,6):
               [i1,i1]
            0
2(2,6):
               [ic,i1]
3(3,6):
              [ic,i1]
                                        (5, *)
4(4,4):
              [C+,r1]
                                        (0,2)
              [C+,r1]
                                        (1,3)
                                                  2
5(5,4):
6(6,5):
               [r1,C+]
                                (0, 1)
                                        ( *, *)
                                                  1
7(7,2):
              [i2,C-]
                                (10,11)
                                        ( *, *)
                                                  2,1,2
                                ( *, *)
                                        (10, *)
8(8,3):
              [C-,i1]
                                                  1,2,1
9(9,3):
            2 [C-,i1]
                                ( *, *)
                                        (10, *)
                                                  1,2,1
10(10,0):
            3 [r2,r1]
                        11
                            10
                                (7, *)
                                        (8,9)
                                                  1,2,1,2
11(10,1):
               [r2,rn]
                        10
                           11
                                (7, *) (*, *)
                                                  1,2,1,2
```

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Cayley Transforms and Cross Actions

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Cayley Transforms and Cross Actions

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Cayley Transforms and Cross Actions

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

In our picture:

1) W acts by conjugation on \mathcal{X} and \mathcal{Z} : cross action

Cayley Transforms and Cross Actions

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

In our picture:

- 1) W acts by conjugation on \mathcal{X} and \mathcal{Z} : cross action
- 2) $w \in W_2$, $s_\alpha w = w s_\alpha$,

$$w \to w' = s_{\alpha}w \in W_2$$

Cayley Transforms and Cross Actions

Two natural ways of constructing new representations from old (Vogan): Cayley transforms and cross action

In our picture:

- 1) W acts by conjugation on \mathcal{X} and \mathcal{Z} : cross action
- 2) $w \in W_2$, $s_\alpha w = w s_\alpha$,

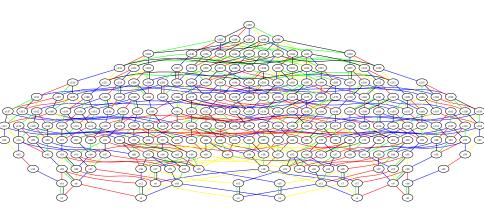
$$w \to w' = s_{\alpha}w \in W_2$$

lifts to

$$x \to x' = \sigma_{\alpha} x$$

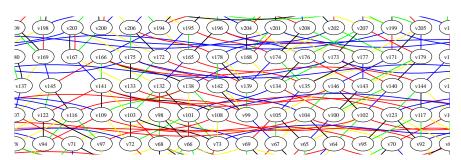
(Multivalued due to choice of σ_{α} : x' or $\{x'_1, x'_2\}$) This is the Cayley transform

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm



 $K \setminus G/B$ for SO(5,5)

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm



Closeup of SO(5,5) graph

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Cayley Transforms and Cross Actions

Do this on \mathcal{X} and \mathcal{X}^{\vee} , and \mathcal{Z} ...

Unitary Dual Other Duals Three views of the Admissible Dual K orbits on G/B The Algorithm

Cayley Transforms and Cross Actions

Do this on \mathcal{X} and \mathcal{X}^{\vee} , and \mathcal{Z} ...

