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This is an attempt to convert [5] to the atlas setting, and write down ex-
plicit recursion formulas for the Kazhdan-Lusztig-Vogan polynomials which
arise.

1 The Setup
{s:setup}

The starting point is: a group G, a Cartan involution θ, and another involu-
tion σ of finite order, commuting with θ.

It is natural to consider the coset σK = {σ ◦ int(k) | k ∈ K} ⊂ Aut(G).
Every element of this coset commutes with θ.

We’re mainly interested when σ is an involution, especially the case σ = θ.
Now fix a pinning P = (H,B, {Xα}), and write δ, ǫ ∈ Aut(G) for the

images via the embedding Out(G) →֒ Aut(G) (the image consists of P-
distinguished automorphisms). Then δ, ǫ ∈ Aut(G) commute.

We now introduce the usual atlas structure. See [1] for details. Let
δG = G⋊ 〈δ〉 be the usual extended group; σ acts on it, trivially on δ.

Recall X = {ξ ∈ NormGδ(H) | ξ2 ∈ Z(G)}/H, and X̃ is the numerator.

We’ll write x for elements of X , ξ for elements of X̃ , and p : X̃ → X . It is
important to distinguish between elements of X and X̃ .

For ξ ∈ X̃ , let θξ = int(ξ) ∈ Aut(G), Kξ = Gθξ .The restriction of θξ to H
only depends on p(ξ) ∈ X , and is denoted θx. It is important to remember
θx is only an involution of H, not of G, and Kx is not well defined.

It is immediate that σ(X ) = X .

After conjugating we can assume θ = int(ξ0) for some ξ0 ∈ X̃ . Let
x0 = p(ξ0), and define Xθ = {x ∈ X | x is G-conjugate to x0} (G-conjugacy

1



of elements of X is well defined). Let K = Gθ = Kξ0 . Then there is a
canonical bijection Xθ ↔ K\G/B.

Since {σ, θ} = 1, σ acts on K\G/B. Write x → σ†(x) for the auto-
morphism of Xθ, corresponding to the action of σ on K\G/B. We need to
compute σ†.

The condition {σ, θ} = 1 holds if and only if σ(ξ0) ∈ ξ0Z. It is convenient
to define z0 = σ(ξ−1

0 )ξ0 ∈ Z−σ, so

σ(ξ0) = ξ0z
−1
0 .

(The choice of inverse on z0 is so that it goes away later.) It makes sense to
write:

(1.1) σ(x0) = x0z
−1
0 .

(both sides being defined up to conjugacy by H).
{p:kgbaction}

Proposition 1.2 After replacing σ by another element of σK, we may as-
sume σ normalizes H. Define v ∈ NormG(H) by σ(B) = vBv−1. Then

(1.3)(a) σ†(x) = v−1σ(x)vz0 (x ∈ Xθ).

If sigma preserves the base orbit, i.e. σ(K ·B) = K ·B, then after replacing
σ with another element of σK we may assume σ normalizes (B,H). In this
case

(1.3)(b) σ†(x) = σ(x)z0.

The coset vH of v in W = NormG(H)/H is well defined, and it makes no
difference if we view v as an element of NormG(H) or W .

Remark 1.4 After replacing σ with another element of σK we may assume
σ(H) = H, and σ(B ∩ K) = B ∩ K. Having done this, we conclude v
normalizes B ∩K. The normalizer in W of B ∩K, equivalently ρK, is very
small; in particular it is a product of A1 factors.

Assume σ(K · B) = K · B, i.e. v = 1. Then we are in the following
setting. We have an involution θ and an automorphism σ, preserving (B,H),
and commuting with θ. The induced automorphism of (W,S) also written σ,
has finite order (S is the set of simple reflections). Finally the corresponding
automorphism σ† of Xθ is σ†(x) = σ(x)z0.

The main case of interest is:
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{c:kgbaction}

Corollary 1.5 Suppose σ = θ. After replacing θ with a G-conjugate, we
have σ†(x) = δ(x), and θ, δ commute.

Proof. After replacing θ with a G-conjugate we may assume ξ0 ∈ Hδ. Then
σ(B) = θ(B) = B, also z0 = 1, so σ†(x) = σ(x) = θ(x). But θ = int(ξ0) and
δ differ by an element of H, so θ(x) = δ(x) (since X has conjugation by H
built in). �

Proof of the Proposition.
We recall a few details of the bijection Xθ ↔ K\G/B [1, Sections 8 and

9].

Let P̂ σ = {(x,B′) | x ∈ Xθ, B
′ ∈ B}/G. There are bijections:

(1.6)

Xθ ←→ P̂ σ ←→ K\B

x −→ (x,B)

(x0, B
′)←− K ·B′

Since H is a fundamental Cartan subgroup with respect to θ, and all such
Cartan subgroups are K-conjugate, we can modify σ by k so that σ normal-
izes H.

Here is the computation.

Xθ ∋ x→ (x,B) ∈ P̂ σ

= (gx0g
−1, B) (x = gx0g

−1)

= (x0, g
−1Bg)

→ g−1Bg ∈ K\B

→ σ(g−1Bg) by the action of σ on K\B

= σ(g−1)vBv−1σ(g) where σ(B) = vBv−1

→ (x0, σ(g
−1)vBv−1σ(g)) ∈ P̂ σ

= (v−1σ(g)x0σ(g
−1)v,B)

→ (v−1σ(g)x0σ(g
−1)v ∈ Xθ

= v−1σ(gσ(x0)g
−1)v,

= v−1σ(gx0z
−1
0 g−1)v (by (1.1))

= v−1σ(gx0g
−1)σ(z−1

0 )v

= v−1σ(x)σ(z−1
0 )v (gx0g

−1 = x)

= v−1σ(x)vz0 (σ(z−1
0 ) = z0)
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2 The group W σ and the twisted Hecke alge-

bra H
{s:hecke}

We continue in the setting of Section 1, and we now assume σ is an involution.
Let K = Gθ.

