The E_{8} publicity

The Atlas of Lie Groups and Representations www.liegroups.org

Atlas Project Members

- Jeffrey Adams
- Dan Barbasch
- Birne Binegar
- Bill Casselman
- Dan Ciubotaru
- Scott Crofts
- Fokko du Cloux
- Alfred Noel
- Tatiana Howard
- Alessandra Pantano
- Annegret Paul
red: directly worked on the E_{8} calculation
E_{8} was a worldwide media event in March, 2007:
E_{8} was a worldwide media event in March, 2007:
- New York Times Science Section (March 20)
- Science
- Nature (online)
- Le Monde
- London Times
- Los Angeles Times
- Scientific American (online)
- Al Arabiya TV (satellite, Dubai)
- Economist
- Yahoo news (top 5 news, top emailed news story for several days)
- Good Morning America
- Fox News
- NPR
- Front page of the NSF site
- AP and other wire services

The E_{8} publicity
Fokko du Cloux

Why did E_{8} TAKE OFF IN THE PRESS?

Why did E_{8} TAKE OFF IN THE PRESS?

- We don't know

Why did E_{8} TAKE OFF IN THE PRESS?

- We don't know
- Great graphic (Peter McMullen/John Stembridge)

Why did E_{8} TAKE OFF IN THE PRESS?

- We don't know
- Great graphic (Peter McMullen/John Stembridge)
- Catchy title: A

Caclulation the Size of
Manhattan (on
Eurekalert)

Why did E_{8} TAKE OFF in the press?

- We don't know
- Great graphic (Peter McMullen/John Stembridge)
- Catchy title: A

Caclulation the Size of
Manhattan (on Eurekalert)

- Computational aspect,huge amount of data, analogy with the genome project

Why did E_{8} TAKE OFF IN THE PRESS?

- We don't know
- Great graphic (Peter McMullen/John Stembridge)
- Catchy title: A

Caclulation the Size of
Manhattan (on Eurekalert)

- Computational aspect,huge amount of data, analogy with the genome project
- Collaborative nature of the project

Why did E_{8} TAKE OFF in the press?

- We don't know
- Great graphic (Peter McMullen/John Stembridge)
- Catchy title: A Caclulation the Size of
Manhattan (on Eurekalert)
- Computational aspect,huge amount of data, analogy with the genome project
- Collaborative nature of the project
- Symmetry and the mysterious 248 dimensional object

Why did E_{8} TAKE OFF in the press?

- We don't know
- Great graphic (Peter McMullen/John Stembridge)
- Catchy title: A

Caclulation the Size of
Manhattan (on Eurekalert)

- Computational aspect,huge amount of data, analogy with the genome project
- Collaborative nature of the project
- Symmetry and the mysterious 248 dimensional object
- "100 year old problem"

Why did E_{8} TAKE OFF IN THE PRESS?

- Great external reviewers (Peter Sarnak, Hermann Nicolai, Gregg Zuckerman)

Why did E_{8} TAKE OFF in the press?

- Great external reviewers (Peter Sarnak, Hermann Nicolai, Gregg Zuckerman)
- Groundwork (Brian Conrey and David Farmer of AIM)

Why did E_{8} TAKE OFF in the press?

- Great external reviewers (Peter Sarnak, Hermann Nicolai, Gregg Zuckerman)
- Groundwork (Brian Conrey and David Farmer of AIM)
- Connection with string theory

Why did E_{8} TAKE OFF IN THE PRESS?

- Great external reviewers (Peter Sarnak, Hermann Nicolai, Gregg Zuckerman)
- Groundwork (Brian Conrey and David Farmer of AIM)
- Connection with string theory
- It was not necessary to overly simplify the material or invent ties to other branches of mathematics or science

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

What Fokko Did

Abstract Mathematics

Harish-Chandra
Langlands

Algorithm

Knapp/Zuckerman/Vogan \longrightarrow Combinatorial set
Vogan
Adams/Barbasch/Vogan

What Fokko Did

Abstract Mathematics

Harish-Chandra
Langlands

Algorithm

Software
Combinatorial set $\longrightarrow \mathrm{C}++$ code Vogan
Adams/Barbasch/Vogan

The E_{8} publicity
Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Fokko du Cloux
December 20, 1954-November 10, 2006

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Overview of the Atlas Project

G is a real (reductive) Lie group, such as:

The E_{8} publicity
Fokko du Cloux

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Overview of the Atlas Project

G is a real (reductive) Lie group, such as:
$G L(n, \mathbb{R})(n \times n$ invertible matrices $)$

The E_{8} publicity

Unitary dual

Overview of the Atlas Project

G is a real (reductive) Lie group, such as:
$G L(n, \mathbb{R})(n \times n$ invertible matrices)
$S O(p, q)$ (matrices preserving a quadratic form of signature (p, q))

The E_{8} publicity

Unitary dual

Overview of the Atlas Project

G is a real (reductive) Lie group, such as:
$G L(n, \mathbb{R})(n \times n$ invertible matrices)
$S O(p, q)$ (matrices preserving a quadratic form of signature (p, q)
$S p(2 n, \mathbb{R})$ (matrices preserving a skew-symmetric forms)

Overview of the Atlas Project

G is a real (reductive) Lie group, such as:
$G L(n, \mathbb{R})(n \times n$ invertible matrices)
$S O(p, q)$ (matrices preserving a quadratic form of signature $(p, q))$
$S p(2 n, \mathbb{R})$ (matrices preserving a skew-symmetric forms)
A representation π of G is a homomorphism $\pi: G \rightarrow G L(\mathcal{H})$ (invertible operators on a Hilbert space \mathcal{H}). It is unitary if it is length preserving: $|\pi(g) v|=|v|$ for all $v \in \mathcal{H}$. It is irreducible if there are no closed invariant subspaces.