Proposition Cayley transforms and cross actions are naturally computable in $\mathcal X$ and $\mathcal Z$

Block of the trivial representation of $Sp(4, \mathbb{R})$

```
0(0,6):
               [i1,i1]
            0
1(1,6):
               [i1,i1]
            0
2(2,6):
               [ic,i1]
3(3,6):
              [ic,i1]
                                        (5, *)
4(4,4):
              [C+,r1]
                                        (0,2)
              [C+,r1]
                                        (1,3)
                                                  2
5(5,4):
6(6,5):
               [r1,C+]
                                (0, 1)
                                        ( *, *)
                                                  1
7(7,2):
              [i2,C-]
                                (10,11)
                                        ( *, *)
                                                  2,1,2
                                ( *, *)
                                        (10, *)
8(8,3):
              [C-,i1]
                                                  1,2,1
9(9,3):
            2 [C-,i1]
                                ( *, *)
                                        (10, *)
                                                  1,2,1
10(10,0):
            3 [r2,r1]
                        11
                            10
                                (7, *)
                                        (8,9)
                                                  1,2,1,2
11(10,1):
               [r2,rn]
                        10
                           11
                                (7, *) (*, *)
                                                  1,2,1,2
```

Kazhdan-Lusztig-Vogan Polynomials

$\begin{array}{c} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The } E_8 \ \textbf{calculation} \end{array}$

Fokko du Cloux December 20, 1954 - November 10, 2006

Overview Definition The E_8 calculation

Marc van Leeuwen Poitiers LiE software

Marc van Leeuwen Poitiers LiE software

David Vogan MIT

Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$ infinitesimal character λ (also: block \mathcal{B} of representations at λ)

Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$ infinitesimal character λ (also: block \mathcal{B} of representations at λ)

 $\mathcal{Z} \supset \mathcal{P}$ = finite set of parameters

Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$ infinitesimal character λ (also: block \mathcal{B} of representations at λ)

$$\mathcal{Z} \supset \mathcal{P}$$
 = finite set of parameters $\ni \gamma = (x, y)$

Kazhdan-Lusztig-Vogan Polynomials

 $G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$ infinitesimal character λ (also: block \mathcal{B} of representations at λ)

$$\mathcal{Z} \supset \mathcal{P}$$
 = finite set of parameters $\ni \gamma = (x, y)$
 $\gamma \rightarrow I(\gamma)$ = standard module

Kazhdan-Lusztig-Vogan Polynomials

$$G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$$
 infinitesimal character λ (also: block \mathcal{B} of representations at λ)

$$\mathcal{Z} \supset \mathcal{P}$$
 = finite set of parameters $\ni \gamma = (x, y)$

$$\gamma \rightarrow I(\gamma) = \text{standard module}$$

$$\gamma \to \pi(\gamma) = \text{irreducible representation}$$

Kazhdan-Lusztig-Vogan Polynomials

$$G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$$
 infinitesimal character λ (also: block \mathcal{B} of representations at λ)

$$\mathcal{Z} \supset \mathcal{P}$$
 = finite set of parameters $\ni \gamma = (x, y)$

$$\gamma \rightarrow I(\gamma) = \text{standard module}$$

$$\gamma \to \pi(\gamma) = \text{irreducible representation}$$

$$\mathcal{B} = \{ \gamma \mid \gamma \in \mathcal{P} \}$$

Kazhdan-Lusztig-Vogan Polynomials

$$G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}),$$
 infinitesimal character λ (also: block \mathcal{B} of representations at λ)

$$\mathcal{Z} \supset \mathcal{P}$$