For simplicity let’s assume σ(K · B) = K · B, so v = 1 (see Proposition
1.2). Then, after replacing σ with an element of σK, we may assume σ
commutes with θ, and satisfies σ(B,H) = (B,H). Although σ may not have
finite order, σ2 = int(h) for some h ∈ H, so σ induces an involution, also
denoted σ, of (W,S). Let S be the set of orbits of the action of σ on S.

We are primarily interested in the case σ = θ. In this case, after conjugat-
ing by G we may assume the induced automorphism of (W,S) is δ (Corollary
1.5), and {θ, δ} = 1.

If κ ∈ S let W (κ) be the subgroup of G generated by κ. Write κ = {sα}
or {sα, sβ}, with α, β simple. In each case there is a unique long element
wκ ∈ W (κ). Define ℓ(κ) = ℓ(wκ).

(2.1) W (κ) =





ℓ(κ) = 1 S2 σ(sα) = sα

ℓ(κ) = 2 S2 × S2 σ(sα) = sβ, 〈α, β
∨〉 = 0

ℓ(κ) = 3 S3 σ(sα) = sβ, 〈α, β
∨〉 = −1

Lusztig and Vogan define a Hecke algebra H over Z[u, u−1] (u is an inde-
terminate). See the end of [5, Section 3.1]. It has generators Tw (w ∈ W σ)
and relations

(2.2)
TwTw′ = Tww′ w,w′ ∈ W σ, ℓ(ww′) = ℓ(w) + ℓ(w′)

(Twκ
+ 1)(Twκ

− uℓ(wκ)) = 0 (κ ∈ S)

The quotient of the root system by σ is itself a root system (nonreduced
if length 3 occurs), with simple roots parametrized by S, and W σ is the Weyl
group of this root system. In particular W σ is generated by {wκ | κ ∈ S},
and H is generated by {Twκ

| κ ∈ S}. So in fact H has generators and
relations
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(2.3)
Twκ

Tw′ = Twκw′ κ ∈ S, ℓ(wκw
′) = ℓ(wκ) + ℓ(w′)

(Twκ
+ 1)(Twκ

− uℓ(wκ)) = 0 (κ ∈ S)

This makes H a quasisplit Hecke algebra [5, §4.7].
Let D = Z[x] be the subset of Z having to do with x. That is Z[x] ⊂

X [x] × X ∨ (X ∨ is the dual KGB space), where Z[x] ≃ Kξ\G/B, and D is
parametrized by the Kξ-invariant local systems on Kξ\G/B. Then that σ
acts on D, and let Dσ be the fixed points.

Lusztig and Vogan define a H module M , with basis {aγ | γ ∈ D
σ}. We

are going to write down formulas for the action of H on M .

3 Extended Cartans and Parameters
{s:extended}

If γ ∈ Dσ there is an isomorphism between the representations parametrized
by γ and σ(γ). It is possible to normalize this isomorphism to have “square
1”, i.e. in such a way that there are two choices, ±αγ . This leads to ex-
tended parameters: for each γ ∈ Dσ there are two extended parameters
corresponding to the two choices of αγ . Write γ̂ for an extended parameter
corresponding to γ.

Strictly speaking, the module M is spanned by vectors aγ̂ as γ̂ runs over
extended parameters, and the Hecke algebra action is naturally defined in
these terms. If γ̂± are the two choices of extension, in the module M we have
aγ̂− = −aγ̂+ , and the dimension of M is |Dσ|.

{desideratum}
Desideratum 3.1 For each parameter γ ∈ Dσ, it is possible to choose one
extended parameter, denoted γ̂+ so that the formulas of [5] hold with γ̂+ and
aγ̂+ everywhere.

3.1 Extended Cartans

We probably don’t need this subsection and the next one. They are vestiges
of a version in which we worked in terms of extended parameters. But it
might be helpful to include a few basic facts.

In this section and the next we assume σ = δ. Probably this isn’t serious,
but in any event in the rest of the paper we only assume σ is an involution.
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We are interested in KGB elements x ∈ X which are fixed by δ. A key
point is that if δ(x) = x, and ξ ∈ p−1(x) ∈ X̃ , then δ(ξ) = hξh−1 for some
h ∈ H. We cannot assume we can choose ξ so that δ(ξ) = ξ.

{l:onlyfixedx}
Lemma 3.1.1 Suppose ξ ∈ X̃ , and let x = p(ξ) ∈ X . The following condi-
tions are equivalent.

(1) θξ normalizes δH, and ( δH)θξ meets both components of δH;

(2) δ(x) = x.

Proof. Suppose (1) holds. The second part of (1) says that ξ(tδ)ξ−1 = tδ
for some t ∈ H, i.e.

(3.1.2)(a) θx(t)(ξδξ
−1) = tδ.

The first part of (1) says ξδξ−1 = hδ for some h ∈ H, i.e.

(3.1.2)(b) δ(ξ) = h−1ξ

Plug in ξδξ−1 = hδ to (a): θx(t)hδ = tδ, so h−1 = t−1θx(t). Then by (b):

(3.1.2)(c) δ(ξ) = h−1ξ = t−1θx(t)ξ = t−1ξt.

Projecting to X this says δ(x) = x.
Conversely, suppose δ(x) = x. By definition this means δ(ξ) = h−1ξh for

some h ∈ H. Note that

(3.1.3) δ(ξ) = h−1ξh⇔ ξ(hδ)ξ−1 = hδ.

In other words the second condition of (1) holds. Also the first condition
holds: the right hand side gives θx(h)ξδξ

−1 = hδ, i.e. ξδξ−1 ∈ Hδ. �

From now on we will usually assume δ(x) = x.

