

Calculating the Hodge Filtration or Hermitian Forms and Hodge Theory

Jeffrey Adams AMS Conference Ann Arbor, October 20, 2018

THE MAIN RESULT

Joint with Peter Trapa, David Vogan

 ${\mathcal G}({\mathbb R})$: a real form of a connected, complex reductive group

 π : irreducible representation

Main Theorem

The signature of the c-form on π is

the reduction mod(2) of the Hodge filtration

Today:

- (1) What does this mean?
- (2) What does this *mean*?
- (3) Relationship with the Schmid-Vilonen conjecture

 $\mathsf{Hermitian}\ \mathsf{forms}\longleftrightarrow\mathsf{Hodge}\ \mathsf{theory}$

$$G(\mathbb{C}), G(\mathbb{R}), heta, K = G^{ heta}, \mathfrak{g} = \operatorname{Lie}(G)$$

 π admissible (\mathfrak{g}, K)-module

$$\pi|_{\mathcal{K}} = \sum_{\mu \in \widehat{\mathcal{K}}} \mathsf{mult}_{\pi}(\mu) \mu$$

Theorem: There is an algorithm to compute $\operatorname{mult}_{\pi}(\mu)$

Morally this comes down to the Blattner formula plus parabolic induction. Practically speaking is an entirely different matter (for one thing K is disconnected). This algorithm has been implemented in the Atlas software.

From now on every representation has real infinitesimal character:

 $\lambda \in X^* \otimes \mathbb{R}$ (via the Harish-Chandra homomorpism)

Suppose P = MAN is a (real) parabolic subgroup, π_M is a discrete series of M, and $\nu \in \mathfrak{a}^*$.

 $\operatorname{Ind}_{P}^{G}(\pi_{M} \otimes \nu)$:

has real infinitesimal character: $\nu \in \mathfrak{a}_0^*$ (real vector space)

is tempered: $\nu \in i\mathfrak{a}_0^*$

is tempered with real infinitesimal character: u = 0 (countable set)

A few more words about \widehat{K}

 \mathcal{P}_{temp} : { π | irreducible, tempered (real inf. char.)} Theorem (Vogan):

Bijection:

$$\mathcal{P}_{\mathsf{temp}}\longleftrightarrow \widehat{K}$$

 $\pi \rightarrow \text{lowest K-type of } \pi$

Note: If X is a (\mathfrak{g}, K) -module of finite length, then

$$\mathsf{mult}_X = \sum_{i=1}^n a_i \mathsf{mult}_{\pi} \quad (a_i \in \mathbb{Z}, \pi_i \in \mathcal{P}_{\mathsf{temp}})$$

Example

 $G(\mathbb{R}) = SL(2,\mathbb{R})$ $K = S^1, \widehat{K} = \mathbb{Z}$

 \mathbb{C} =trivial representation of $SL(2,\mathbb{R})$:

(reducible) spherical principal series= \mathbb{C} +DS₊+DS₋

 $\mathbb{C}|_{\mathcal{K}} = \text{spherical principal series}|_{\mathcal{K}} - \mathsf{DS}_+|_{\mathcal{K}} - \mathsf{DS}_-|_{\mathcal{K}}$

$$2\mathbb{Z}-\{2,4,6,\dots\}-\{-2,-4,-6,\dots\}$$

PS: spherical principal series with infinitesimal character 0 DS_{\pm} : holomorphic/antiholomorphic discrete series with infinitesimal character ρ

$$\mathsf{mult}_{\mathbb{C}} = \mathsf{mult}_{PS} - \mathsf{mult}_{DS_+} - \mathsf{mult}_{DS_+}$$

 $G, \theta, K, \dots G(\mathbb{R}) = G^{\sigma}$ (σ antiholomorphic)

Suppose (π, V) admits an invariant Hermitian form:

$$\langle \pi(X)v,w
angle + \langle v,\pi(\sigma(X))w
angle = 0$$

Theorem: an irreducible representation π of $G(\mathbb{R})$ is unitary if and only if its $(\mathfrak{g}, \mathcal{K})$ -module admits a positive definite invariant Hermitian form.

Problem: Describe the Unitary Dual

set of equivalence classes of irreducible unitary representations

SIGNATURES OF HERMITIAN FORMS

Problem: Suppose (π, V) supports an invariant Hermitian form \langle , \rangle . Compute the signature of \langle , \rangle . What? \langle , \rangle is positive definite if $\langle v, v \rangle > 0$ for all vIf not, what is the "signature"? Definition: $\mathbb{W} = \mathbb{Z}[z]/(z^2 - 1) = \mathbb{Z}[s] \ (s^2 = 1)$ Definition: $\operatorname{sig}_{\pi} : \widehat{K} \to \mathbb{W}$: $\operatorname{sig}_{\pi}(\mu) = a + bs$ if in the invariant form, restricted to the

K-isotypic, μ occurs a (resp. b) times with positive (resp. negative) definite form.

