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Why did E8 take off in the press?

We don’t know
Great graphic (Peter
McMullen/John
Stembridge)
Catchy title: A
Caclulation the Size of
Manhattan (on
Eurekalert)
Computational
aspect,huge amount of
data, analogy with the
genome project

Collaborative nature of
the project
Symmetry and the
mysterious 248
dimensional object
“100 year old problem”
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Great external reviewers (Peter Sarnak, Hermann Nicolai,
Gregg Zuckerman)

Groundwork (Brian Conrey and David Farmer of AIM)
Connection with string theory
It was not necessary to overly simplify the material or
invent ties to other branches of mathematics or science
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What Fokko did

Abstract Mathematics

Harish-Chandra
Langlands

Knapp/Zuckerman/Vogan
Vogan

Adams/Barbasch/Vogan

−→
Algorithm

Combinatorial set
−→

Software

C++ code
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Overview of the Atlas Project

G is a real (reductive) Lie group, such as:

GL(n, R) (n× n invertible matrices)

SO(p, q) (matrices preserving a quadratic form of signature
(p, q))

Sp(2n, R) (matrices preserving a skew-symmetric forms)

A representation π of G is a homomorphism π : G → GL(H)
(invertible operators on a Hilbert space H). It is unitary if it is
length preserving: |π(g)v| = |v| for all v ∈ H. It is irreducible if
there are no closed invariant subspaces.
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Example: H = L2(G), π(g)(f)(x) = f(g−1x) This is the
regular representation. It is highly reducible:

L2(G) '
∫

Ĝ
πdµ(π)

where dµ(π) is a measure on the space Ĝ of irreducible unitary
representations of G.
More generally if G acts on X, preserving a measure µ, study
action of G on X by linearizing, i.e. study representation of G
on L2(X).
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Problem: Compute the set of irreducible unitary
representations of G.

Known:
SL(2, R) (Bargmann, 1947)
GL(n, R) (Vogan, 1986)
real rank 1: SU(n, 1), SO(n, 1), Sp(n, 1)

Complex classical groups: SL(n, C), SO(n, C), Sp(2n, C)
(Barbasch, 1989)

A few other small cases, no other infinite families
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Unitary dual of SL(2, R)

Z− 0
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Spherical unitary dual of G2
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Theorem [. . . Vogan, 1980s]

Fix G. There is a finite algorithm to compute Ĝ.

Note: GL(7, R), not GL(n, R)

Not at all clear this algorithm can be made explicit, not to
mention implemented on a computer.

Atlas of Lie Groups and Representations:

Take this idea seriously!
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Goals:

1 Theoretical: Compute the unitary dual

2 Educational:
1 Provide software to compute with Lie groups and their

representations.
2 Provide information and interactive tools on a web site for

non-experts.
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The Groups

The following are in bijection:

1 Irreducible root systems

2 Irreducible Dynkin diagrams
3 Simple complex Lie algebras
4 Simple complex Lie groups
5 An, Bn, Cn, Dn, n = 1, 2, 3, . . . (classical) G2, F4, E6, E7, E8

(exceptional)
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Dynkin Diagrams
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Rank Two Root Systems
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Build all groups out of simple ones (similar to finite groups)

PSL(2, C) = SL(2, C)/± I

SL(2, C)× SL(2, C)/(−I,−I)

GL(n, C) = SL(n, C)× C×/(ζ, ζI)

{(g, h) ∈ GL(n, C)×GL(m, C) | det(g) det(h) = 1}
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Grothendieck classified complex reductive (algebraic) groups in
terms of root data:

(X, Φ, X∨,Φ∨)

where X, X∨ ' Zn, Φ and Φ∨ are finite subsets of X, X∨, in
bijection (α → α∨), satisfying properties:
〈α, α∨〉 ∈ Z
sα(Φ∨) = Φ∨, sα∨(Φ) = Φ

Data: two m× n matrices of integers.