Definition 3.1.4 Suppose ξ ∈ X̃ . Let x = p(ξ) ∈ X , and assume δ(x) = x.
The extended Cartan defined by ξ is 1Hξ = ( δH)θξ . It contains Hθx as a
subgroup of index 2, and meets both components of δH.

In other words

(3.1.5) 1Hξ = 〈H
θx , hδ〉

where ξ(hδ)ξ−1 = hδ, equivalently h−1ξh = δ(ξ).
This is related to [2, Definition 13.5]. Note that hδ normalizes ∆+.
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3.2 Extended Parameters
{s:extended}

We work only at a fixed regular infinitesimal character, so we fix λ ∈ h∗,
dominant for ∆+.

By a character we mean a pair (x,Λ), where Λ is an (h, Hθx)-module.
We’re ignoring the ρ-cover; this isn’t hard to fix. The differential of Λ (the
h part) is λ ∈ h∗, so we usually identify Λ with a character of Hθx .

Definition 3.2.1 Given ξ ∈ X̃ , an extended character is a pair (ξ, 1Λ)
where 1Λ is an (h,1Hξ) module. Equivalence of extended characters is by
conjugation by H.

Recall given a parameter (x, y) as usual, compatible with λ we obtain a
character (x,Λ), as above we think of Λ as a character of Hθx .

Definition 3.2.2 An extended parameter, at infinitesimal character λ, is a
quadruple (ξ, y, hδ, z) satisfying the following conditions. Set x = p(ξ) ∈ X ,
and we assume δ(x) = x.

(1) (x, y) is a parameter at λ, defining a character Λ of Hθx.

(2) Λδ = Λ (i.e. Λ is fixed by δ),

(3) hδ is in the extended group ( δH)θξ , i.e. hδ commutes with ξ,

(4) z ∈ C
∗, z2 = Λ(hδ(h))

Equivalence of extended parameters is generated by conjugation by H, and

(3.2.3) (ξ, y, hδ, z) ≃ (ξ, y, thδ,Λ(t)z) (t ∈ Hθx).

Remark 3.2.4 Condition (2) implies (but is not equivalent to): δt(y) = y.
So we may as well assume this holds as well as δ(x) = x.

Proposition 3.2.5 There is a bijection between equivalence classes of ex-
tended characters and equivalence classes of extended parameters.

The bijection is

(3.2.6) (ξ, y, hδ, z)↔ (ξ, 1Λ)

From left to right, take 1Λ|Hθx to be the character defined by (x = p(ξ), y),
and 1Λ(hδ) = z. Conversely, given 1Λ, choose y so that (x, y) corresponds
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to 1Λ|Hθx . Choose any hδ ∈ ( δH)θξ , and let z = 1Λ(hδ). There are a few
straightforward checks that this works. One of the main points is that if we
choose hiδ ∈ ( δH)θξ (i = 1, 2), then h2 = h1t for t ∈ Hθx , which is taken
care of by the equivalence.

4 Cayley transforms and cross actions
{s:cayley}

Cayley transforms and cross actions can naturally be defined in terms of
extended parameters. (This was done in an earlier version of these notes.)
As discussed at the beginning of Section 3.2, implicit in [5] is the assertion
that, for each parameter γ, there is a choice of extended parameter, which
we’ll label γ̂+, so that the following formulas hold with γ̂+ in place of γ
everywhere except in cases 2i12/2r21. For these see Section 5.

Some of these new “Cayley transforms” are iterated Cayley transforms,
but some involve a combination of cross actions and Cayley transforms.

4.1 Length 1

In length 1, these are essentially the usual definitions, except in the 1i2s

case, when the Cayley transform is not defined.
Suppose ℓ(κ) = 1, so κ = {sα} and wκ = sα, where σ(α) = α.
In the classical case α has type C+, C-, i, i2, ic, r, r2 or rn. We

write these 1C+,...,1rn to emphasize the length of κ.
Suppose α is of type 1i2, so the Cayley transform is double valued: γα

1 , γ
α
2 .

Then σ(α) = α implies σ preserves the set {γα
1 , γ

α
2 }. This yields two sub-

cases in the new setting: denote these 1i2f (“fixed”) or 1i2s (“switched”),
depending on whether σ acts trivially on this set, or interchanges the two
members.

Type 1r1 is similar; the double-valued Cayley transform is written {γ1
α, γ

2
α}.
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type definition Cayley transform

1C+ α complex, θα > 0

1C- α complex, θα < 0

1i1 α imaginary, noncompact, type 1 γκ = γα

1i2f
α imaginary, noncompact, type 2

σ fixes both terms of γα
γκ = γα = {γκ

1 , γ
κ
2 }

1i2s
α imaginary, noncompact, type 2

σ switches the two terms of γα

1ic α compact imaginary

1r1f
α real, parity, type 1

σ switches the two terms of γα
γκ = γα = {γ1

κ, γ
2
κ}

1r1s
α real, parity, type 1

σ switches the two terms of γα

1r2 α real, parity, type 2 γκ = γα

1rn α real, non-parity

4.2 Length 2

Suppose α ∈ S, β = σ(α) ∈ S, and 〈α, β∨〉 = 0. Let κ = {sα, sβ}, so
wκ = sαsβ ∈ W σ. It is easy to see that α, β have the same type with respect
to θ. Here are the twelve cases as listed in [5, Section 7.5].