Example: $\mathcal{H}=L^{2}(G), \pi(g)(f)(x)=f\left(g^{-1} x\right)$ This is the regular representation. It is highly reducible:

$$
L^{2}(G) \simeq \int_{\hat{G}} \pi d \mu(\pi)
$$

where $d \mu(\pi)$ is a measure on the space G^{\wedge} of irreducible unitary representations of G.
More generally if G acts on X, preserving a measure μ, study action of G on X by linearizing, i.e. study representation of G on $L^{2}(X)$.

The E_{8} publicity
Fokko du Cloux

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Problem: Compute the set of irreducible unitary representations of G.

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Problem: Compute the set of irreducible unitary representations of G. Known:

- $S L(2, \mathbb{R})$ (Bargmann, 1947)

The E_{8} publicity

Unitary dual
Examples

Problem: Compute the set of irreducible unitary representations of G. Known:

- $S L(2, \mathbb{R})$ (Bargmann, 1947)
- $G L(n, \mathbb{R})($ Vogan, 1986)

Unitary dual

Problem: Compute the set of irreducible unitary representations of G. Known:

- $S L(2, \mathbb{R})$ (Bargmann, 1947)
- $G L(n, \mathbb{R})($ Vogan, 1986)
- real rank 1: $S U(n, 1), S O(n, 1), S p(n, 1)$

Unitary dual

Problem: Compute the set of irreducible unitary representations of G. Known:

- $S L(2, \mathbb{R})$ (Bargmann, 1947)
- $G L(n, \mathbb{R})($ Vogan, 1986)
- real rank 1: $S U(n, 1), S O(n, 1), S p(n, 1)$
- Complex classical groups: $S L(n, \mathbb{C}), S O(n, \mathbb{C}), S p(2 n, \mathbb{C})$ (Barbasch, 1989)
A few other small cases, no other infinite families

The E_{8} publicity Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual

Unitary dual of $S L(2, \mathbb{R})$

$\mathbb{Z}-0$

The E_{8} publicity
Fokko du Cloux

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Spherical unitary dual of G_{2}

The E_{8} publicity
Fokko du Cloux

Unitary dual

Theorem [... Vogan, 1980s]

Fix G. There is a finite algorithm to compute G^{\wedge}.

Unitary dual

Theorem [... Vogan, 1980s]
Fix G. There is a finite algorithm to compute G^{\wedge}.
Note: $G L(7, \mathbb{R}), \operatorname{not} G L(n, \mathbb{R})$

Theorem [... Vogan, 1980s]
Fix G. There is a finite algorithm to compute G^{\wedge}.
Note: $G L(7, \mathbb{R})$, not $G L(n, \mathbb{R})$
Not at all clear this algorithm can be made explicit, not to mention implemented on a computer.

Theorem [... Vogan, 1980s]
Fix G. There is a finite algorithm to compute G^{\wedge}.
Note: $G L(7, \mathbb{R}), \operatorname{not} G L(n, \mathbb{R})$
Not at all clear this algorithm can be made explicit, not to mention implemented on a computer.

Atlas of Lie Groups and Representations:

Theorem [... Vogan, 1980s]
Fix G. There is a finite algorithm to compute G^{\wedge}.
Note: $G L(7, \mathbb{R})$, not $G L(n, \mathbb{R})$
Not at all clear this algorithm can be made explicit, not to mention implemented on a computer.

Atlas of Lie Groups and Representations:
Take this idea seriously!

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual

Goals:
(1) Theoretical: Compute the unitary dual

Unitary dual

Goals:

(1) Theoretical: Compute the unitary dual
(2) Educational:

Unitary dual

Goals:

(1) Theoretical: Compute the unitary dual
(2) Educational:
© Provide software to compute with Lie groups and their representations.

Goals:

(1) Theoretical: Compute the unitary dual
(2) Educational:
(1) Provide software to compute with Lie groups and their representations.
(2) Provide information and interactive tools on a web site for non-experts.

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project
Overview of the E_{8} calculation

Unitary dual

The Groups

The following are in bijection:
(1) Irreducible root systems

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

The Groups

The following are in bijection:
(1) Irreducible root systems
(2) Irreducible Dynkin diagrams

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

The Groups

The following are in bijection:
(1) Irreducible root systems
(2) Irreducible Dynkin diagrams
(3 Simple complex Lie algebras

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

The Groups

The following are in bijection:
(1) Irreducible root systems
(2) Irreducible Dynkin diagrams
(3 Simple complex Lie algebras
(1) Simple complex Lie groups

The E_{8} publicity
Fokko du Cloux

The Groups

The following are in bijection:
(1) Irreducible root systems
(2) Irreducible Dynkin diagrams
(Cimple complex Lie algebras
(1) Simple complex Lie groups
(0. $A_{n}, B_{n}, C_{n}, D_{n}, n=1,2,3, \ldots$ (classical) $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ (exceptional)

The E_{8} publicity Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual

Dynkin Diagrams

E_{8}

F_{4}

G_{2}

The E_{8} publicity Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Rank Two Root Systems

The E_{8} publicity
Fokko du Cloux

Unitary dual

Build all groups out of simple ones (similar to finite groups)

Unitary dual

Build all groups out of simple ones (similar to finite groups)
$\operatorname{PSL}(2, \mathbb{C})=S L(2, \mathbb{C}) / \pm I$

Build all groups out of simple ones (similar to finite groups)
$\operatorname{PSL}(2, \mathbb{C})=S L(2, \mathbb{C}) / \pm I$
$S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) /(-I,-I)$

The E_{8} publicity

Build all groups out of simple ones (similar to finite groups)
$\operatorname{PSL}(2, \mathbb{C})=S L(2, \mathbb{C}) / \pm I$
$S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) /(-I,-I)$
$G L(n, \mathbb{C})=S L(n, \mathbb{C}) \times \mathbb{C}^{\times} /(\zeta, \zeta I)$