Note:
$$\operatorname{sig}_{\pi}(\mu)(s=1) = \operatorname{mult}_{\pi}(\mu)$$

The question becomes: how to "compute" sig_{π}?

Theorem: $sig_{\pi} = \sum_{i=1}^{n} w_i mult_{\pi_i}$ for some irreducible, tempered representations π_1, \ldots, π_n , $w_i \in \mathbb{W}$

The point is this is a finite formula.

In other words

$$\mathsf{sig}_{\pi} \in \mathbb{W}\langle\mathsf{mult}_{ au} \mid au \mathsf{ tempered }
angle$$

Example: $SL(2, \mathbb{R})$

 $\pi(
u)$: spherical principal series with infinitesimal character $u \in \mathbb{R}$ $\widehat{K} = \mathbb{Z}$

 $\pi(\nu)|_{\mathcal{K}} = 2\mathbb{Z} = \{\ldots, -4, -2, 0, 2, 4, \ldots\}$ $\pi(\nu)$ is reducible $\Leftrightarrow \nu \in 2\mathbb{Z} + 1$ $sig_{\pi(0)} = mult_{\pi(0)}$ (unitary) in fact $sig_{\pi(\nu)} = sig_{\pi(0)} = mult_{\pi(0)}$ $\nu < 1$... -6 -4 -2 0 2 4 6 ... sig(I(0)) + + + + + + + $\begin{array}{c|c} \operatorname{sig}(\tilde{\mathsf{I}}(1-\epsilon)) \\ \operatorname{sig}(\mathsf{I}(1)) \end{array} \\ \begin{array}{c|c} + & + & + & + & + & + \\ 0 & 0 & 0 & + & 0 & 0 \end{array}$ $sig(I(1+\epsilon))$ - - - - - -

Conclusion:

$$\mathsf{sig}_{\pi(1+\epsilon)} = \mathsf{mult}_{\pi(1-\epsilon)} + (s-1)(\mathsf{mult}_{\pi}(\mathsf{DS}_+) + \mathsf{mult}_{\pi}(\mathsf{DS}_-))$$

=all positive signs...change signs from + to -

Major fly in the ointment:

a) there may be no invariant Hermitian form on (π, V) b) it may not be unique (up to positive scalar)

Example: odd principal series of $SL(2,\mathbb{R})$ with $\nu \neq 0$

The K-types 1, -1 have opposite signature

 $G(\mathbb{R}), \sigma \quad \sigma_c \text{ compact real form (so } \sigma_c \circ \sigma = \theta)$

Definition The c-form satisfies

$$\langle \pi(X)v,w\rangle_c + \langle v,\pi(\sigma_c(X))w\rangle_c = 0$$

and \langle , \rangle_c is positive definite on all lowest K-types

Theorem:

(1) The c-form exists and is unique (up to positive scalar)

(2) The c-form determines the invariant Hermitian form (an explicit formula)

Note: if the group is not equal rank we need the c-form on the *extended* group

Definition: $sig_{\pi}^{c} : \widehat{K} \to \mathbb{W}$:

 $sig_{\pi}^{c}(\mu) = a + bs$ if in the c-form, restricted to the K-isotypic, μ occurs a (resp. b) times with positive (resp. negative) definite form.

Same result as before: $sig_{\pi}^{c} = \sum_{i} w_{i}^{c} mult_{\pi_{i}}$

DIGRESSION: THE LANGLANDS CLASSIFICATION AND THE KLV POLYNOMIALS

Fix infinitesimal character λ

 \mathcal{P}_{λ} : a set of parameters

 $\mathcal{P}_{\lambda} \ni \gamma \to I(\gamma)$ (standard module)

 $J(\gamma)$ (unique irreducible quotient of $I(\gamma)$)

{irreducible representations with infinitesimal character γ } $\longleftrightarrow \mathcal{P}_{\lambda}$

$$I(\gamma) = \mathsf{Ind}_{MAN}^{\mathsf{G}}(\pi_M \otimes \nu \otimes 1) \quad (\nu \in \mathfrak{a}_0^*)$$

Deformation: $\gamma_t \leftrightarrow \operatorname{Ind}_{MAN}^{G}(\pi_M \otimes t\nu \otimes 1)$