In the length 2 and 3 cases we include the terminology from [5] in a
separate column.
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type LV terminology definition Cayley transform

2C+ two-complex ascent
α, β complex θα > 0

θα 6= β

2C- two-complex ascent
α, β complex θα < 0

θα 6= β

2Ci ∗ two-semiimaginary ascent α, β complex, θα = β γκ = sα × γ = sβ × γ

2Cr ∗ two-semireal descent α, β complex,θα = −β γκ = sα × γ = sβ × γ

2i11
two-imaginary noncpt

type I-I ascent

α, β noncpt imaginary, type 1

(γα)β single valued
γκ = (γα)β

2i12 † two-imaginary noncpt

type I-II ascent

α, β noncpt imaginary, type 1

(γα)β double valued
γκ = {γκ

1 , γ
κ
2 } = (γα)β

2i22
two-imaginary noncpt

type II-II ascent

α, β noncpt imaginary, type 1

(γα)β has 4 values
γκ = {γκ

1 , γ
κ
2 } = {γ

α,β}σ

2r22
two-real

type II-II descent

α, β real, parity, type 2

(γα)β single valued
γκ = (γα)β

2r21
two-real

type II-I descent

α, β real, parity, type 2

(γα)β double valued
γκ = {γ1

κ, γ
2
κ} = (γα)β

2r11
two-real

type I-I descent

α, β real, parity, type 2

(γα)β has 4 values
γκ = {γ1

κ, γ
2
κ} = {(γα)β}

σ

2rn two-real nonparity ascent α, β real, nonparity

2ic two-imaginary compact descent α, β compact imaginary

∗: defect=1 (see Definition 9.1.4).
†: See Section 5

4.3 Length 3

Suppose α ∈ S, β = σ(α) ∈ S, and 〈α, β∨〉 6= 0 (equivalently ±1). In this
case wκ = sαsβsα = sβsαsβ ∈ W σ.

Again it is easy to see that α, β have the same type with respect to θ.
Here are the cases.

Length 3
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type LV terminology definition Cayley transform

3C+ three-complex ascent α, β complex θα > 0, θα 6= β

3C- three-complex descent α, β complex θα < 0, θα 6= β

3Ci ∗ three-semiimaginary ascent α, β complex, θα = β γκ = (sα × γ)β ∩ (sβ × γ)α

3Cr ∗ three-semireal descent α, β complex, θα = −β γκ = (sα × γ)β ∩ (sβ × γ)α

3i ∗ three imaginary noncompact ascent α, β noncpt imaginary, type 1 γκ = sα × γβ = sβ × γα

3r ∗ three-real descent α, β real, parity, type 2 γκ = sα × γβ = sβ × γα

3rn three-real non-parity ascent α, β real, nonparity

3ic three-imaginary compact descent α, β noncompact imaginary

∗: defect=1 (see Definition 9.1.4).

The type of κ depends on a parameter γ ∈ Dσ. We say κ is of a given
type with respect to γ.

{d:type}
Definition 4.3.1 If κ ∈ S and γ ∈ Dσ write tγ(κ) for the type of κ with
respect to γ.

For the notion of ascent/descent in these tables see Lemma 9.3.1.
{d:tau}

Definition 4.3.2 The τ -invariant of γ ∈ Dσ is

τ(γ) = {κ ∈ S | κ is a descent for γ}.

Here is a list of the 10 + 12 + 8 = 30 types:

Table 4.3.3

ℓ(κ) ascent (κ 6∈ τ(γ)) descent (κ ∈ τ(γ))

1 1C+, 1i1, 1i2f, 1i2s, 1rn 1C-, 1r1f, 1r1s, 1r2, 1ic

2 2C+, 2Ci, 2i11, 2i12, 2i22, 2rn 2C-, 2Cr, 2r11, 2r21, 2r22, 2ic

3 3C+, 3Ci, 3i, 3rn 3C–, 3Cr, 3r, 3ic {table:types}

∗: defect=1 (see Definition 9.1.4).
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5 Cases 2i12 and 2r21
{s:2i12}

Recall we need to address the issue, discussed at the beginning of Section 4,
of types 2i12/2r21.

Suppose γ ∈ Dσ, and κ = {α, β} is of type 2i12 with respect to γ.
Then sα × γ = sβ × γ is also of type 2i12. Label these two parameters
{γ1, γ2}. Then, on the level of non-extended parameters, (γ1)

κ = (γ2)
κ is

double-valued, label these two parameters λ1, λ2.
Thus we are given two unordered pairs {γ1, γ2} and {λ1, λ2}; κ is of type

2i12 and 2r21 respectively.
We want to define the extensions inductively, starting on the fundamental

Cartan. Assume that we have already chosen an extension γ̂+
1 of γ1.

The Cayley transform of γ̂+
1 by κ is a well defined pair of extended param-

eters (see the old version of these notes). Use this to define the + labelling
on the extended parameters for λi:

(5.1)(a) (γ̂+
1 )

κ = {λ̂+
1 , λ̂

+
2 }

Now fix an extension γ̂+
2 of γ2. Then (γ̂+

2 )
κ is either {λ̂+

1 , λ̂
−
2 } or {λ̂

−
1 , λ̂

+
2 }.

(This computation was done in the old notes, in SL(4,R)). After switching
λ1, λ2 if necessary, we can assume

(5.1)(b) (γ̂+
2 )

κ = {λ̂+
1 , λ̂

−
2 }

Alternatively, define γ̂+
2 by the requirement: (γ̂+

2 )
κ = {λ̂+

1 , λ̂
−
2 } (then (γ̂−

2 )
κ =

{λ̂−
1 , λ̂

+
2 }).

Clearly the chosen extensions of λ1, λ2 depend on the extensions of γ1, γ2,
and also the fact that we’ve chosen an order of each pair (γ1, γ2) and (λ1, λ2).
For example, suppose we switch γ1, γ2, but keep the same extensions of these
two parameters. This would induce new definitions of λ̂+

1 , λ̂
+
2 : λ̂+

1 wouldn’t

change, but what we labelled λ̂+
2 before would now be labelled λ̂−

2 . See the
table at the end of this section.