Build all groups out of simple ones (similar to finite groups)
$\operatorname{PSL}(2, \mathbb{C})=S L(2, \mathbb{C}) / \pm I$
$S L(2, \mathbb{C}) \times S L(2, \mathbb{C}) /(-I,-I)$
$G L(n, \mathbb{C})=S L(n, \mathbb{C}) \times \mathbb{C}^{\times} /(\zeta, \zeta I)$
$\{(g, h) \in G L(n, \mathbb{C}) \times G L(m, \mathbb{C}) \mid \operatorname{det}(g) \operatorname{det}(h)=1\}$

Grothendieck classified complex reductive (algebraic) groups in terms of root data:

$$
\left(X, \Phi, X^{\vee}, \Phi^{\vee}\right)
$$

where $X, X^{\vee} \simeq \mathbb{Z}^{n}, \Phi$ and Φ^{\vee} are finite subsets of X, X^{\vee}, in bijection $\left(\alpha \rightarrow \alpha^{\vee}\right)$, satisfying properties:
$\left\langle\alpha, \alpha^{\vee}\right\rangle \in \mathbb{Z}$
$s_{\alpha}\left(\Phi^{\vee}\right)=\Phi^{\vee}, s_{\alpha^{\vee}}(\Phi)=\Phi$

Grothendieck classified complex reductive (algebraic) groups in terms of root data:

$$
\left(X, \Phi, X^{\vee}, \Phi^{\vee}\right)
$$

where $X, X^{\vee} \simeq \mathbb{Z}^{n}, \Phi$ and Φ^{\vee} are finite subsets of X, X^{\vee}, in bijection $\left(\alpha \rightarrow \alpha^{\vee}\right)$, satisfying properties:
$\left\langle\alpha, \alpha^{\vee}\right\rangle \in \mathbb{Z}$
$s_{\alpha}\left(\Phi^{\vee}\right)=\Phi^{\vee}, s_{\alpha^{\vee}}(\Phi)=\Phi$
Data: two $m \times n$ matrices of integers.
Beautifully suited to a computer!

The E_{8} publicity
Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Each complex group has various real forms:

Unitary dual

Each complex group has various real forms:
$S L(n, \mathbb{C}) \rightarrow S L(n, \mathbb{R}), S U(p, q), S L(n / 2, \mathbb{H})$

The E_{8} publicity
Fokko du Cloux

Unitary dual

Each complex group has various real forms:

$$
\begin{aligned}
& S L(n, \mathbb{C}) \rightarrow S L(n, \mathbb{R}), S U(p, q), S L(n / 2, \mathbb{H}) \\
& S O(n, \mathbb{C}) \rightarrow S O(p, q), S O^{*}(n)
\end{aligned}
$$

Each complex group has various real forms:
$S L(n, \mathbb{C}) \rightarrow S L(n, \mathbb{R}), S U(p, q), S L(n / 2, \mathbb{H})$
$S O(n, \mathbb{C}) \rightarrow S O(p, q), S O^{*}(n)$
There is always a unique compact real form $(S U(n), S O(n))$

Each complex group has various real forms:
$S L(n, \mathbb{C}) \rightarrow S L(n, \mathbb{R}), S U(p, q), S L(n / 2, \mathbb{H})$
$S O(n, \mathbb{C}) \rightarrow S O(p, q), S O^{*}(n)$
There is always a unique compact real form $(S U(n), S O(n))$
There is always a unique split real form $(S L(n, \mathbb{R}), S O(n, n))$

The E_{8} publicity
Fokko du Cloux

Unitary dual

First goal: write software to input an arbitrary real reductive group, and compute its structure theory.

The unitary representations occuring in $L^{2}(G)$ are known (Harish-Chandra, 1970s). These are called tempered: $\widehat{G}_{t} \subset \widehat{G}_{u}$.

Unitary representations are contained in a larger class, called admissible: $\widehat{G}_{u} \subset \widehat{G}_{a}$. These are also known (Langlands, Knapp, Zuckerman, Vogan)

$$
\widehat{G}_{t} \subset \widehat{G}_{u} \subset \widehat{G}_{a}
$$

To compute \widehat{G}_{u} : take each representation $\pi \in \widehat{G}_{a}$, and test if it is unitary. Not obvious this is a finite calculation even for a single π (not to mention uncountably many π).

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual

Finite Calculation

How do we reduce to a finite calculation?

The E_{8} publicity

Unitary dual

Finite Calculation

How do we reduce to a finite calculation?
Basic reduction: The number of irreducible representations with fixed "central character" for the Lie algebra is finite. Our calculations all take place in one of these fixed sets.

Finite Calculation

How do we reduce to a finite calculation?
Basic reduction: The number of irreducible representations with fixed "central character" for the Lie algebra is finite. Our calculations all take place in one of these fixed sets.

We will always work in the set of representations with the same "central character" as the trivial representation. This is the hardest case, others reduce to this.

The E_{8} publicity
Fokko du Cloux

Unitary dual

Second Goal: find an algorithm to compute \widehat{G}_{a}, and write software to implement it.

Second Goal: find an algorithm to compute \widehat{G}_{a}, and write software to implement it.

More precisely: compute the finite set of irreducible admissible representations $\widehat{G}_{a, 1}$ with trivial "central character".

Second Goal: find an algorithm to compute \widehat{G}_{a}, and write software to implement it.

More precisely: compute the finite set of irreducible admissible representations $\widehat{G}_{a, 1}$ with trivial "central character".

Although the mathematics is "known", we greatly deepened our understanding of the mathematics in doing this.
For example: figuring out the data structures to adequately capture the mathematics required us to rethink the mathematics carefully.