Beautifully suited to a computer!
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Each complex group has various real forms:

SL(n, C) → SL(n, R), SU(p, q), SL(n/2, H)

SO(n, C) → SO(p, q), SO∗(n)

There is always a unique compact real form (SU(n), SO(n))

There is always a unique split real form (SL(n, R), SO(n, n))
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There is always a unique split real form (SL(n, R), SO(n, n))
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First goal: write software to input an arbitrary real reductive
group, and compute its structure theory.
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The unitary representations occuring in L2(G) are known
(Harish-Chandra, 1970s). These are called tempered: Ĝt ⊂ Ĝu.

Unitary representations are contained in a larger class, called
admissible: Ĝu ⊂ Ĝa. These are also known (Langlands,
Knapp, Zuckerman, Vogan)

Ĝt ⊂ Ĝu ⊂ Ĝa

To compute Ĝu: take each representation π ∈ Ĝa, and test if it
is unitary. Not obvious this is a finite calculation even for a
single π (not to mention uncountably many π).
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Finite Calculation

How do we reduce to a finite calculation?

Basic reduction: The number of irreducible representations with
fixed “central character” for the Lie algebra is finite. Our
calculations all take place in one of these fixed sets.

We will always work in the set of representations with the same
“central character” as the trivial representation. This is the
hardest case, others reduce to this.
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Second Goal: find an algorithm to compute Ĝa, and write
software to implement it.

More precisely: compute the finite set of irreducible admissible
representations Ĝa,1 with trivial “central character”.

Although the mathematics is “known”, we greatly deepened our
understanding of the mathematics in doing this.
For example: figuring out the data structures to adequately
capture the mathematics required us to rethink the
mathematics carefully.
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Old days: representation of G on L2(X) (for example)

Example: G = SL(2, R) on L2(R):

πν(g)f(x) = | − bx + d|νf((ax− c)/(−bx + d))

where g =

(
a b
c d

)
Today: π = ·

We parametrize Ĝa,1 by a finite set X . Throw away π, and keep
only the parameter space X .
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Algorithm to compute Ĝa,1

The heart of the algorithm is illustrated by this example.

G = GL(n, C)

B = upper triangular matrices

X = G/B is a projective variety, a generalized Grassmannian

Hm = GL(m, C)×GL(n−m, C)

Problem: Compute the orbits of Hm on X. This is a finite set.
Compute the closure relations.
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Combinatorial Solution:

W̃ = generalized permutation matrices (one non-zero entry in
each row and column)
' Sn o C×n

D = diagonal matrices
X = {x ∈ W̃ |x2 = 1}/D

Fact: X is in natural bijection with ∪mX/Hm

Computing X is an explicit combinatorial problem in finite
group theory, a little harder than computing the elements of
order 2 in Sn.
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The software now calculates Ĝa,1 for any G.
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Example: SL(2, R):
This is the Atlas of Reductive Lie Groups Software Package version 0.2.5.

Build date: Nov 24 2006 at 09:16:16.

Enter "help" if you need assistance.

empty: block

Lie type: A1 sc s

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (hit return for stdout):

0(0,1): 1 (2,*) [i1] 0

1(1,1): 0 (2,*) [i1] 0

2(2,0): 2 (*,*) [r1] 1 1
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Sp(4, R):

0( 0,6): 1 2 ( 6, *) ( 4, *) [i1,i1] 0

1( 1,6): 0 3 ( 6, *) ( 5, *) [i1,i1] 0

2( 2,6): 2 0 ( *, *) ( 4, *) [ic,i1] 0

3( 3,6): 3 1 ( *, *) ( 5, *) [ic,i1] 0

4( 4,4): 8 4 ( *, *) ( *, *) [C+,r1] 1 2

5( 5,4): 9 5 ( *, *) ( *, *) [C+,r1] 1 2

6( 6,5): 6 7 ( *, *) ( *, *) [r1,C+] 1 1

7( 7,2): 7 6 (10,11) ( *, *) [i2,C-] 2 2,1,2

8( 8,3): 4 9 ( *, *) (10, *) [C-,i1] 2 1,2,1

9( 9,3): 5 8 ( *, *) (10, *) [C-,i1] 2 1,2,1

10(10,0): 11 10 ( *, *) ( *, *) [r2,r1] 3 1,2,1,2

11(10,1): 10 11 ( *, *) ( *, *) [r2,rn] 3 1,2,1,2
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So far we’ve said the atlas software should (and does) do:

1 Calculate with structure theory of reductive groups
2 Calculate the admissible dual Ĝa,1.

One more ingredient is needed.
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Character theory

Let G be a finite group. Then a representation
π : G → GL(n, C) is determined by its character
θπ(g) = Trace(π(g)).
The functions θπ are a basis of L2(G)G.
So are χO where O is a conjugacy class.



The E8 publicity
Fokko du Cloux

Overview of the Atlas project
Overview of the E8 calculation

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

The character table of G contains all information about its
representations:

Character Table of Weyl Group of type D4

-------------------------------------------

Class | 1 2 3 4 5 6 7 8 9 10 11 12 13

Size | 1 1 6 6 6 12 12 32 12 24 24 24 32

Order | 1 2 2 2 2 2 2 3 4 4 4 4 6

-------------------------------------------

p = 2 1 1 1 1 1 1 1 8 2 5 4 3 8

p = 3 1 2 3 4 5 6 7 1 9 10 11 12 2

-------------------------------------------

X.1 + 1 1 1 1 1 1 1 1 1 1 1 1 1

X.2 + 1 1 1 1 1 -1 -1 1 1 -1 -1 -1 1

X.3 + 2 2 2 2 2 0 0 -1 2 0 0 0 -1

X.4 + 3 3-1-1 3 -1 -1 0 -1 -1 1 1 0

X.5 + 3 3 3-1-1 -1 -1 0 -1 1 1 -1 0

X.6 + 3 3-1 3-1 -1 -1 0 -1 1 -1 1 0

X.7 + 3 3-1-1 3 1 1 0 -1 1 -1 -1 0

X.8 + 3 3 3-1-1 1 1 0 -1 -1 -1 1 0

X.9 + 3 3-1 3-1 1 1 0 -1 -1 1 -1 0

X.10 + 4-4 0 0 0 -2 2 1 0 0 0 0 -1

X.11 + 4-4 0 0 0 2 -2 1 0 0 0 0 -1

X.12 + 6 6-2-2-2 0 0 0 2 0 0 0 0

X.13 + 8-8 0 0 0 0 0 -1 0 0 0 0 1
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We need the character table of G.

X is the parameter space for Ĝa,1

x → π(x) ∈ Ĝa,1.

x → I(x) a standard module. This is typically reducible, but is
simpler than π(x), and has a known character formula.

I(x) =
∑
y∈X

m(x, y)π(y) m(x, y) ∈ Z
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Langlands, Zuckerman: this identity is invertible:

π(x) =
∑

M(x, y)I(y)

This gives a character formula for π(x).
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Kazdhan-Lusztig, Vogan:
The integers m(x, y),M(x, y) are computed in terms of the
geometry of a complex group K(C) acting on a complex
projective algebraic ariety with finitely many orbits
(intersection cohomology).

For x, y ∈ X there is a polynomial Px,y ∈ Z[q], such that

M(x, y) = ±Px,y(1)

These are the famous Kazhdan-Lusztig-Vogan polynomials.

Problem: compute Px,y.
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Summary of the atlas software

The atlas software now does the following:

1 Input arbitrary reductive complex algebraic group G(C)

2 Input real form G of G(C)

3 Compute structure theory of G

4 Compute the space X parametrizing Ĝa,1

5 Compute the Kazhdan-Lusztig-Vogan polynomials

We hope this will be enough information to compute the
unitary dual of G. It is enough information to list the most
interesting, conjecturally unitary representations: the unipotent
representations of Jim Arthur.
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The hardest part of the calculation is the KLV polyonmials.

