

Calculating the Hodge Filtration

or
Hermitian Forms and Hodge Theory

Jeffrey Adams
AMS Conference
Ann Arbor, October 20, 2018

The Main Result

Joint with Peter Trapa, David Vogan
$G(\mathbb{R})$: a real form of a connected, complex reductive group
π : irreducible representation

Main Theorem

The signature of the c-form on π is the reduction $\bmod (2)$ of the Hodge filtration

Today:
(1) What does this mean?
(2) What does this mean?
(3) Relationship with the Schmid-Vilonen conjecture

K-MULTIPLICITIES

$G(\mathbb{C}), G(\mathbb{R}), \theta, K=G^{\theta}, \mathfrak{g}=\operatorname{Lie}(G)$
π admissible (\mathfrak{g}, K)-module

$$
\left.\pi\right|_{K}=\sum_{\mu \in \widehat{K}} \operatorname{mult}_{\pi}(\mu) \mu
$$

Theorem: There is an algorithm to compute $\operatorname{mult}_{\pi}(\mu)$
Morally this comes down to the Blattner formula plus parabolic induction. Practically speaking is an entirely different matter (for one thing K is disconnected). This algorithm has been implemented in the Atlas software.

A few words about \widehat{K}

From now on every representation has real infinitesimal character:

$$
\lambda \in X^{*} \otimes \mathbb{R} \quad \text { (via the Harish-Chandra homomorpism) }
$$

Suppose $P=$ MAN is a (real) parabolic subgroup, π_{M} is a discrete series of M, and $\nu \in \mathfrak{a}^{*}$.
$\operatorname{Ind}_{P}^{G}\left(\pi_{M} \otimes \nu\right):$
has real infinitesimal character: $\quad \nu \in \mathfrak{a}_{0}^{*}$ (real vector space)
is tempered: $\quad \nu \in i \mathfrak{a}_{0}^{*}$
is tempered with real infinitesimal character: $\quad \nu=0$
(countable set)

A FEW MORE WORDS ABOUT \widehat{K}

$\mathcal{P}_{\text {temp: }}:\{\pi \mid$ irreducible, tempered (real inf. char.) $\}$
Theorem (Vogan):
Bijection:

$$
\mathcal{P}_{\text {temp }} \longleftrightarrow \widehat{K}
$$

$$
\pi \rightarrow \text { lowest K-type of } \pi
$$

Note: If X is a (\mathfrak{g}, K)-module of finite length, then

$$
\text { mult }_{X}=\sum_{i=1}^{n} a_{i} \text { mult }_{\pi} \quad\left(a_{i} \in \mathbb{Z}, \pi_{i} \in \mathcal{P}_{\text {temp }}\right)
$$

EXAMPLE

$G(\mathbb{R})=S L(2, \mathbb{R})$
$K=S^{1}, \widehat{K}=\mathbb{Z}$
$\mathbb{C}=$ trivial representation of $S L(2, \mathbb{R})$:
(reducible) spherical principal series $=\mathbb{C}+\mathrm{DS}_{+}+\mathrm{DS}_{-}$

$$
\left.\mathbb{C}\right|_{K}=\text { spherical principal series }\left.\right|_{K}-\left.\mathrm{DS}_{+}\right|_{K}-\left.\mathrm{DS}_{-}\right|_{K}
$$

$$
2 \mathbb{Z}-\{2,4,6, \ldots\}-\{-2,-4,-6, \ldots\}
$$

PS: spherical principal series with infinitesimal character 0
$\mathrm{DS}_{ \pm}$: holomorphic/antiholomorphic discrete series with infinitesimal character ρ

$$
\text { mult }_{\mathbb{C}}=\text { mult }_{P S}-\text { mult }_{D S_{+}}-\text {mult }_{D S_{+}}
$$

Signatures of Hermitian forms

$G, \theta, K \ldots G(\mathbb{R})=G^{\sigma}(\sigma$ antiholomorphic $)$
Suppose (π, V) admits an invariant Hermitian form:

$$
\langle\pi(X) v, w\rangle+\langle v, \pi(\sigma(X)) w\rangle=0
$$

Theorem: an irreducible representation π of $G(\mathbb{R})$ is unitary if and only if its (\mathfrak{g}, K)-module admits a positive definite invariant Hermitian form.