Unitary dual

Old days: representation of G on $L^{2}(X)$ (for example)

Old days: representation of G on $L^{2}(X)$ (for example)
Example: $G=S L(2, \mathbb{R})$ on $L^{2}(\mathbb{R})$:

$$
\pi_{\nu}(g) f(x)=|-b x+d|^{\nu} f((a x-c) /(-b x+d))
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

Old days: representation of G on $L^{2}(X)$ (for example)
Example: $G=S L(2, \mathbb{R})$ on $L^{2}(\mathbb{R})$:

$$
\pi_{\nu}(g) f(x)=|-b x+d|^{\nu} f((a x-c) /(-b x+d))
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Today: $\pi=$.

Old days: representation of G on $L^{2}(X)$ (for example)
Example: $G=S L(2, \mathbb{R})$ on $L^{2}(\mathbb{R})$:

$$
\pi_{\nu}(g) f(x)=|-b x+d|^{\nu} f((a x-c) /(-b x+d))
$$

where $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Today: $\pi=$.
We parametrize $\widehat{G}_{a, 1}$ by a finite set \mathcal{X}. Throw away π, and keep only the parameter space \mathcal{X}.

The E_{8} publicity
Fokko du Cloux

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Algorithm to compute $\widehat{G}_{a, 1}$

The heart of the algorithm is illustrated by this example.

The E_{8} publicity

Unitary dual

Algorithm to compute $\widehat{G}_{a, 1}$

The heart of the algorithm is illustrated by this example.
$G=G L(n, \mathbb{C})$
$B=$ upper triangular matrices
$X=G / B$ is a projective variety, a generalized Grassmannian
$H_{m}=G L(m, \mathbb{C}) \times G L(n-m, \mathbb{C})$

Algorithm to compute $\widehat{G}_{a, 1}$

The heart of the algorithm is illustrated by this example.
$G=G L(n, \mathbb{C})$
$B=$ upper triangular matrices
$X=G / B$ is a projective variety, a generalized Grassmannian
$H_{m}=G L(m, \mathbb{C}) \times G L(n-m, \mathbb{C})$
Problem: Compute the orbits of H_{m} on X. This is a finite set.
Compute the closure relations.

Combinatorial Solution:
$\widetilde{W}=$ generalized permutation matrices (one non-zero entry in each row and column)
$\simeq S^{n} \rtimes \mathbb{C}^{\times n}$
$D=$ diagonal matrices
$\mathcal{X}=\left\{x \in \tilde{W} \mid x^{2}=1\right\} / D$

Combinatorial Solution:
$\widetilde{W}=$ generalized permutation matrices (one non-zero entry in each row and column)
$\simeq S^{n} \rtimes \mathbb{C}^{\times n}$
$D=$ diagonal matrices
$\mathcal{X}=\left\{x \in \tilde{W} \mid x^{2}=1\right\} / D$
Fact: \mathcal{X} is in natural bijection with $\cup_{m} X / H_{m}$ Computing \mathcal{X} is an explicit combinatorial problem in finite group theory, a little harder than computing the elements of order 2 in S^{n}.

The E_{8} publicity
Fokko du Cloux
Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

The software now calculates $\widehat{G}_{a, 1}$ for any G.

The E_{8} publicity

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

Example: $S L(2, \mathbb{R})$:

This is the Atlas of Reductive Lie Groups Software Package version 0.2.5.
Build date: Nov 242006 at 09:16:16.
Enter "help" if you need assistance.
empty: block
Lie type: A1 sc s
(weak) real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
possible (weak) dual real forms are:
0 : su(2)
1: sl(2,R)
enter your choice: 1
Name an output file (hit return for stdout):
$0(0,1): 1$ (2,*) [i1] 0
1(1,1): $0 \quad(2, *)$ [i1] 0
$2(2,0): 2(*, *) \quad[r 1] \quad 1 \quad 1$

The E_{8} publicity

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations
$S p(4, \mathbb{R}):$

$0(0,6):$	1	2	$(6, *)$	$(4, *)$	$[i 1, i 1]$	0	
$1(1,6):$	0	3	$(6, *)$	$(5, *)$	$[i 1, i 1]$	0	
$2(2,6):$	2	0	$(*, *)$	$(4, *)$	$[i c, i 1]$	0	
$3(3,6):$	3	1	$(*, *)$	$(5, *)$	$[i c, i 1]$	0	
$4(4,4):$	8	4	$(*, *)$	$(*, *)$	$[C+, r 1]$	1	2
$5(5,4):$	9	5	$(*, *)$	$(*, *)$	$[C+, r 1]$	1	2
$6(6,5):$	6	7	$(*, *)$	$(*, *)$	$[r 1, C+]$	1	1
$7(7,2):$	7	6	$(10,11)$	$(*, *)$	$[i 2, C-]$	2	$2,1,2$
$8(8,3):$	4	9	$(*, *)$	$(10, *)$	$[C-, i 1]$	2	$1,2,1$
$9(9,3):$	5	8	$(*, *)$	$(10, *)$	$[C-, i 1]$	2	$1,2,1$
$10(10,0):$	11	10	$(*, *)$	$(*, *)$	$[r 2, r 1]$	3	$1,2,1,2$
$11(10,1):$	10	11	$(*, *)$	$(*, *)$	$[r 2, r n]$	3	$1,2,1,2$

So far we've said the atlas software should (and does) do:
(1) Calculate with structure theory of reductive groups
(2) Calculate the admissible dual $\widehat{G}_{a, 1}$.

So far we've said the atlas software should (and does) do:
(1) Calculate with structure theory of reductive groups
(2) Calculate the admissible dual $\widehat{G}_{a, 1}$.

One more ingredient is needed.