 = finite set of parameters $\ni \gamma = (x, y)$

$$\gamma \rightarrow I(\gamma) = \text{standard module}$$

$$\gamma \to \pi(\gamma)$$
 = irreducible representation

$$\mathcal{B} = \{ \gamma \mid \gamma \in \mathcal{P} \}$$

$$\mathcal{M} = \mathbb{Z}\langle \pi(\gamma) \rangle \quad (\gamma \in \mathcal{P})$$

Kazhdan-Lusztig-Vogan Polynomials

$$G = G(\mathbb{C}), K = K(\mathbb{C}), G(\mathbb{R}), \text{ infinitesimal character } \lambda$$
 (also: block \mathcal{B} of representations at λ)
$$\mathcal{Z} \supset \mathcal{P} = \text{finite set of parameters } \ni \gamma = (x, y)$$

$$\gamma \to I(\gamma) = \text{standard module}$$

$$\gamma \to \pi(\gamma) = \text{irreducible representation}$$

$$\mathcal{B} = \{\gamma \mid \gamma \in \mathcal{P}\}$$

$$\mathcal{M} = \mathbb{Z}\langle \pi(\gamma) \rangle \quad (\gamma \in \mathcal{P})$$

Proposition (Langlands, Zuckerman): $\mathcal{M} = \mathbb{Z}\langle I(\gamma) \rangle \quad (\gamma \in \mathcal{P})$

Kazhdan-Lusztig-Vogan Polynomials

Change of Basis Matrices:

$$I(\delta) = \sum_{\delta \in \mathcal{P}} m(\gamma, \delta) \pi(\gamma)$$

$$\pi(\delta) = \sum_{\delta \in \mathcal{P}} M(\gamma, \delta) I(\gamma)$$

Kazhdan-Lusztig-Vogan Polynomials

Change of Basis Matrices:

$$I(\delta) = \sum_{\delta \in \mathcal{P}} m(\gamma, \delta) \pi(\gamma)$$

$$\pi(\delta) = \sum_{\delta \in \mathcal{P}} M(\gamma, \delta) I(\gamma)$$

Compute $M(\gamma, \delta)$, $m(\gamma, \delta)$: Kazhdan-Lusztig-Vogan polynomials

$$P_{\gamma,\delta} = a_0 + a_1 q + \dots + a_n q^n$$

Kazhdan-Lusztig-Vogan Polynomials

Change of Basis Matrices:

$$I(\delta) = \sum_{\delta \in \mathcal{P}} m(\gamma, \delta) \pi(\gamma)$$

$$\pi(\delta) = \sum_{\delta \in \mathcal{P}} M(\gamma, \delta) I(\gamma)$$

Compute $M(\gamma, \delta)$, $m(\gamma, \delta)$: Kazhdan-Lusztig-Vogan polynomials

$$P_{\gamma,\delta} = a_0 + a_1 q + \dots + a_n q^n$$

$$M(\gamma, \delta) = (-1)^{\ell(\gamma) - \ell(\delta)} P_{\gamma, \delta}(1)$$

 $\begin{array}{c} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The } E_8 \ \textbf{calculation} \end{array}$

Character Table for \mathcal{B}

 $\begin{array}{l} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The } E_8 \ \textbf{calculation} \end{array}$

Character Table for \mathcal{B}

Proposition: KLV polynomials + coherent continuation \rightarrow compute character of any admissible representation in $\mathcal B$ as a function on the regular semisimple set.

Computable solely from output of atlas software

 $\begin{array}{c} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The } E_8 \ \textbf{calculation} \end{array}$

KL and KLV polynomials

 $\begin{array}{c} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The } E_8 \ \textbf{calculation} \end{array}$

KL and KLV polynomials

original KL polynomials KLV polynomials

Underlying set W \mathcal{P}

Overview Definition The E_8 calculation

KL and KLV polynomials

original KL polynomials KLV polynomials

Underlying set W \mathcal{P}

Data B-orbits on G/B K-orbits on G/B

KL and KLV polynomials

original KL polynomials KLV polynomials

Underlying set W \mathcal{P}

Data B-orbits on G/B K-orbits on G/B

+ local system

Rep. Theory Verma modules Representations of $G(\mathbb{R})$

(block \mathcal{B})

KL and KLV polynomials

	original KL polynomials	KLV polynomials
Underlying set	W	${\cal P}$
Data	B-orbits on G/B	K-orbits on G/B
		+ local system
Rep. Theory	Verma modules	Representations of $G(\mathbb{R})$
		(block \mathcal{B})
Properties	$a_i \ge 0, a_0 = 1$	$a_i \ge 0, a_0 = 0 \text{ or } 2^k (?)$

KL and KLV polynomials

	original KL polynomials	KLV polynomials
Underlying set	W	${\cal P}$
Data	B-orbits on G/B	K-orbits on G/B
		+ local system
Rep. Theory	Verma modules	Representations of $G(\mathbb{R})$
		(block \mathcal{B})
Properties	$a_i \geq 0, a_0 = 1$	$a_i \ge 0, a_0 = 0 \text{ or } 2^k (?)$