Split Group time in seconds
SL(2, R) .003
G2 .008
F4 .13
A8 .17
A9 .8
E6 1.3
A10 15
E7 107
E8 ∞
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Overview of the E8 calculation

Recall E8 is the largest exceptional group. The split real form is
a real manifold of dimension 248, and it has 453, 060 irreducible
representation in Ĝa,1.

Problem: compute Kazhdan-Lusztig-Vogan polynomials for the
split real form of E8

This is an upper triangular matrix, of size 453, 060, with 1s on
the diagonal, and polynomial entries. Each polynomial has
degree ≤ 31.
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Why?

1 Because it was there.
2 Because David Vogan couldn’t be stopped
3 To test the mathematics.
4 To test the technology.
5 To force us to improve the technology. We have much

harder calculations to do to compute Ĝu. We have no hope
of computing the unitary dual of F4 if we can’t compute
KLV polynomials for E8. It would not be enough to find a
big enough computer.

6 Because E8 is a particularly interesting group, and arises in
string theory.
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of computing the unitary dual of F4 if we can’t compute
KLV polynomials for E8.

It would not be enough to find a
big enough computer.
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Recursion Relations

X is the set of parameters.
There is a partial order < on X , and a length function. For E8

`(x) ≤ 62.
The matrix is upper triangular:
Px,x = 1
Px,y = 0 unless x ≤ y

Recursion relations: compute Px,y by upward induction on `(y)
and downward induction on `(y).
(0,0); (1,1), (0,1); (2,2), (1,2), (0,2). . .

Long list of complicated recursion formulas.
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Type I: There exists y′ with `(y′) < `(y) such that

Px,y =
∑
x′

c(x′)Px′,y′ (≤ 3 terms)

Type II: There is y′, `(y′) = `(y), y′′, `(y′′) = `(y)− 1,

Px,y =
∑

`(x′)=`(x)+1

Px′,y′ +
∑
x′′

Px′′,y′′ (≤ 4 terms)
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Recursion Relations

Type III: There is x′, y′ with `(x′) = `(x)− 1, `(y′) = `(y)− 1,

Px,y = Px′,y′ + qPx,y′ −
∑

x′≤z<y′

µ(z, y′)q(l(y′)−l(z)−1)/2Px′,z.

Average number of terms for E8 is 150.

Conclusion: In order to compute Px,y you need to use many all
Px′,y′ with `(y′) < `(y).

We need to keep all Px,y in RAM!
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Rough estimate

Problem: we did not have a good idea of the size of the answer
beforehand.

Recall 1 byte= 8 bits can store 28 = 256 numbers.

We don’t know the sizes of the coefficients. Proabably some are
> 65, 535 = 216 = 2 bytes. We hope each coefficient is less than
4 bytes, i.e. 4.3 billion.

Each polynomial has ≤ 32 coefficients.

450, 0602 × 32 = 6.5 trillion coefficients =26 trillion bytes
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Many of the polynomials are equal for obvious reasons. Number
of distinct polynomials ≤ 6 billion.
Store only the distinct polynomials.

6× 109 × 32 = 200 billion coefficents, or 800 billion bytes
Plus about 100 billion bytes for the pointers = 900 billion bytes
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Many of the polynomials are 0, and many are equal for
non-obvious reasons.

Hope: number of distinct polynomials is about 200 million
300× 106 × 4× 32 = 25 billion bytes
Plus 100 billions bytes for index = 125 billion bytes

Marc van Leeuwen: much smarter indexing: 35 billion bytes →
35+25=60 billion bytes

Hope: average degree = 20 → 35+8=43 billion bytes
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Bad news: experiments indicate the number of distinct
polynomials is more like 800 billion → 65 billion bytes

William Stein at Washington lent us sage, with 64 gigabytes of
ram (all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying
to squeeze down the calculation.
Marc reduced the size of the indices to about 15 billion bytes
(by using a lot of information about the nature of the data)

David threaded the code to run many calculations
simultaneously (on some platforms this slowed the calculation
down
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Calculating Modulo n

Noam Elkies: have to think harder
Idea:

216 = 65, 536 < Maximum coefficient < 232 = 4.3 billion (?)