Conclusion: some additional information is needed to determine unique
preferred extensions for λ1, λ2.
What was here before was incorrect, and I don’t know how to fix it at the
moment. So I’m leaving this as a conjecture.

{c:distinguish}
Conjecture 5.2 Assume κ = {α, β}, where α, β are orthogonal and inter-
changed by σ. Suppose κ is of type 2i12 or 2r21 for parameters γ and

12



γ′ = sα × γ = sβ × γ. There is a canonical way to distinguish γ, γ′, and so
write them as an ordered pair (γ1, γ2).

Assuming this, start with the ordered pair (γ1, γ2), and assume we have
chosen γ̂+

1 . Then the Cayley transform (γ1)
κ = (γ2)

κ is an ordered pair

(λ1, λ2). Define λ̂+
1 , λ̂

+
2 by (a): (γ̂+

1 )
κ = {λ̂+

1 , λ
+
2 }. Furthermore define γ̂+

2 by

the requirement: (γ̂+
2 )

κ = {λ̂+
1 , λ̂

−
2 } (exactly one of the two extensions of γ̂2

satisfy this).
Clearly the choice of these extensions depends on the fact that (γ1, γ2)

and (λ1, λ2) are ordered pairs.
There might be an issue of consistency here: if we’ve already chosen γ̂+

2 ,
it may conflict with the one just made. (Similar issues possibly could arise
elsewhere.) Let’s ignore this issue for now, and hope it works. If so, we have
chosen a preferred extension of each parameter, and all formulas are in terms
of this extension. See the Desideratum 3.1.

5.1 A Table

It is possible that the ordering we’ve chosen in the previous section, while
natural, isn’t the right one. Hopefully this table will never be needed, but it
shows the affect of different choices.

Assume we’ve decided on an ordering of γ1, γ2, and extensions of these
two parameters, labelled +. This uniquely determines an ordering of λ1, λ2,
and extensions of these. This is the first row of the table.

The subsequent rows show the affect of the choices. For example, suppose
we keep the same order of γ1, γ2, but choose the other extension of γ2. Then
since

γ̂+
1 → λ̂+

1 , λ̂
+
2

γ̂+
2 → λ̂+

1 , λ̂
−
2

with our new choices we have

γ̂+
1 → λ̂+

1 , λ̂
+
2

γ̂−
2 → λ̂−

1 , λ̂
+
2

meaning the sign has changed on the first member of the target pair. So we
should change their order:

γ̂+
1 → λ̂+

2 , λ̂
+
1

γ̂−
2 → λ̂+

2 , λ̂
−
1
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This amounts to switching λ1, λ2, giving the second row of the table.

γ̂+
1 γ̂+

2 λ̂+
1 λ̂+

2

γ̂+
1 γ̂−

2 λ̂+
2 λ̂+

1

γ̂−
1 γ̂+

2 λ̂−
2 λ̂−

1

γ̂−
1 γ̂−

2 λ̂−
1 λ̂−

2

γ̂+
2 γ̂+

1 λ̂+
1 λ̂−

2

γ̂+
2 γ̂−

1 λ̂−
2 λ̂+

1

γ̂−
2 γ̂+

1 λ̂+
2 λ̂−

1

γ̂−
2 γ̂−

1 λ̂−
1 λ̂+

2

5.2 The sign ǫ(γ, λ)

The sign which arises in the 2i12/2r21 cases appears frequently, so we need
some notation for it.

{d:epsilon}

Definition 5.2.1 Suppose γ, λ ∈ Dσ, κ ∈ S, and γ
κ
→ λ.

If tγ(κ) 6=2r21 define ǫ(γ, λ) = 1.
Assume tγ(κ) =2r21, so tλ(κ) =2i12. By Lemma 5.2, γ and λ are

members of ordered pairs (γ1, γ2) and (λ1, λ2), respectively. Define:

(5.2.2) ǫ(γi, λj) =




−1 i = j = 2

1 otherwise

6 Formulas for the H action on M
{s:formulas}

Implicit in the following formulas is the fact that we have chosen an extension
of each parameter as discussed in Section 3.2. For each γ ∈ Dσ we have
chosen an extension γ̂+; in the following formulas each aγ is really aγ̂+ .

6.1 Length 1

Suppose σ(α) = α, and γ ∈ Dσ. Then Twκ
(γ) is given by the usual formulas,

taking the quotients in types 1i2s,1r1s into account. The first column is
tγ(κ), the type of κ with respect to γ.

14



1C+: Twκ
(aγ) = awκ×γ

1C-: Twκ
(aγ) = (u− 1)aγ + uawκ×γ

1i1: Twκ
(aγ) = awκ×γ + aγκ

1i2f: Twκ
(aγ) = aγ + (aγκ

1
+ aγκ

2
)

1i2s: Twκ
(aγ) = aγ

1ic: Twκ
(aγ) = uaγ

1r1f: Twκ
(aγ) = (u− 2)aγ + (u− 1)(aγ1

κ
+ aγ2

κ
)

1r1s: Twκ
(aγ) = (u− 2)aγ

1r2: Twκ
(aγ) = (u− 1)aγ − awκ×γ + (u− 1)aγκ

1rn: Twκ
(aγ) = −aγ

6.2 Length 2

2C+: Twκ
(aγ) = awκ×γ

2C-: Twκ
(aγ) = (u2 − 1)aγ + u2awκ×γ

2Ci: Twκ
(aγ) = uaγ + (u+ 1)aγκ

2Cr: Twκ
(aγ) = (u2 − u− 1)aγ + (u2 − u)aγκ

2i11: Twκ
(aγ) = awκ×γ + aγκ

2i12: Twκ
(aγ) = aγ +

∑

λ|λ
κ
→γ

ǫ(λ, γ)aλ

2i22: Twκ
(aγ) = aγ + (aγκ

1
+ aγκ

2
)