$KL\subset KLV$		$G(\mathbb{R}) = G'(\mathbb{C})$

KL and KLV polynomials

	original KL polynomials	KLV polynomials
Underlying set	W	${\cal P}$
Data	B-orbits on G/B	K-orbits on G/B
		+ local system
Rep. Theory	Verma modules	Representations of $G(\mathbb{R})$
		(block \mathcal{B})
Properties	$a_i \ge 0, a_0 = 1$	$a_i \ge 0, a_0 = 0 \text{ or } 2^k (?)$
$KL\subset KLV$		$G(\mathbb{R}) = G'(\mathbb{C})$

Note: David Vogan calls the polynomials for $G(\mathbb{R})$ Kazhdan-Lusztig (not Kazhdan-Lusztig-Vogan) polynomials

 $\begin{array}{c} \textbf{Overview} \\ \textbf{Definition} \\ \textbf{The } E_8 \ \textbf{calculation} \end{array}$

Definition of KLV polynomials

Definition of KLV polynomials

$$\mathcal{M} = \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]\langle T_{\gamma} \rangle \quad (\gamma \in \mathcal{P})$$
 $v = q^{\frac{1}{2}}$
 $t_{\gamma} = v^{-\ell(\gamma)}T_{\delta}$

Definition of KLV polynomials

$$\mathcal{M} = \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}] \langle T_{\gamma} \rangle \quad (\gamma \in \mathcal{P})$$

$$v = q^{\frac{1}{2}}$$

$$t_{\gamma} = v^{-\ell(\gamma)} T_{\delta}$$

 \mathcal{M} is a module for the Hecke algebra $\mathcal{H}(w)$

Definition of KLV polynomials

$$\mathcal{M} = \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}] \langle T_{\gamma} \rangle \quad (\gamma \in \mathcal{P})$$

$$v = q^{\frac{1}{2}}$$

$$t_{\gamma} = v^{-\ell(\gamma)} T_{\delta}$$

 \mathcal{M} is a module for the Hecke algebra $\mathcal{H}(w)$

(W-graph, Duality operation, self-dual elements, C_{γ} , $R_{\gamma,\delta}$, $P_{\gamma,\delta}$ as in the original Kazhdan-Lusztig paper)

Recursive Definition of KLV polynomials

Data:

1) (W, S) Weyl group, simple roots

Recursive Definition of KLV polynomials

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$
- 3) Length function $\ell:\mathcal{P}\to\mathbb{Z}_{\geq 0}$

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$
- 3) Length function $\ell:\mathcal{P}\to\mathbb{Z}_{\geq 0}$
- 4) $\gamma \in \mathcal{P} \to \text{action } \theta_{\gamma} \text{ on roots (real, imaginary, complex)}$

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$
- 3) Length function $\ell:\mathcal{P}\to\mathbb{Z}_{\geq 0}$
- 4) $\gamma \in \mathcal{P} \to \text{action } \theta_{\gamma} \text{ on roots (real, imaginary, complex)}$
- 5) Grading of imaginary roots (compact, non-compact)

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$
- 3) Length function $\ell:\mathcal{P}\to\mathbb{Z}_{\geq 0}$
- 4) $\gamma \in \mathcal{P} \to \text{action } \theta_{\gamma} \text{ on roots (real, imaginary, complex)}$
- 5) Grading of imaginary roots (compact, non-compact)
- 6) Cross action: α (simple), $\gamma \to s_{\alpha} \gamma s_{\alpha}^{-1}$

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$
- 3) Length function $\ell:\mathcal{P}\to\mathbb{Z}_{\geq 0}$
- 4) $\gamma \in \mathcal{P} \to \text{action } \theta_{\gamma} \text{ on roots (real, imaginary, complex)}$
- 5) Grading of imaginary roots (compact, non-compact)
- 6) Cross action: α (simple), $\gamma \to s_{\alpha} \gamma s_{\alpha}^{-1}$
- 7) Cayley transform: α (simple) real or imaginary, $\gamma \to \gamma_{\alpha}$ or $\{\gamma_{\alpha}^{+}, \gamma_{\alpha}^{-}\}$

Data:

- 1) (W, S) Weyl group, simple roots
- 2) Finite set \mathcal{P} parametrizing a block of representations of $G(\mathbb{R})$
- 3) Length function $\ell:\mathcal{P}\to\mathbb{Z}_{\geq 0}$
- 4) $\gamma \in \mathcal{P} \to \text{action } \theta_{\gamma} \text{ on roots (real, imaginary, complex)}$
- 5) Grading of imaginary roots (compact, non-compact)
- 6) Cross action: α (simple), $\gamma \to s_{\alpha} \gamma s_{\alpha}^{-1}$
- 7) Cayley transform: α (simple) real or imaginary, $\gamma \to \gamma_{\alpha}$ or $\{\gamma_{\alpha}^{+}, \gamma_{\alpha}^{-}\}$

Roots are labelled C+,C-,rn,r1,r2,ic,i1,i2 (atlas output): 1303(952, 31): 13 7 [i2,C-,r2,C-,i1] 1303 1250 1304...