DIGRESSION: THE LANGLANDS CLASSIFICATION AND THE KLV POLYNOMIALS

Kazhdan-Lusztig-Vogan polynomials:

 $P_{\tau,\gamma} \in \mathbb{Z}[q]$ $\{P_{\tau,\gamma} \mid \tau, \gamma \in \mathcal{P}_{\lambda}\}$ (upper unitriangular matrix) Inverse matrix $\{Q_{\tau,\gamma}\}$ (with signs)

$$egin{aligned} \mathsf{J}(\gamma) &= \sum_{ au} (-1)^{\ell(\gamma)-\ell(au)} \mathsf{P}_{ au,\gamma}(1) \mathsf{I}(au) \ \mathsf{I}(\gamma) &= \sum_{ au} \mathcal{Q}_{ au,\gamma}(1) \mathsf{J}(au) \end{aligned}$$

$$\mathsf{I}(\gamma) = \sum_{\tau} \mathsf{Q}_{\tau,\gamma} \mathsf{J}(\tau)$$

The Jantzen filtration is a canonical filtration of $I(\gamma)$ by $(\mathfrak{g}, \mathcal{K})$ -modules.

Jantzen conjecture: if $Q_{\tau,\gamma} = \sum a_j q^j$, then a_r is the multiplicity of $J(\tau)$ in level $\frac{1}{2}(\ell(\gamma) - \ell(\tau) + r)$ of the Jantzen filtration.

Note: $Q_{\tau,\gamma}(1) = \sum_{r} a_r$ is the multiplicity of $J(\tau)$ in $I(\gamma)$.

Suppose I(γ) is a reducible standard module (at some ν), and I(γ_t) is irreducible for $0 < |1 - t| < \epsilon$.

$$\mathsf{I}(\gamma_{1-\epsilon}) \to \mathsf{I}(\gamma_1) \to \mathsf{I}(\gamma_{1+\epsilon})$$

Problem: how does the c-form change as you deform from $I(\gamma_{1-\epsilon})$ to $I(\gamma_{1+\epsilon})$?

Key fact: the c-form changes sign on odd levels of the Jantzen filtration at $I(\Gamma)$

(Comes down to: $f(x) = x^n$ changes sign at x = 0 if and only if n is odd.)

Algorithm (Deformation of the c-form):

$$\begin{split} \mathsf{sig}(\gamma_{1+\epsilon}) &= \mathsf{sig}(\gamma_{1-\epsilon}) + \\ (1-s) \sum_{\substack{\phi, \tau \\ \phi < \tau < \gamma \\ \ell(\gamma) - \ell(\tau) \text{ odd}}} s^{(\ell_0(\gamma) - \ell_0(\tau))/2} P_{\phi, \tau}(s) Q_{\tau, \gamma}(s) \mathsf{sig}(\mathsf{I}(\phi)) \end{split}$$

COROLLARY

There is an inductive algorithm to compute $sig(I(\gamma))$, in terms of $sig(I(\phi))$ where $I(\phi)$ is (irreducible) tempered.

Saito's theory of mixed Hodge modules.

Beilinson-Bernstein theory of \mathcal{D} -modules, \mathcal{D}_{λ} -modules

Global section functor: equivalence of categories \mathcal{D}_{λ} -modules and $(\mathfrak{g}, \mathcal{K})$ -modules with infinitesimal character λ .

Schmid/Vilonen:

Theorem If π is an irreducible or standard (\mathfrak{g}, K) -module (π, V) it has the following canonical constructions:

1) Finite, ascending weight filtration by (\mathfrak{g}, K) -modules (the Jantzen filtration) $W_0 \subset W_1 \cdots \subset W_n = V$

2) Infinite, ascending Hodge filtration by finite dimensional K-modules $F_0 \subset F_1 \subset F_2 \dots$

Caveat: Schmid and Vilonen have not published a proof of this (need: the global section functor is filtered exact)

 $\begin{array}{ll} (\pi, V) & 0 \subset F_0 \subset F_1 \subset \dots \\ gr(\pi) = F_p/F_{p-1} & (a \mbox{ finite dimensional representation of } K) \\ \mbox{Definition: } \mbox{hodge}_{\pi} : \widehat{K} \to \mathbb{Z}[v] \\ \mbox{hodge}_{\pi}(\mu) = a_0 + a_1 v + \dots + a_n v^n; \quad a_i = \mbox{mult}_{gr_i(\pi)}(\mu) \end{array}$