Problem: Describe the Unitary Dual
set of equivalence classes of irreducible unitary representations

Signatures of Hermitian Forms

Problem: Suppose (π, V) supports an invariant Hermitian form \langle,$\rangle . Compute the signature of \langle$,$\rangle .$

What? \langle,$\rangle is positive definite if \langle v, v\rangle>0$ for all v
If not, what is the "signature"?
Definition: $\mathbb{W}=\mathbb{Z}[z] /\left(z^{2}-1\right)=\mathbb{Z}[s]\left(s^{2}=1\right)$
Definition: $\operatorname{sig}_{\pi}: \widehat{K} \rightarrow \mathbb{W}$:
$\operatorname{sig}_{\pi}(\mu)=a+b s$ if in the invariant form, restricted to the K-isotypic, μ occurs a (resp. b) times with positive (resp. negative) definite form.

Note: $\operatorname{sig}_{\pi}(\mu)(s=1)=\operatorname{mult}_{\pi}(\mu)$
The question becomes: how to "compute" sig_{π} ?

Signatures of Hermitian Forms

Theorem: $\operatorname{sig}_{\pi}=\sum_{i=1}^{n} w_{i}$ mult $_{\pi_{i}}$ for some irreducible, tempered representations $\pi_{1}, \ldots, \pi_{n}, w_{i} \in \mathbb{W}$

The point is this is a finite formula.
In other words

$$
\left.\operatorname{sig}_{\pi} \in \mathbb{W}\left\langle\text { mult }_{\tau}\right| \tau \text { tempered }\right\rangle
$$

Example: $S L(2, \mathbb{R})$

$\pi(\nu)$: spherical principal series with infinitesimal character $\nu \in \mathbb{R}$
$\widehat{K}=\mathbb{Z}$
$\left.\pi(\nu)\right|_{K}=2 \mathbb{Z}=\{\ldots,-4,-2,0,2,4, \ldots\}$
$\pi(\nu)$ is reducible $\Leftrightarrow \nu \in 2 \mathbb{Z}+1$
$\operatorname{sig}_{\pi(0)}=$ mult $_{\pi(0)}$ (unitary)
in fact

$$
\operatorname{sig}_{\pi(\nu)}=\operatorname{sig}_{\pi(0)}=\operatorname{mult}_{\pi(0)} \quad \nu<1
$$

	\ldots	-6	-4	-2	0	2	4	6	\ldots
$\operatorname{sig}(I(0))$		+	+	+	+	+	+	+	
$\operatorname{sig}(I(1-\epsilon))$		+	+	+	+	+	+	+	
$\operatorname{sig}(I(1))$		0	0	0	+	0	0	0	
$\operatorname{sig}(I(1+\epsilon))$		-	-	-	+	-	-	-	

Signatures of Hermitian forms

Conclusion:

$$
\operatorname{sig}_{\pi(1+\epsilon)}=\operatorname{mult}_{\pi(1-\epsilon)}+(s-1)\left(\operatorname{mult}_{\pi}\left(D S_{+}\right)+\operatorname{mult}_{\pi}\left(D S_{-}\right)\right)
$$

$=$ all positive signs...change signs from + to -

THE C-FORM

Major fly in the ointment:

a) there may be no invariant Hermitian form on (π, V)
b) it may not be unique (up to positive scalar)