The E_{8} publicity

Character theory

Let G be a finite group. Then a representation
$\pi: G \rightarrow G L(n, \mathbb{C})$ is determined by its character
$\theta_{\pi}(g)=\operatorname{Trace}(\pi(g))$.
The functions θ_{π} are a basis of $L^{2}(G)^{G}$.
So are $\chi_{\mathcal{O}}$ where \mathcal{O} is a conjugacy class.

Unitary dual

The character table of G contains all information about its representations:

Character Table of Weyl Group of type D4

The E_{8} publicity Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Unitary dual
Examples
Goals of the Atlas Project
The Groups
Admissible Representations

We need the character table of G.

Unitary dual

We need the character table of G.
\mathcal{X} is the parameter space for $\widehat{G}_{a, 1}$

Unitary dual

We need the character table of G. \mathcal{X} is the parameter space for $\widehat{G}_{a, 1}$

$$
x \rightarrow \pi(x) \in \widehat{G}_{a, 1} .
$$

We need the character table of G.
\mathcal{X} is the parameter space for $\widehat{G}_{a, 1}$
$x \rightarrow \pi(x) \in \widehat{G}_{a, 1}$.
$x \rightarrow I(x)$ a standard module. This is typically reducible, but is simpler than $\pi(x)$, and has a known character formula.

We need the character table of G.
\mathcal{X} is the parameter space for $\widehat{G}_{a, 1}$
$x \rightarrow \pi(x) \in \widehat{G}_{a, 1}$.
$x \rightarrow I(x)$ a standard module. This is typically reducible, but is simpler than $\pi(x)$, and has a known character formula.

$$
I(x)=\sum_{y \in \mathcal{X}} m(x, y) \pi(y) \quad m(x, y) \in \mathbb{Z}
$$

Langlands, Zuckerman: this identity is invertible:

$$
\pi(x)=\sum M(x, y) I(y)
$$

This gives a character formula for $\pi(x)$.

Kazdhan-Lusztig, Vogan:
The integers $m(x, y), M(x, y)$ are computed in terms of the geometry of a complex group $K(\mathbb{C})$ acting on a complex projective algebraic ariety with finitely many orbits (intersection cohomology).

Kazdhan-Lusztig, Vogan:
The integers $m(x, y), M(x, y)$ are computed in terms of the geometry of a complex group $K(\mathbb{C})$ acting on a complex projective algebraic ariety with finitely many orbits (intersection cohomology).

For $x, y \in \mathcal{X}$ there is a polynomial $P_{x, y} \in \mathbb{Z}[q]$, such that

$$
M(x, y)= \pm P_{x, y}(1)
$$

Kazdhan-Lusztig, Vogan:
The integers $m(x, y), M(x, y)$ are computed in terms of the geometry of a complex group $K(\mathbb{C})$ acting on a complex projective algebraic ariety with finitely many orbits (intersection cohomology).

For $x, y \in \mathcal{X}$ there is a polynomial $P_{x, y} \in \mathbb{Z}[q]$, such that

$$
M(x, y)= \pm P_{x, y}(1)
$$

These are the famous Kazhdan-Lusztig-Vogan polynomials.

Kazdhan-Lusztig, Vogan:
The integers $m(x, y), M(x, y)$ are computed in terms of the geometry of a complex group $K(\mathbb{C})$ acting on a complex projective algebraic ariety with finitely many orbits (intersection cohomology).

For $x, y \in \mathcal{X}$ there is a polynomial $P_{x, y} \in \mathbb{Z}[q]$, such that

$$
M(x, y)= \pm P_{x, y}(1)
$$

These are the famous Kazhdan-Lusztig-Vogan polynomials.
Problem: compute $P_{x, y}$.

Summary of The atlas software

The atlas software now does the following:
(1) Input arbitrary reductive complex algebraic group $G(\mathbb{C})$
(2) Input real form G of $G(\mathbb{C})$
(3) Compute structure theory of G
(9) Compute the space \mathcal{X} parametrizing $\widehat{G}_{a, 1}$
(0) Compute the Kazhdan-Lusztig-Vogan polynomials

SUMMARY OF THE ATLAS SOFTWARE

The atlas software now does the following:
(1) Input arbitrary reductive complex algebraic group $G(\mathbb{C})$
(2) Input real form G of $G(\mathbb{C})$
(3) Compute structure theory of G
(1) Compute the space \mathcal{X} parametrizing $\widehat{G}_{a, 1}$
(0) Compute the Kazhdan-Lusztig-Vogan polynomials

We hope this will be enough information to compute the unitary dual of G. It is enough information to list the most interesting, conjecturally unitary representations: the unipotent representations of Jim Arthur.

The E_{8} publicity
Fokko du Cloux

Unitary dual

The hardest part of the calculation is the KLV polyonmials.

The E_{8} publicity
Fokko du Cloux

The hardest part of the calculation is the KLV polyonmials.

Split Group	time in seconds
$S L(2, \mathbb{R})$.003
G_{2}	.008
F_{4}	.13
A_{8}	.17
A_{9}	.8
E_{6}	1.3
A_{10}	15
E_{7}	107
E_{8}	∞

The E_{8} publicity

Overview of the E_{8} calculation

Recall E_{8} is the largest exceptional group. The split real form is a real manifold of dimension 248, and it has 453, 060 irreducible representation in $\widehat{G}_{a, 1}$.

The E_{8} publicity
Fokko du Cloux

Overview of the E_{8} calculation

Recall E_{8} is the largest exceptional group. The split real form is a real manifold of dimension 248, and it has 453, 060 irreducible representation in $\widehat{G}_{a, 1}$.

Problem: compute Kazhdan-Lusztig-Vogan polynomials for the split real form of E_{8}

Overview of the E_{8} CALCULATION

Recall E_{8} is the largest exceptional group. The split real form is a real manifold of dimension 248, and it has 453, 060 irreducible representation in $\widehat{G}_{a, 1}$.