Recursive Definition of KLV polynomials

Length order: $\gamma \leq \delta$ if $\gamma = \delta$ or $\ell(\gamma) < \ell(\delta)$

Note: Bruhat order is not needed

Length order: $\gamma \leq \delta$ if $\gamma = \delta$ or $\ell(\gamma) < \ell(\delta)$

Note: Bruhat order is not needed

Matrix is triangular: $P_{\gamma,\delta} = 0$ unless $\ell(\gamma) \le \ell(\delta)$

Length order: $\gamma \leq \delta$ if $\gamma = \delta$ or $\ell(\gamma) < \ell(\delta)$

Note: Bruhat order is not needed

Matrix is triangular: $P_{\gamma,\delta} = 0$ unless $\ell(\gamma) \le \ell(\delta)$

$$\mu(\gamma, \delta) = \text{ coefficient of } q^{\frac{1}{2}(\ell(\delta) - \ell(\gamma) - 1)} \text{ in } P_{\gamma, \delta}$$

Recursive Definition of KLV polynomials

Length order: $\gamma \leq \delta$ if $\gamma = \delta$ or $\ell(\gamma) < \ell(\delta)$

Note: Bruhat order is not needed

Matrix is triangular: $P_{\gamma,\delta} = 0$ unless $\ell(\gamma) \le \ell(\delta)$

$$\mu(\gamma, \delta) = \text{ coefficient of } q^{\frac{1}{2}(\ell(\delta) - \ell(\gamma) - 1)} \text{ in } P_{\gamma, \delta}$$

$$U^{\alpha}_{\gamma,\delta} = \sum_{\gamma \leq \zeta < \delta} \mu(\zeta,\delta) P_{\gamma,\zeta}$$

Recursive Definition of KLV polynomials

α w.r.t. δ	α w.r.t. γ	$P_{\gamma,\delta}=$
ic/C-/r1 or r2	i1 or i2	$v^{-1}P_{\gamma_{\alpha},\delta}$ or $v^{-1}(P_{\gamma_{\alpha}^+,\delta}+P_{\gamma_{\alpha}^-,\delta})$
ic/C-/r1 or r2	C+	$v^{-1}P_{s_{\alpha}\times\gamma},\delta$
C-	C-	$vP_{\gamma,s_{\alpha}\times\delta}+P_{s_{\alpha}\times\gamma,s_{\alpha}\times\delta}-\frac{U_{\gamma,\delta}^{\alpha}}{\gamma,\delta}$
r1 or r2*	r1	$(v-v^{-1})P_{\gamma,\delta_{\alpha}^{+}} + P_{\gamma_{\alpha}^{+},\delta_{\alpha}^{+}} + P_{\gamma_{\alpha}^{-},\delta_{\alpha}^{+}} - \frac{U_{\gamma,\delta_{\alpha}^{+}}^{\alpha}}{\gamma,\delta_{\alpha}^{+}}$
r1 or r2*	r2	$vP_{\gamma,\delta_{\alpha}} - v^{-1}P_{s_{\alpha}\times\gamma,\delta_{\alpha}} + P_{\gamma_{\alpha},\delta_{\alpha}} - \frac{U_{\gamma,\delta_{\alpha}}^{\alpha}}{v^{2}}$

(*): formula is for $P_{\gamma,\delta} + P_{\gamma,s_{\alpha}\delta}$

 $\begin{array}{l} \text{Overview} \\ \textbf{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Recursive Definition of KLV polynomials

Recursive Definition of KLV polynomials

In each case the right formula in boxes involves

$$P_{\gamma',\delta'}$$
 with

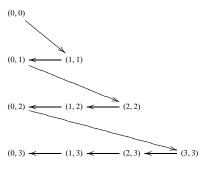
1)
$$\ell(\delta') < \ell(\delta)$$
 or

2)