2r22: Twκ
(aγ) = (u2 − 1)aγ − awκ×γ + (u2 − 1)aγκ

2r21: Twκ
(aγ) = (u2 − 2)aγ + (u2 − 1)

∑

λ|γ
κ
→λ

ǫ(γ, λ)aλ

2r11: Twκ
(aγ) = (u2 − 2)aγ + (u2 − 1)(aγ1

κ
+ aγ2

κ
)

15



2rn: Twκ
(aγ) = −aγ

2ic: Twκ
(aγ) = u2aγ

Remark 6.2.1 In the 2i12 case, if λ
κ
→ γ, recall λ, γ occur in ordered pairs

(λ1, λ2) and (γ1, γ2) (Section 5). With ǫ(λ, γ) given by Definition 5.2.1, the
stated formula in this case is shorthand for:

Twκ
(aγ1) = aγ1 + (aλ1

+ aλ2
)

Twκ
(aγ2) = aγ2 + (aλ1

− aλ2
),

We could state the other formulas using ǫ(γ, λ) as well, for example if tγ(κ) =2r22.
But this doesn’t seem worth it.

6.3 Length 3

3C+: Twκ
(aγ) = wκ × aγ

3C-: Twκ
(aγ) = (u3 − 1)aγ + u3(awκ×aγ )

3Ci: Twκ
(aγ) = uaγ + (u+ 1)aγκ

3Cr: Twκ
(aγ) = (u3 − u− 1)aγ + (u3 − u)aγκ

3i: Twκ
(aγ) = uaγ + (u+ 1)aγκ

3r: Twκ
(aγ) = (u3 − u− 1)aγ + (u3 − u)aγκ

3rn: Twκ
(aγ) = −aγ

3ic: Twκ
(aγ) = u3aγ

Remark 6.3.1 In terms of extended parameters, the 2i12/2r21 cases are
simpler. Suppose κ is of type 2i12 with respect to an ordinary parameter γ.

Suppose γ̂ is an extension of γ. On the level of extended parameters γ̂ has
a well defined Cayley transform (γ̂)κ, which is an unordered pair of extended
parameters. Then:

Twκ
(aγ̂) = aγ̂ +

∑

λ̂∈(γ̂)κ

a
λ̂

If we write −γ̂ for the opposite extension then (−γ̂)κ is the same set of
two elements, with the sign changed on one of them. There are no choices
involved here.
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We have the usual notion of the W-graph associated to this Hecke algebra
action.

Definition 6.3.2 Suppose κ ∈ S, γ, λ ∈ Dσ, and κ ∈ τ(γ). Then we say
γ

κ
→ λ if κ 6∈ τ(λ), and aλ appears in Twκ

(aγ).

7 Kazhdan-Lusztig-Vogan algorithm
{s:klv}

We use a hybrid notation combining Fokko’s notes Implementation of Kazhdan-
Lusztig Algorithm, and [5].

Recall H is an algebra over Z[u, u−1], with generators parametrized by S.
Also M is a H-module, with Z[u, u−1]-basis {aγ | γ ∈ D

σ}.
Write D for the canonical involution of M . It satisfies

(7.1) D(um) = u−1D(m).

The order on Dσ is defined in [5, 5.1], and length ℓ(γ) is inherited from
D.

{t:Cdelta}

Theorem 7.2 ([5], Theorem 5.2) There is a unique basis {Cδ | δ ∈ D
σ}

of M satisfying the following conditions. There are polynomials P σ(γ, δ) ∈
Z[u] such that

(7.3) Cδ =
∑

γ

P σ(γ, δ)aγ,

and:

(1) D(Cγ) = u−ℓ(γ)Cγ;

(2) P σ(γ, δ) 6= 0 implies γ ≤ δ;

(3) P σ(γ, γ) = 1

(4) deg(P σ(γ, δ)) ≤ 1
2
(ℓ(δ)− ℓ(γ)− 1).

Introduce a new variable v satisfying v2 = u, and tensor everything with
Z[v, v−1], so H becomes an algebra over Z[v, v−1]. Define

(7.4)(a) âγ = v−ℓ(γ)aγ

17



and

(7.4)(b) Ĉδ = v−ℓ(δ)Cδ

With this notation Theorem 7.2 can be written as
{t:Chatdelta}

Theorem 7.5 There is a unique basis {Ĉδ | δ ∈ D
σ} of M satisfying the

following conditions. There are polynomials P̂ σ(γ, δ)(v) ∈ Z[v−1] such that

(7.6) Ĉδ =
∑

γ

P̂ σ(γ, δ)(v)âγ,

and:

(1) D(Ĉγ) = Ĉγ;

(2) P̂ σ(γ, δ) 6= 0 implies γ ≤ δ;

(3) P̂ σ(γ, γ) = 1;

(4) if γ 6= δ, then P̂ σ(γ, δ) ∈ v−1
Z[v−1]; and

(5) deg(P̂ σ(γ, δ))(v−1) ≤ ℓ(γ)− ℓ(δ)

It is easy to see that

(7.7) P̂ σ(γ, δ)(v) = vℓ(γ)−ℓ(δ)P σ(γ, δ)(v2).