31 < 25, so to do the calculation (mod p) for p < 32 requires 5
bits for each coefficient instead of 32, reducing storage by a
factor of 5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes



The E8 publicity
Fokko du Cloux

Overview of the Atlas project
Overview of the E8 calculation

KLV for E8
Recursion Relations
Rough Estimate
Calculating Modulo n

Calculating Modulo n

Noam Elkies: have to think harder
Idea:

216 = 65, 536 < Maximum coefficient < 232 = 4.3 billion (?)

31 < 25, so to do the calculation (mod p) for p < 32 requires 5
bits for each coefficient instead of 32, reducing storage by a
factor of 5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes



The E8 publicity
Fokko du Cloux

Overview of the Atlas project
Overview of the E8 calculation

KLV for E8
Recursion Relations
Rough Estimate
Calculating Modulo n

Calculating Modulo n

Noam Elkies: have to think harder
Idea:

216 = 65, 536 < Maximum coefficient < 232 = 4.3 billion (?)

31 < 25, so to do the calculation (mod p) for p < 32 requires 5
bits for each coefficient instead of 32, reducing storage by a
factor of 5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes



The E8 publicity
Fokko du Cloux

Overview of the Atlas project
Overview of the E8 calculation

KLV for E8
Recursion Relations
Rough Estimate
Calculating Modulo n

Calculating Modulo n

Noam Elkies: have to think harder
Idea:

216 = 65, 536 < Maximum coefficient < 232 = 4.3 billion (?)

31 < 25, so to do the calculation (mod p) for p < 32 requires 5
bits for each coefficient instead of 32, reducing storage by a
factor of 5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes



The E8 publicity
Fokko du Cloux

Overview of the Atlas project
Overview of the E8 calculation

KLV for E8
Recursion Relations
Rough Estimate
Calculating Modulo n

Calculating Modulo n

Noam Elkies: have to think harder
Idea:

216 = 65, 536 < Maximum coefficient < 232 = 4.3 billion (?)

31 < 25, so to do the calculation (mod p) for p < 32 requires 5
bits for each coefficient instead of 32, reducing storage by a
factor of 5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15 + 4 = 19 billion bytes



The E8 publicity
Fokko du Cloux

Overview of the Atlas project
Overview of the E8 calculation

KLV for E8
Recursion Relations
Rough Estimate
Calculating Modulo n

But can we really reduce the calculation (mod p)?

The recursion relations use +,−× and extraction of coefficients
in specific degrees. This last step looks bad but it is OK
(coefficient=0 (mod p), affects the recursion step, but you
would have gotten 0 (mod p) anyway).

In fact we can work (mod n) for any n.
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The final result

In the end:

Run the program 4 times modulo n = 251, 253, 255, 256
Least common multiple: 4,145,475,840
Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then
4,145,475,840
Total time (on sage): 77 hours
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Some Statistics

Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:
152q22 + 3, 472q21 + 38, 791q20 + 293, 021q19 + 1, 370, 892q18 +
4, 067, 059q17 + 7, 964, 012q16 + 11, 159, 003q15 +
11, 808, 808q14 + 9, 859, 915q13 + 6, 778, 956q12 + 3, 964, 369q11 +
2, 015, 441q10 + 906, 567q9 + 363, 611q8 + 129, 820q7 +
41, 239q6 + 11, 426q5 + 2, 677q4 + 492q3 + 61q2 + 3q

Value of this polynomial at q=1: 60,779,787

Number of coefficients in distinct polynomials: 13,721,641,221
(13.9 billion)
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What comes next?

Using the results of the KLV calculation, we have a list of
unipotent representations for E8. These are conjecturally the
building blocks of all unitary representations.

Serious mathematics to do:

bringing K-types into the picture

Computing signatures of Hermitian forms

Serious programming (Alfred Noel and Marc van Leeuwen)

Big goal: the Unitary Dual

Check back in a few years. . .
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