Problem: compute Kazhdan-Lusztig-Vogan polynomials for the split real form of E_{8}

This is an upper triangular matrix, of size 453,060, with 1^{s} on the diagonal, and polynomial entries. Each polynomial has degree ≤ 31.

The E_{8} publicity
Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

KLV for E_{8}

Recursion Relations
Rough Estimate
Calculating Modulo n

Why?

The E_{8} publicity
Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

KLV for E_{8}

Recursion Relations
Rough Estimate
Calculating Modulo n

Why?

(1) Because it was there.

The E_{8} publicity

KLV for E_{8}

Recursion Relations
Rough Estimate
Calculating Modulo n

Why?

(1) Because it was there.
(2) Because David Vogan couldn't be stopped

The E_{8} publicity

KLV for E_{8}

Why?

(1) Because it was there.
(2) Because David Vogan couldn't be stopped
(3) To test the mathematics.

Why?

(1) Because it was there.
(2) Because David Vogan couldn't be stopped
(3) To test the mathematics.
(1) To test the technology.

Why?

(1) Because it was there.
(2) Because David Vogan couldn't be stopped
(3) To test the mathematics.
(1) To test the technology.
(0) To force us to improve the technology. We have much harder calculations to do to compute \widehat{G}_{u}. We have no hope of computing the unitary dual of F_{4} if we can't compute KLV polynomials for E_{8}.

Why?

(1) Because it was there.
(2) Because David Vogan couldn't be stopped
(3) To test the mathematics.
(1) To test the technology.
(0 To force us to improve the technology. We have much harder calculations to do to compute \widehat{G}_{u}. We have no hope of computing the unitary dual of F_{4} if we can't compute KLV polynomials for E_{8}. It would not be enough to find a big enough computer.
(0) Because E_{8} is a particularly interesting group, and arises in string theory.

Recursion Relations

\mathcal{X} is the set of parameters.
There is a partial order $<$ on \mathcal{X}, and a length function. For E_{8} $\ell(x) \leq 62$.
The matrix is upper triangular:
$P_{x, x}=1$
$P_{x, y}=0$ unless $x \leq y$

Recursion Relations

\mathcal{X} is the set of parameters.
There is a partial order $<$ on \mathcal{X}, and a length function. For E_{8} $\ell(x) \leq 62$.
The matrix is upper triangular:
$P_{x, x}=1$
$P_{x, y}=0$ unless $x \leq y$
Recursion relations: compute $P_{x, y}$ by upward induction on $\ell(y)$ and downward induction on $\ell(y)$. $(0,0) ;(1,1),(0,1) ;(2,2),(1,2),(0,2) \ldots$

Recursion Relations

\mathcal{X} is the set of parameters.
There is a partial order $<$ on \mathcal{X}, and a length function. For E_{8} $\ell(x) \leq 62$.
The matrix is upper triangular:
$P_{x, x}=1$
$P_{x, y}=0$ unless $x \leq y$
Recursion relations: compute $P_{x, y}$ by upward induction on $\ell(y)$ and downward induction on $\ell(y)$. $(0,0) ;(1,1),(0,1) ;(2,2),(1,2),(0,2) \ldots$

Long list of complicated recursion formulas.

The E_{8} publicity

Recursion Relations

Type I: There exists y^{\prime} with $\ell\left(y^{\prime}\right)<\ell(y)$ such that

$$
P_{x, y}=\sum_{x^{\prime}} c\left(x^{\prime}\right) P_{x^{\prime}, y^{\prime}} \quad(\leq 3 \text { terms })
$$

Recursion Relations

Type I: There exists y^{\prime} with $\ell\left(y^{\prime}\right)<\ell(y)$ such that

$$
P_{x, y}=\sum_{x^{\prime}} c\left(x^{\prime}\right) P_{x^{\prime}, y^{\prime}} \quad(\leq 3 \text { terms })
$$

Type II: There is $y^{\prime}, \ell\left(y^{\prime}\right)=\ell(y), y^{\prime \prime}, \ell\left(y^{\prime \prime}\right)=\ell(y)-1$,

$$
P_{x, y}=\sum_{\ell\left(x^{\prime}\right)=\ell(x)+1} P_{x^{\prime}, y^{\prime}}+\sum_{x^{\prime \prime}} P_{x^{\prime \prime}, y^{\prime \prime}} \quad(\leq 4 \text { terms })
$$

The E_{8} publicity
Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

KLV for E_{8}

Recursion Relations
Rough Estimate Calculating Modulo n

Recursion Relations

Type III: There is x^{\prime}, y^{\prime} with $\ell\left(x^{\prime}\right)=\ell(x)-1, \ell\left(y^{\prime}\right)=\ell(y)-1$,

$$
P_{x, y}=P_{x^{\prime}, y^{\prime}}+q P_{x, y^{\prime}}-\sum_{x^{\prime} \leq z<y^{\prime}} \mu\left(z, y^{\prime}\right) q^{\left(l\left(y^{\prime}\right)-l(z)-1\right) / 2} P_{x^{\prime}, z}
$$

Average number of terms for E_{8} is 150 .

Recursion Relations

Type III: There is x^{\prime}, y^{\prime} with $\ell\left(x^{\prime}\right)=\ell(x)-1, \ell\left(y^{\prime}\right)=\ell(y)-1$,

$$
P_{x, y}=P_{x^{\prime}, y^{\prime}}+q P_{x, y^{\prime}}-\sum_{x^{\prime} \leq z<y^{\prime}} \mu\left(z, y^{\prime}\right) q^{\left(l\left(y^{\prime}\right)-l(z)-1\right) / 2} P_{x^{\prime}, z}
$$

Average number of terms for E_{8} is 150 .
Conclusion: In order to compute $P_{x, y}$ you need to use many all $P_{x^{\prime}, y^{\prime}}$ with $\ell\left(y^{\prime}\right)<\ell(y)$.