$$\ell(\delta') = \ell(\delta), \ell(\gamma') > \ell(\gamma)$$

Recursion Relations

$$P_{\gamma,\gamma} = 1$$

Compute $P_{\gamma,\delta}$ like this:



. . .

$$((i, j) \text{ is the } P_{\gamma, \delta} \text{ with } \ell(\gamma) = i, \ell(\delta) = j)$$

Overview **Definition** The E_8 calculation

Recursion Relations

Recursion Relations

To compute $P_{\gamma,\delta}$ with $\ell(\gamma) = 3$, $\ell(\delta) = 5$, need potentially all of the $P_{\gamma,\delta}$ from the blue region.

Recursion Relations

To compute $P_{\gamma,\delta}$ with $\ell(\gamma) = 3$, $\ell(\delta) = 5$, need potentially all of the $P_{\gamma,\delta}$ from the blue region.

(E_8 : $U_{\gamma,\delta}^{\alpha}$ has 150 terms on average)

 $\begin{array}{l} \text{Overview} \\ \textbf{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Conclusion (the bad news)

Conclusion (the bad news)

In order to compute $P_{\gamma,\delta}$ you need to use potentially all $P_{\gamma',\delta'}$ with $\ell(\delta') < \ell(\delta)$.

Conclusion (the bad news)

In order to compute $P_{\gamma,\delta}$ you need to use potentially all $P_{\gamma',\delta'}$ with $\ell(\delta') < \ell(\delta)$.

We need to keep all $P_{\gamma,\delta}$ in RAM All accessible from a single processor

Conclusion (the bad news)

In order to compute $P_{\gamma,\delta}$ you need to use potentially all $P_{\gamma',\delta'}$ with $\ell(\delta') < \ell(\delta)$.

We need to keep all $P_{\gamma,\delta}$ in RAM All accessible from a single processor

See:

David Vogan's narrative, October Notices Marc van Leeuwen's technical discussion www.liegroups.org/talks

 $\begin{array}{l} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Fokko's code computed all KLV polynomials up to E_8 by late 2005 Challenge: Compute KLV for (the large block) of E_8 Fokko's code computed all KLV polynomials up to E_8 by late 2005

Challenge: Compute KLV for (the large block) of E_8

$$|\mathcal{P}| = 453,060$$
 $\deg(P_{\nu,\delta}) \le 31$

 $\operatorname{Dia}_{\gamma,\delta} = 31$

Big Problem: we did not have a good idea of the size of the answer beforehand.

$$a_i \ge 2^{16} = 65,535$$
 (almost certainly)

$$a_i \leq 2^{32}$$
=4.3 billion (we hope?)

Fokko's code computed all KLV polynomials up to E_8 by late 2005

Challenge: Compute KLV for (the large block) of E_8

$$|\mathcal{P}| = 453,060$$

$$\deg(P_{\gamma,\delta}) \leq 31$$

Big Problem: we did not have a good idea of the size of the answer beforehand.