Fix γ < δ, and suppose

(7.8)(a) P σ(γ, δ) = c0 + c1u+ · · ·+ cnu
n

with

(7.8)(b) n =




(ℓ(δ)− ℓ(γ)− 1)/2 ℓ(δ)− ℓ(γ) odd

(ℓ(δ)− ℓ(γ)− 2)/2 ℓ(δ)− ℓ(γ) even

Then
(7.9)

P̂ σ(γ, δ) =




cnv

−1 + cn−1v
−3 + · · ·+ c0v

ℓ(γ)−ℓ(δ)=−(2n+1) ℓ(δ)− ℓ(γ) odd

cnv
−2 + cn−1v

−4 + · · ·+ c0v
ℓ(γ)−ℓ(δ)=−(2n+2) ℓ(δ)− ℓ(γ) even

or alternatively

P̂ σ(γ, δ) =




v−1[cn + cn−1v

−2 + · · ·+ c0v
ℓ(γ)−ℓ(δ)+1] ℓ(γ)− ℓ(δ) odd

v−1[cnv
−1 + cn−1v

−3 + · · ·+ c0v
ℓ(γ)−ℓ(δ)+1] ℓ(γ)− ℓ(δ) even
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8 Action of Twκ + 1

An important role is played by the operator Twκ
+ 1, which we renormalize.

For κ ∈ S define

(8.1) T̂κ = v−ℓ(κ)(Twκ
+ 1)

Note that Fokko has both Ts and ts. One can deduce they are related by
ts = v−1Ts. These correspond to our Twκ

and v−ℓ(wκ)Twκ
, respectively. Also

Fokko has an operator cs, which can be seen to be ts + v−1 = v−1(Ts + 1),

which is our T̂κ.

8.1 Formulas for T̂κ
{s:formulasfortkappa

Here are 30 formulas, for T̂κ(âγ), depending on the type of κ with respect to
γ.

Type 1: T̂κ = v−1(Twκ
+ 1) = v−1(Tsα + 1)

These are copied from [3] Section 1.

tγ(κ) T̂κ(âγ)

1C+ v−1âγ + âwκ×γ

1C- vâγ + âwκ×γ

1i1 v−1(âγ + âwκ×γ) + âγκ

1i2f 2v−1âγ + (âγκ
1
+ âγκ

2
)

1i2s 0

1r1f (v − v−1)âγ + (1− v−2)(âγ1
κ
+ âγ2

κ
)

1r1s (v − v−1)âγ

1r2 vâγ − v−1âwκ×γ + (1− v−2)âγκ

1rn 0

1ic (v + v−1)âγ

Type 2: T̂κ = v−2(Twκ
+ 1) = v−2(Tsαsβ + 1)
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tγ(κ) T̂κ(âγ)

2C+ v−2âγ + âwκ×γ

2C- v2âγ + âwκ×γ

2Ci (v + v−1)[v−1âγ + âγκ ]

2Cr (v2 − 1)âγ + (v − v−1)âγκ

2i11 v−2(âγ + âwκ×γ) + âγκ

2i12 2v−2âγ +
∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)âγ′

2i22 2v−2âγ + âγκ
1
+ âγκ

2

2r22 v2âγ − v−2âw×γ + (1− v−4)âγκ

2r21 (v2 − v−2)âγ + (1− v4)
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)âγ′

2r11 (v2 − v−2)âγ + (1− v−4)(âγ1
κ
+ aγ2

κ
)

2rn 0

2ic (v2 + v−2)âγ

Type 3: T̂κ = v−3(Twκ
+ 1) = v−3(Tsαsβsα + 1)

tγ(κ) T̂κ(âγ)

3C+ v−3âγ + âwκ×γ

3C- v3âγ + âwκ×γ

3Ci (v + v−1)v−2âγ + (v + v−1)âγκ

3Cr (v2 − v−2)vâγ + (v2 − v−2)v−1âγκ

3i (v + v−1)v−2âγ + (v + v−1)âγκ

3r (v2 − v−2)vâγ + (v2 − v−2)v−1âγκ

3rn 0

3ic (v3 + v−3)âγ

8.2 Summary
{s:summary}

We write some of these formulas in a slightly different form in the following
table of all T̂κâγ .
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Table 8.2.1

tγ(κ) T̂κâγ tγ(κ) Tκâγ

1C+ [âwκ×γ + v−1aγ ] 1C- v[âγ + v−1âwκ×γ ]

1i1 [âγκ + v−1(âγ + âwκ×γ)] 1r1f (v − v−1)[âγ + v−1(âγ1
κ
+ âγ2

κ
)]

1i2f [âγκ
1
+ v−1âγ ] + [âγκ

2
+ v−1âγ ] 1r2

v[âγ + v−1âγκ ]
−v−1[âwκ×γ + v−1âγκ ]

1i2s 0 1r1s (v − v−1)[âγ ]

1rn 0 1ic (v + v−1)[âγ ]

2C+ [âwκ×γ + v−2âγ ] 2C- v2[âγ + v−2âwκ×γ ]

2Ci (v + v−1)[âγκ + v−1âγ ] 2Cr v(v − v−1)[âγ + v−1âγκ ]

2i11 [âγκ + v−2(âγ + âwκ×γ)] 2r11 (v2 − v−2)[âγ + v−2(âγ1
κ
+ aγ2

κ
)]

2i12
∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)[âγ′ + v−2
∑

µ|γ′
κ
→µ

ǫ(γ′, µ)âµ] 2r21 (v2 − v−2)[âγ + v−2
∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)âγ′

2i22 [âγκ
1
+ v−2âγ ] + [âγκ

2
+ v−2âγ ] 2r22

v2[âγ + v−2âγκ ]
−v−2[âwκ×γ + v−2âγκ ]

2rn 0 2ic (v2 + v−2)âγ

3C+ [âwκ×γ + v−3âγ ] 3C- v3[âγ + v−3âwκ×γ ]

3Ci, 3i (v + v−1)[âγκ + v−2âγ ] 3Cr, 3r v(v2 − v−2)[âγ + v−2âγκ ]

3rn 0 3ic (v3 + v−3)[âγ ] {table:Tagamma}

We’re going to simplify this table - see Table 9.1.3.