Recursion Relations

Type III: There is x^{\prime}, y^{\prime} with $\ell\left(x^{\prime}\right)=\ell(x)-1, \ell\left(y^{\prime}\right)=\ell(y)-1$,

$$
P_{x, y}=P_{x^{\prime}, y^{\prime}}+q P_{x, y^{\prime}}-\sum_{x^{\prime} \leq z<y^{\prime}} \mu\left(z, y^{\prime}\right) q^{\left(l\left(y^{\prime}\right)-l(z)-1\right) / 2} P_{x^{\prime}, z}
$$

Average number of terms for E_{8} is 150 .
Conclusion: In order to compute $P_{x, y}$ you need to use many all $P_{x^{\prime}, y^{\prime}}$ with $\ell\left(y^{\prime}\right)<\ell(y)$.
We need to keep all $P_{x, y}$ in RAM!

The E_{8} publicity

KLV for E_{8}

Recursion Relations
Rough Estimate
Calculating Modulo n

Rough estimate

Problem: we did not have a good idea of the size of the answer beforehand.

The E_{8} publicity

Rough estimate

Problem: we did not have a good idea of the size of the answer beforehand.

Recall 1 byte $=8$ bits can store $2^{8}=256$ numbers.

The E_{8} publicity

Rough Estimate

Problem: we did not have a good idea of the size of the answer beforehand.

Recall 1 byte $=8$ bits can store $2^{8}=256$ numbers.
We don't know the sizes of the coefficients. Proabably some are $>65,535=2^{16}=2$ bytes. We hope each coefficient is less than 4 bytes, i.e. 4.3 billion.

Rough ESTIMATE

Problem: we did not have a good idea of the size of the answer beforehand.

Recall 1 byte $=8$ bits can store $2^{8}=256$ numbers.
We don't know the sizes of the coefficients. Proabably some are
$>65,535=2^{16}=2$ bytes. We hope each coefficient is less than
4 bytes, i.e. 4.3 billion.
Each polynomial has ≤ 32 coefficients.
$450,060^{2} \times 32=6.5$ trillion coefficients $=26$ trillion bytes

Many of the polynomials are equal for obvious reasons. Number of distinct polynomials ≤ 6 billion. Store only the distinct polynomials.

Many of the polynomials are equal for obvious reasons. Number of distinct polynomials ≤ 6 billion. Store only the distinct polynomials.
$6 \times 10^{9} \times 32=200$ billion coefficents, or 800 billion bytes Plus about 100 billion bytes for the pointers $=900$ billion bytes

Many of the polynomials are 0 , and many are equal for non-obvious reasons.

Many of the polynomials are 0 , and many are equal for non-obvious reasons.

Hope: number of distinct polynomials is about 200 million $300 \times 10^{6} \times 4 \times 32=25$ billion bytes
Plus 100 billions bytes for index $=125$ billion bytes

Many of the polynomials are 0 , and many are equal for non-obvious reasons.

Hope: number of distinct polynomials is about 200 million $300 \times 10^{6} \times 4 \times 32=25$ billion bytes
Plus 100 billions bytes for index $=125$ billion bytes
Marc van Leeuwen: much smarter indexing: 35 billion bytes \rightarrow $35+25=60$ billion bytes

Many of the polynomials are 0 , and many are equal for non-obvious reasons.

Hope: number of distinct polynomials is about 200 million $300 \times 10^{6} \times 4 \times 32=25$ billion bytes
Plus 100 billions bytes for index $=125$ billion bytes
Marc van Leeuwen: much smarter indexing: 35 billion bytes \rightarrow $35+25=60$ billion bytes

Hope: average degree $=20 \rightarrow 35+8=43$ billion bytes

Bad news: experiments indicate the number of distinct polynomials is more like 800 billion $\rightarrow 65$ billion bytes

Bad news: experiments indicate the number of distinct polynomials is more like 800 billion $\rightarrow 65$ billion bytes

William Stein at Washington lent us sage, with 64 gigabytes of ram (all accessible from one processor)

Bad news: experiments indicate the number of distinct polynomials is more like 800 billion $\rightarrow 65$ billion bytes

William Stein at Washington lent us sage, with 64 gigabytes of ram (all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying to squeeze down the calculation.
Marc reduced the size of the indices to about 15 billion bytes (by using a lot of information about the nature of the data)

Bad news: experiments indicate the number of distinct polynomials is more like 800 billion $\rightarrow 65$ billion bytes

William Stein at Washington lent us sage, with 64 gigabytes of ram (all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying to squeeze down the calculation.
Marc reduced the size of the indices to about 15 billion bytes (by using a lot of information about the nature of the data)

David threaded the code to run many calculations simultaneously (on some platforms this slowed the calculation down

The E_{8} publicity

Calculating Modulo n

Noam Elkies: have to think harder Idea:

Calculating Modulo n

Noam Elkies: have to think harder
Idea:
$2^{16}=65,536<$ Maximum coefficient $<2^{32}=4.3$ billion (?)

Calculating Modulo n

Noam Elkies: have to think harder Idea:
$2^{16}=65,536<$ Maximum coefficient $<2^{32}=4.3$ billion (?)
$31<2^{5}$, so to do the calculation $(\bmod p)$ for $p<32$ requires 5 bits for each coefficient instead of 32 , reducing storage by a factor of $5 / 32$.