Example: odd principal series of $S L(2, \mathbb{R})$ with $\nu \neq 0$
The K-types $1,-1$ have opposite signature
$G(\mathbb{R}), \sigma \quad \sigma_{c}$ compact real form (so $\sigma_{c} \circ \sigma=\theta$)
Definition The c-form satisfies

$$
\langle\pi(X) v, w\rangle_{c}+\left\langle v, \pi\left(\sigma_{c}(X)\right) w\right\rangle_{c}=0
$$

and \langle,\rangle_{c} is positive definite on all lowest K-types

THE C-FORM

Theorem:
(1) The c-form exists and is unique (up to positive scalar)
(2) The c-form determines the invariant Hermitian form (an explicit formula)
Note: if the group is not equal rank we need the c-form on the extended group
Definition: $\operatorname{sig}_{\pi}^{c}: \widehat{K} \rightarrow \mathbb{W}$:
$\operatorname{sig}_{\pi}^{c}(\mu)=a+b s$ if in the c-form, restricted to the K-isotypic, μ occurs a (resp. b) times with positive (resp. negative) definite form.

Same result as before: $\operatorname{sig}_{\pi}^{c}=\sum_{i} w_{i}^{c}$ mult $_{\pi_{i}}$

Digression: The Langlands classification AND THE KLV POLYNOMIALS

Fix infinitesimal character λ
\mathcal{P}_{λ} : a set of parameters
$\mathcal{P}_{\lambda} \ni \gamma \rightarrow I(\gamma)$ (standard module)
$J(\gamma)$ (unique irreducible quotient of $I(\gamma)$)
$\{$ irreducible representations with infinitesimal character $\gamma\} \longleftrightarrow \mathcal{P}_{\lambda}$

$$
I(\gamma)=\operatorname{Ind}_{M A N}^{G}\left(\pi_{M} \otimes \nu \otimes 1\right) \quad\left(\nu \in \mathfrak{a}_{0}^{*}\right)
$$

Deformation: $\gamma_{t} \leftrightarrow \operatorname{Ind}_{M A N}^{G}\left(\pi_{M} \otimes t \nu \otimes 1\right)$

Digression: The Langlands Classification AND THE KLV POLYNOMIALS

Kazhdan-Lusztig-Vogan polynomials:
$P_{\tau, \gamma} \in \mathbb{Z}[q]$
$\left\{P_{\tau, \gamma} \mid \tau, \gamma \in \mathcal{P}_{\lambda}\right\}$ (upper unitriangular matrix)
Inverse matrix $\left\{Q_{\tau, \gamma}\right\}$ (with signs)

$$
\begin{aligned}
& \mathrm{J}(\gamma)=\sum_{\tau}(-1)^{\ell(\gamma)-\ell(\tau)} P_{\tau, \gamma}(1) \mathrm{I}(\tau) \\
& \mathrm{I}(\gamma)=\sum_{\tau} Q_{\tau, \gamma}(1) \mathrm{J}(\tau)
\end{aligned}
$$

DIGRESSION: THE JANTZEN FILTRATION

$$
\mathrm{I}(\gamma)=\sum_{\tau} Q_{\tau, \gamma} J(\tau)
$$

The Jantzen filtration is a canonical filtration of $\mathrm{I}(\gamma)$ by (\mathfrak{g}, K)-modules.
Jantzen conjecture: if $Q_{\tau, \gamma}=\sum a_{j} q^{j}$, then a_{r} is the multiplicity of $\mathrm{J}(\tau)$ in level $\frac{1}{2}(\ell(\gamma)-\ell(\tau)+r)$ of the Jantzen filtration.

Note: $Q_{\tau, \gamma}(1)=\sum_{r} a_{r}$ is the multiplicity of $\mathrm{J}(\tau)$ in $\mathrm{I}(\gamma)$.

Computing the c-Form

Suppose $\mathbf{I}(\gamma)$ is a reducible standard module (at some ν), and $\mathbf{I}\left(\gamma_{t}\right)$ is irreducible for $0<|1-t|<\epsilon$.

$$
\mathrm{I}\left(\gamma_{1-\epsilon}\right) \rightarrow \mathrm{I}\left(\gamma_{1}\right) \rightarrow \mathrm{I}\left(\gamma_{1+\epsilon}\right)
$$

Problem: how does the c-form change as you deform from $\boldsymbol{I}\left(\gamma_{1-\epsilon}\right)$ to $\operatorname{l}\left(\gamma_{1+\epsilon}\right)$?