$$a_i \ge 2^{16} = 65{,}535$$
 (almost certainly)

$$a_i \leq 2^{32}$$
=4.3 billion (we hope?)

Crude estimates: need about 1 terabyte of RAM (=1,000 gigabytes)

(1 gigabyte = 1 billion bytes = RAM in typical home computer)

Typical computational machine (not a cluster): 4-8 gigabytes of RAM

 $\begin{array}{c} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Many of the polynomials are equal for obvious reasons. Hope: number of distinct polynomials ≤ 200 million. Store only the distinct polynomials (cost of pointers)

Hope: average degree = 20

 \rightarrow need about 43 gigabytes of RAM

 $\begin{array}{c} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Many of the polynomials are equal for obvious reasons.

Hope: number of distinct polynomials ≤ 200 million.

Store only the distinct polynomials (cost of pointers)

Hope: average degree = 20

→ need about 43 gigabytes of RAM

Experiments (Birne Binegar and Dan Barbasch):

About 800 billion distinct polynomials \rightarrow 65 billion bytes

William Stein at Washington lent us SAGE, with 64 gigabytes of RAM (all accessible from one processor)

 $\begin{array}{c} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Noam Elkies: have to think harder Idea:

$$2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3 billion (?)$$

$$2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3 billion (?)$$

 $31 < 2^5$, so to do the calculation (mod p) for p < 32 requires 5 bits for each coefficient instead of 32, reducing storage by a factor of 5/32.

$$2^{16} = 65,536$$
 < Maximum coefficient < $2^{32} = 4.3$ billion (?)

 $31 < 2^5$, so to do the calculation (mod p) for p < 32 requires 5 bits for each coefficient instead of 32, reducing storage by a factor of 5/32.

$$2^{32} < 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 = 100$$
 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

$$2^{16} = 65,536 < Maximum coefficient < 2^{32} = 4.3 billion (?)$$

 $31 < 2^5$, so to do the calculation (mod p) for p < 32 requires 5 bits for each coefficient instead of 32, reducing storage by a factor of 5/32.

$$2^{32} < 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 = 100$$
 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes

Eventually:

Run the program 4 times, modulo n=251, 253, 255 and 256

Eventually:

Run the program 4 times, modulo n=251, 253, 255 and 256

Eventually:

Run the program 4 times, modulo n=251, 253, 255 and 256

Least common multiple: 4,145,475,840

Date mod Status Result

Eventually:

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	
Dec. 19	251	complete	16 hours

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	
Dec. 19	251	complete	16 hours
Dec. 22	256	crash	

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	
Dec. 19	251	complete	16 hours
Dec. 22	256	crash	
Dec. 22	256	complete	11 hours

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	
Dec. 19	251	complete	16 hours
Dec. 22	256	crash	
Dec. 22	256	complete	11 hours
Dec. 26	255	complete	12 hours

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	
Dec. 19	251	complete	16 hours
Dec. 22	256	crash	
Dec. 22	256	complete	11 hours
Dec. 26	255	complete	12 hours
Dec. 27	253	crash	

Run the program 4 times, modulo n=251, 253, 255 and 256

Date	mod	Status	Result
Dec. 6	251	crash	
Dec. 19	251	complete	16 hours
Dec. 22	256	crash	
Dec. 22	256	complete	11 hours
Dec. 26	255	complete	12 hours
Dec. 27	253	crash	
Jan. 3	253	complete	12 hours

 $\begin{array}{l} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

The final result

Combine the answers using the Chinese Remainder Theorem. Answer is correct if the biggest coefficient is less than 4,145,475,840 Total time (on SAGE): 77 hours

Some Statistics

Size of output: 60 gigabytes

 $\begin{array}{c} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