THE HODGE FILTRATION

So:

$$egin{aligned} \mathsf{hodge}_\pi &: \widehat{\mathcal{K}} o \mathbb{Z}[v] \ \mathsf{sig}^{\mathsf{c}}_\pi &: \widehat{\mathcal{K}} o \mathbb{Z}[s] \ \mathsf{mult}_\pi &: \widehat{\mathcal{K}} o \mathbb{Z} \end{aligned}$$

Note:

$$\mathsf{hodge}_{\pi}|_{v=1} = \mathsf{sig}_{\pi}^{c}|_{s=1} = \mathsf{mult}_{\pi}$$

 $SL(2,\mathbb{R}), \pi(0) = \text{tempered, spherical principal series,}$ $V = \langle w_k \mid k \in 2\mathbb{Z} \rangle.$ $\text{hodge}_{I(0)}(w_{2k}) = v^{|k|}$ $G(\mathbb{R}) \text{ split, } I(0): I(0)|_{\mathcal{K}} \simeq \text{ring of regular functions on } \mathcal{N} \cap \mathfrak{p}$ Discrete series: graded Blattner formula

THE MAIN RESULT

Theorem (Adams/Trapa/Vogan):

$$\mathsf{hodge}_{\pi}|_{v=s} = \mathsf{sig}_{\pi}^{c}$$

In other words: if $\mu \in \widehat{K}$:

$$hodge_{\pi}(\mu) = a_0 + a_1v + \cdots + a_nv^n$$

implies

$$sig_{\pi}^{c}(\mu) = a_{0} + a_{1}s + a_{2}s^{2} + \dots a_{n}s^{n}$$

= $(a_{0} + a_{2} + \dots) + (a_{1} + a_{3} + \dots)s$

From earlier:

Suppose I(γ) is a reducible standard module (at some ν), and I(γ_t) is irreducible for $0 < |1 - t| < \epsilon$.

Problem: how does the c-form change as you deform from $I(\gamma_{1-\epsilon})$ to $I(\gamma_{1+\epsilon})$?

Key fact (signature): the c-form changes sign on odd levels of the Jantzen filtration.

Problem: how does the Hodge filtration change as you deform from $I(\gamma_{1-\epsilon})$ to $I(\gamma_{1+\epsilon})$?

Key fact (Hodge): a K-type in level k of the Jantzen filtration jumps by k levels in the Hodge filtration.

Sketch of Proof

Algorithm (Deformation of the c-form):

$$egin{aligned} \mathsf{sig}(\gamma_{1+\epsilon}) &= \mathsf{sig}(\gamma_{1-\epsilon}) + \ (1-s) \sum_{\substack{\phi, au \ \phi < au < \gamma \ \ell(\gamma) - \ell(au) \ \mathsf{odd}}} s^{(\ell_0(\gamma) - \ell_0(au))/2} P_{\phi, au}(s) Q_{ au, \gamma}(s) \mathsf{sig}(I(\phi)) \end{aligned}$$

Algorithm (Deformation of the Hodge filtration):

$$\mathsf{hodge}(I(\Gamma_{1+\epsilon})) = \mathsf{hodge}(I(\Gamma_{1-\epsilon})) - \sum_{\Phi < \Gamma} v^{(\ell_0(\Gamma) - \ell_0(\Phi)/2} \\ \left[\sum_{\Phi \leq \Xi \leq \Gamma} (-1)^{\ell(\Xi) - \ell(\Phi)} v^{\ell(\Gamma) - \ell(\Xi)} P_{\Phi,\Xi}(v) Q_{\Xi,\Gamma}(v^{-1}) \right] \mathsf{hodge}(I(\Phi))$$

- The Hodge formula, evaluated at v = s, gives the signature formula.
- This reduces us to the case of tempered representations.
- [This is another story about as long as this one]
- Caveat: We haven't completely finished the tempered part of the argument.
- Note: This is *theorem*. It *also* gives an algorithm to compute the Hodge filtration.

THE SCHMID-VILONEN CONJECTURE

Conjecture 1: The c-form restriced to F_p is non-degenerate Assuming this the c-form induces a form on

$$\operatorname{gr}_p(\pi) = F_p/F_{p-1} \simeq F_p \cap F_{p-1}^{\perp}$$

Conjecture 2: The c-form on $\operatorname{gr}_p(\pi)$ is definite of sign $\epsilon_{\pi}(-1)^p$ ($\epsilon_{\pi} = \pm 1$ is an elementary sign)

Conjecture 2 implies the Main Theorem

(but **NOT** vice-versa)

(Main Theorem + Conjecture 1 \Rightarrow Conjecture 21)

Thank You