Key fact: the c-form changes sign on odd levels of the Jantzen filtration at $\mathrm{I}(\Gamma)$
(Comes down to: $f(x)=x^{n}$ changes sign at $x=0$ if and only if n is odd.)

Computing the c-form

Algorithm (Deformation of the c-form):

$$
\begin{aligned}
& \operatorname{sig}\left(\gamma_{1+\epsilon}\right)=\operatorname{sig}\left(\gamma_{1-\epsilon}\right)+ \\
& (1-s) \sum_{\substack{\phi, \tau \\
\phi<\tau<\gamma \\
\ell(\gamma)-\ell(\tau) \text { odd }}} s^{\left(\ell_{0}(\gamma)-\ell_{0}(\tau)\right) / 2} P_{\phi, \tau}(s) Q_{\tau, \gamma}(s) \operatorname{sig}(\mathrm{I}(\phi))
\end{aligned}
$$

Corollary

There is an inductive algorithm to compute $\operatorname{sig}(I(\gamma))$, in terms of $\operatorname{sig}(I(\phi))$ where $I(\phi)$ is (irreducible) tempered.

The Hodge filtration

Saito's theory of mixed Hodge modules.
Beilinson-Bernstein theory of \mathcal{D}-modules, \mathcal{D}_{λ}-modules
Global section functor: equivalence of categories \mathcal{D}_{λ}-modules and (\mathfrak{g}, K)-modules with infinitesimal character λ.

The Hodge filtration

Schmid/Vilonen:
Theorem If π is an irreducible or standard (\mathfrak{g}, K)-module (π, V) it has the following canonical constructions:

1) Finite, ascending weight filtration by (\mathfrak{g}, K)-modules (the Jantzen filtration) $W_{0} \subset W_{1} \cdots \subset W_{n}=V$
2) Infinite, ascending Hodge filtration by finite dimensional K-modules $F_{0} \subset F_{1} \subset F_{2} \ldots$

Caveat: Schmid and Vilonen have not published a proof of this (need: the global section functor is filtered exact)

The Hodge filtration

$$
(\pi, V) \quad 0 \subset F_{0} \subset F_{1} \subset \ldots
$$

$$
\operatorname{gr}(\pi)=F_{p} / F_{p-1} \quad(\text { a finite dimensional representation of } K)
$$

Definition: hodge $_{\pi}: \widehat{K} \rightarrow \mathbb{Z}[v]$
$\operatorname{hodge}_{\pi}(\mu)=a_{0}+a_{1} v+\cdots+a_{n} v^{n}: \quad a_{i}=\operatorname{multg}_{g_{i}(\pi)}(\mu)$

The Hodge Filtration

So:

$$
\begin{aligned}
\text { hodge }_{\pi}: \widehat{K} & \rightarrow \mathbb{Z}[v] \\
\operatorname{sig}_{\pi}^{c}: \widehat{K} & \rightarrow \mathbb{Z}[s] \\
\operatorname{mult}_{\pi}: \widehat{K} & \rightarrow \mathbb{Z}
\end{aligned}
$$

Note:

$$
\left.\operatorname{hodge}_{\pi}\right|_{v=1}=\left.\operatorname{sig}_{\pi}^{c}\right|_{s=1}=\text { mult }_{\pi}
$$

Examples of the Hodge filtration

$S L(2, \mathbb{R}), \pi(0)=$ tempered, spherical principal series, $V=\left\langle w_{k} \mid k \in 2 \mathbb{Z}\right\rangle$.
$\operatorname{hodge}_{I(0)}\left(w_{2 k}\right)=v^{|k|}$
$G(\mathbb{R})$ split, $I(0):\left.I(0)\right|_{K} \simeq$ ring of regular functions on $\mathcal{N} \cap \mathfrak{p}$
Discrete series: graded Blattner formula