 $\begin{array}{l} \text{Overview} \\ \text{Definition} \\ \text{The } E_8 \text{ calculation} \end{array}$

Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:

$$152q^{22} + 3,472q^{21} + 38,791q^{20} + 293,021q^{19} + 1,370,892q^{18} + 4,067,059q^{17} + 7,964,012q^{16} + 11,159,003q^{15} + \\ 11,808,808q^{14} + 9,859,915q^{13} + 6,778,956q^{12} + 3,964,369q^{11} + 2,015,441q^{10} + 906,567q^9 + 363,611q^8 + 129,820q^7 + \\ 41,239q^6 + 11,426q^5 + 2,677q^4 + 492q^3 + 61q^2 + 3q$$

Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:

$$152q^{22} + 3,472q^{21} + 38,791q^{20} + 293,021q^{19} + 1,370,892q^{18} + 4,067,059q^{17} + 7,964,012q^{16} + 11,159,003q^{15} + \\ 11,808,808q^{14} + 9,859,915q^{13} + 6,778,956q^{12} + 3,964,369q^{11} + \\ 2,015,441q^{10} + 906,567q^9 + 363,611q^8 + 129,820q^7 + \\ 41,239q^6 + 11,426q^5 + 2,677q^4 + 492q^3 + 61q^2 + 3q$$

Value of this polynomial at q=1: 60,779,787

Some Statistics

Size of output: 60 gigabytes

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:

$$152q^{22} + 3,472q^{21} + 38,791q^{20} + 293,021q^{19} + 1,370,892q^{18} + 4,067,059q^{17} + 7,964,012q^{16} + 11,159,003q^{15} + \\ 11,808,808q^{14} + 9,859,915q^{13} + 6,778,956q^{12} + 3,964,369q^{11} + \\ 2,015,441q^{10} + 906,567q^9 + 363,611q^8 + 129,820q^7 + \\ 41,239q^6 + 11,426q^5 + 2,677q^4 + 492q^3 + 61q^2 + 3q$$

Value of this polynomial at q=1: 60,779,787

Number of coefficients in distinct polynomials: 13,721,641,221 (13.9 billion)

Unipotent Representations

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Unipotent Representations

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

Unipotent Representations

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

*) Fix a block \mathcal{B}

Unipotent Representations

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

*) Fix a block \mathcal{B} (block)

Unipotent Representations

Proposition: From the output of atlas one can list the special unipotent representations associated to a given nilpotent orbit.

Sketch

- *) Fix a block \mathcal{B} (block)
- *) Fix nilpotent orbit \mathcal{O} for \mathfrak{g}^{\vee} . Let $S = \{i_1, \ldots, i_r\}$ be the nodes of Dynkin diagram labelled 2. Let $\lambda =$ corresponding infinitesimal character.

Unipotent Representations

1) $\mathcal{O} \to \sigma$ (special representation of *W*)

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$ (wcells)
- 3) List cells C containing the special representation $\sigma \otimes \operatorname{sgn}$

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$ (wcells)
- 3) List cells C containing the special representation $\sigma \otimes \text{sgn}$ (wgraph + calculation with character table of W)
- 4) For each such C list $\pi \in C$ with $\tau(\pi) = S$ (block)

Unipotent Representations

- 1) $\mathcal{O} \to \sigma$ (special representation of *W*)
- 2) Find all cells $C \subset \mathcal{B}$ (wcells)
- 3) List cells C containing the special representation $\sigma \otimes \operatorname{sgn}$ (wgraph + calculation with character table of W)
- 4) For each such C list $\pi \in C$ with $\tau(\pi) = S$ (block)
- 5) Push these to λ

David Vogan has carried this out for E_8

(70 nilpotent orbits; 20 even ones; 143 unipotent representations with integral infinitesimal character for $E_8(split)$)

Conjecture (Arthur): These representations are unitary.

What next?

• Put in λ

- Put in λ
- K-structure of representations

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations
- The Unitary Dual ??

What next?

- Put in λ
- K-structure of representations
- Singular and non-integral infinitesimal character
- Unipotent Representations (Arthur's conjecture)
- Version 1.0 of the software
- Some results on (non)-unitary representations
- The Unitary Dual ??

Stay tuned...