Calculating Modulo N

Noam Elkies: have to think harder Idea:
$2^{16}=65,536<$ Maximum coefficient $<2^{32}=4.3$ billion (?)
$31<2^{5}$, so to do the calculation $(\bmod p)$ for $p<32$ requires 5 bits for each coefficient instead of 32 , reducing storage by a factor of $5 / 32$.
$2^{32}<3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31=100$ billion You then get the answer mod $100,280,245,065$ using the Chinese Remainder theorem (cost: running the calculation 9 times)

Calculating Modulo N

Noam Elkies: have to think harder Idea:
$2^{16}=65,536<$ Maximum coefficient $<2^{32}=4.3$ billion (?)
$31<2^{5}$, so to do the calculation $(\bmod p)$ for $p<32$ requires 5 bits for each coefficient instead of 32 , reducing storage by a factor of $5 / 32$.
$2^{32}<3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31=100$ billion You then get the answer $\bmod 100,280,245,065$ using the Chinese Remainder theorem (cost: running the calculation 9 times)

This gets us down to about $15+4=19$ billion bytes

The E_{8} publicity
Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

KLV for E_{8}
Recursion Relations
Rough Estimate
Calculating Modulo n

But can we really reduce the calculation $(\bmod p)$?

But can we really reduce the calculation $(\bmod p)$?
The recursion relations use,$+-\times$ and extraction of coefficients in specific degrees. This last step looks bad but it is OK (coefficient $=0(\bmod p)$, affects the recursion step, but you would have gotten $0(\bmod p)$ anyway $)$.

But can we really reduce the calculation $(\bmod p)$?
The recursion relations use,$+-\times$ and extraction of coefficients in specific degrees. This last step looks bad but it is OK (coefficient $=0(\bmod p)$, affects the recursion step, but you would have gotten $0(\bmod p)$ anyway $)$.

In fact we can work $(\bmod n)$ for any n.

THE FINAL RESULT

In the end:
Run the program 4 times modulo $n=251,253,255,256$
Least common multiple: 4,145,475,840
Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then
4,145,475,840
Total time (on sage): 77 hours

The E_{8} publicity Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

KLV for E_{8}
Recursion Relations
Rough Estimate
Calculating Modulo n

Some Statistics

The E_{8} publicity Fokko du Cloux Overview of the Atlas project Overview of the E_{8} calculation

Some Statistics

Number of distinct polynomials: 1,181,642,979

The E_{8} publicity

Some Statistics

Number of distinct polynomials: 1,181,642,979
Maximal coefficient: 11,808,808

The E_{8} publicity
Fokko du Cloux Overview of the E_{8} calculation

Some Statistics

Number of distinct polynomials: 1,181,642,979
Maximal coefficient: 11,808,808
Polynomial with the maximal coefficient:
$152 q^{22}+3,472 q^{21}+38,791 q^{20}+293,021 q^{19}+1,370,892 q^{18}+$
$4,067,059 q^{17}+7,964,012 q^{16}+11,159,003 q^{15}+$
$11,808,808 q^{14}+9,859,915 q^{13}+6,778,956 q^{12}+3,964,369 q^{11}+$
$2,015,441 q^{10}+906,567 q^{9}+363,611 q^{8}+129,820 q^{7}+$
$41,239 q^{6}+11,426 q^{5}+2,677 q^{4}+492 q^{3}+61 q^{2}+3 q$

Some Statistics

Number of distinct polynomials: 1,181,642,979
Maximal coefficient: 11,808,808
Polynomial with the maximal coefficient:
$152 q^{22}+3,472 q^{21}+38,791 q^{20}+293,021 q^{19}+1,370,892 q^{18}+$
$4,067,059 q^{17}+7,964,012 q^{16}+11,159,003 q^{15}+$
$11,808,808 q^{14}+9,859,915 q^{13}+6,778,956 q^{12}+3,964,369 q^{11}+$
$2,015,441 q^{10}+906,567 q^{9}+363,611 q^{8}+129,820 q^{7}+$
$41,239 q^{6}+11,426 q^{5}+2,677 q^{4}+492 q^{3}+61 q^{2}+3 q$
Value of this polynomial at $q=1: 60,779,787$

Some Statistics

Number of distinct polynomials: 1,181,642,979
Maximal coefficient: 11,808,808
Polynomial with the maximal coefficient:
$152 q^{22}+3,472 q^{21}+38,791 q^{20}+293,021 q^{19}+1,370,892 q^{18}+$
$4,067,059 q^{17}+7,964,012 q^{16}+11,159,003 q^{15}+$
$11,808,808 q^{14}+9,859,915 q^{13}+6,778,956 q^{12}+3,964,369 q^{11}+$
$2,015,441 q^{10}+906,567 q^{9}+363,611 q^{8}+129,820 q^{7}+$
$41,239 q^{6}+11,426 q^{5}+2,677 q^{4}+492 q^{3}+61 q^{2}+3 q$
Value of this polynomial at $q=1: 60,779,787$
Number of coefficients in distinct polynomials: 13,721,641,221 (13.9 billion)

The E_{8} publicity

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

The E_{8} publicity

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

Serious mathematics to do:

The E_{8} publicity

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

Serious mathematics to do:
bringing K-types into the picture

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

Serious mathematics to do:
bringing K-types into the picture
Computing signatures of Hermitian forms

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

Serious mathematics to do:
bringing K-types into the picture
Computing signatures of Hermitian forms
Serious programming (Alfred Noel and Marc van Leeuwen)

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

Serious mathematics to do:
bringing K-types into the picture
Computing signatures of Hermitian forms
Serious programming (Alfred Noel and Marc van Leeuwen) Big goal: the Unitary Dual

What comes next?

Using the results of the KLV calculation, we have a list of unipotent representations for E_{8}. These are conjecturally the building blocks of all unitary representations.

Serious mathematics to do:
bringing K-types into the picture
Computing signatures of Hermitian forms
Serious programming (Alfred Noel and Marc van Leeuwen)

> Big goal: the Unitary Dual

Check back in a few years...