The Main Result

Theorem (Adams/Trapa/Vogan):

$$
\left.\operatorname{hodge}_{\pi}\right|_{v=s}=\operatorname{sig}_{\pi}^{c}
$$

In other words: if $\mu \in \widehat{K}$:

$$
\operatorname{hodge}_{\pi}(\mu)=a_{0}+a_{1} v+\cdots+a_{n} v^{n}
$$

implies

$$
\begin{aligned}
\operatorname{sig}_{\pi}^{c}(\mu) & =a_{0}+a_{1} s+a_{2} s^{2}+\ldots a_{n} s^{n} \\
& =\left(a_{0}+a_{2}+\ldots\right)+\left(a_{1}+a_{3}+\ldots\right) s
\end{aligned}
$$

Sketch of proof

From earlier:
Suppose $\mathbf{I}(\gamma)$ is a reducible standard module (at some $\nu)$, and $\mathbf{I}\left(\gamma_{t}\right)$ is irreducible for $0<|1-t|<\epsilon$.
Problem: how does the c-form change as you deform from $\operatorname{I}\left(\gamma_{1-\epsilon}\right)$ to $\mathrm{I}\left(\gamma_{1+\epsilon}\right)$?

Key fact (signature): the c-form changes sign on odd levels of the Jantzen filtration.

Problem: how does the Hodge filtration change as you deform from $I\left(\gamma_{1-\epsilon}\right)$ to $I\left(\gamma_{1+\epsilon}\right)$?

Key fact (Hodge): a K-type in level k of the Jantzen filtration jumps by k levels in the Hodge filtration.

Sketch of Proof

Algorithm (Deformation of the c-form):

$$
\begin{aligned}
& \operatorname{sig}\left(\gamma_{1+\epsilon}\right)=\operatorname{sig}\left(\gamma_{1-\epsilon}\right)+ \\
& (1-s) \sum_{\substack{\phi, \tau \\
\phi<\tau<\gamma \\
\ell(\gamma)-\ell(\tau) \text { odd }}} s^{\left(\ell_{0}(\gamma)-\ell_{0}(\tau)\right) / 2} P_{\phi, \tau}(s) Q_{\tau, \gamma}(s) \operatorname{sig}(I(\phi))
\end{aligned}
$$

Algorithm (Deformation of the Hodge filtration):

$$
\begin{aligned}
& \text { hodge }\left(I\left(\Gamma_{1+\epsilon}\right)\right)=\operatorname{hodge}\left(I\left(\Gamma_{1-\epsilon}\right)\right)-\sum_{\Phi<\Gamma} v^{\left(\ell_{0}(\Gamma)-\ell_{0}(\Phi) / 2\right.} \\
& {\left[\sum_{\Phi<}(-1)^{\ell(\equiv)-\ell(\Phi)} v^{\ell(\Gamma)-\ell(\equiv)} P_{\Phi, \equiv}(v) Q_{\equiv, \Gamma}\left(v^{-1}\right)\right] \text { hodge }(I(\Phi))}
\end{aligned}
$$

Sketch of proof

The Hodge formula, evaluated at $v=s$, gives the signature formula.

This reduces us to the case of tempered representations.
[This is another story about as long as this one]
Caveat: We haven't completely finished the tempered part of the argument.

Note: This is theorem. It also gives an algorithm to compute the Hodge filtration.

The Schmid-Vilonen Conjecture

Conjecture 1: The c-form restriced to F_{p} is non-degenerate
Assuming this the c -form induces a form on

$$
\operatorname{gr}_{p}(\pi)=F_{p} / F_{p-1} \simeq F_{p} \cap F_{p-1}^{\perp}
$$

Conjecture 2: The c-form on $\operatorname{gr}_{p}(\pi)$ is definite of $\operatorname{sign} \epsilon_{\pi}(-1)^{p}$
($\epsilon_{\pi}= \pm 1$ is an elementary sign)

Conjecture 2 implies the Main Theorem
(but NOT vice-versa)
(Main Theorem + Conjecture $1 \nRightarrow$ Conjecture $2:$)
Thank You