Remark 8.2.2 The identity in the 2i12 case is tricky, let’s write it out.
Suppose tγ(κ) =2i12, and γ is one member of the ordered pair (γ1, γ2).
Simlarly γκ is an ordered pair (γ′

1, γ
′
2).

The formula from Section 8.1 is:

(8.2.3)(a) 2v−2aγ + ǫ(γ′
1, γ)aγ′

1
+ ǫ(γ′

2, γ)aγ′

2

whereas Table 8.2.1 gives:

ǫ(γ′
1, γ)[aγ′

1
+ v−2(ǫ(γ′

1, γ1)aγ1 + ǫ(γ′
1, γ2)aγ2)]+

ǫ(γ′
2, γ)[aγ′

2
+ v−2(ǫ(γ′

2, γ1)aγ1 + ǫ(γ′
2, γ2)aγ2)].

Using the definition of ǫ this equals:

(8.2.3)(b) [aγ′

1
+ v−2(aγ1 + aγ2)] + ǫ(γ′

2, γ)[aγ′

2
+ v−2(aγ1 − aγ2)].
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Plugging γ = γ1 or γ2 in to (a) and (b) and comparing confirms the identity.

9 Image of T̂κ

9.1 T̂κ(âγ)
{l:kappadescents}

Lemma 9.1.1 Fix κ ∈ S.

(1) The image of T̂κ is equal to the (vℓ(κ) + v−ℓ(κ)) eigenspace of T̂κ. This
is also equal to the kernel of Tκ − vℓ(κ).

(2) Suppose κ ∈ τ(λ). For each λ′ satisfying λ
κ
→ λ′, the sign ǫ(λ, λ′) = ±1

(Definition 5.2.1) is the unique integer such that

(9.1.2) âκλ = âλ + vℓ(λ
′)−ℓ(λ)

∑

λ′|λ
κ
→λ′

ǫ(λ, λ′)âλ′

belongs to the image of T̂κ.

(3) The elements
{âκλ | γ ∈ D

σ, κ ∈ τ(γ)}

form a basis of the image of T̂κ.

Part (1) follows from the quadratic relation (2.3). Statements (2) and
(3) follow from an examination of Table 8.2.1. In each entry of the table the
terms in square brackets are the âδ (not including the vdefδ(κ) term). This
amounts to the fact that we can rewrite Table 8.2.1 as in Table 9.1.3.

Recall ǫ(δ, δ′) = 1 except in cases 2i12/2r21.
Table 8.2.1 now simplifies.

Table 9.1.3
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tγ(κ) T̂κ(âγ) tγ(κ) T̂κ(âγ)

1C+ âκwκ×γ 1C- vâκγ

1i1 âκγκ 1r1f (v − v−1)âκγ

1i2f âκγκ
1
+ âκγκ

2
1r2 vâκγ − v−1âκwκ×γ

1i2s 0 1r1s (v − v−1)âκγ

1rn 0 1ic (v + v−1)âκγ

2C+ âκwκ×γ 2C- v2âκγ

2Ci (v + v−1)âκγκ 2Cr v(v − v−1)âκγ

2i11 âγκ 2r22 v2âκγ − v−2âκwκ×γ

2i12
∑

γ′
κ
→γ

ǫ(γ′, γ)âκγ′ 2r21 (v2 − v−2)âκγ

2i22 âκγκ
1
+ âκγκ

2
2r11 (v2 − v−2)âκγ

2rn 0 2ic (v2 + v−2)âκγ

3C+ âκwκ×γ 3C- v3âκγ

3Ci, 3i (v + v−1)âκγκ 3Cr, 3r v(v2 − v−2)âκγ

3rn 0 3ic (v3 + v−3)âκγ {table:Tagammakappa

Those extra powers of v in cases 2CR,3Cr,3r are important. Suppose
κ ∈ τ(λ). Then ℓ(λ′) is the same for all λ

κ
→ λ′; typically (always in the

classical case) ℓ(λ)− ℓ(λ′) = ℓ(κ). In general ℓ(λ)− ℓ(λ′) ≤ ℓ(κ).
{d:defect}

Definition 9.1.4 Suppose λ
κ
→ λ′. Define the κ-defect of λ and λ′ to be

(9.1.5) defλ(κ) = defκ(λ
′) = ℓ(κ)− ℓ(λ) + ℓ(λ′).

(If {λ′ | λ
κ
→ λ′} = ∅ define def(κ, λ) = 0).

Checking the cases gives:
{l:casesofd}

Lemma 9.1.6

defλ(κ) =




1 tλ(κ) = 2Ci, 3Ci, 3i; 2Cr, 3Cr, 3r

0 else
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We can now write Table 9.1.3 more concisely. For κ ∈ τ(γ) define:

ζκ(γ) =





1 tγ(κ) = 1ic,2ic,3ic

0 tγ(κ) = 1C-,2C-,3C-

−1 otherwise

{l:Tkappaagamma1}
Lemma 9.1.7 Fix κ ∈ S, γ ∈ Dσ, and set d = defγ(κ). Then

(9.1.8) T̂κ(âγ) =





(v + v−1)d
∑

γ′
κ
→γ

ǫ(γ′, γ)âκγ′ κ 6∈ τ(γ)

vd[vℓ(κ)−dâκγ + ζκ(γ)v
−ℓ(κ)+dâκwκ×γ] κ ∈ τ(γ)

In the second case:

(1) if tγ(κ) =1r2,2r22 then wκ×γ 6= γ, and κ ∈ τ(wκ×γ) - there are two
terms;

(2) if tγ(κ) =1C-,2C-,3C- then wκ × γ 6= γ, but κ 6∈ τ(wκ × γ) - since
ζ = 0 there is only one term;

(3) in all other cases wκ × γ = γ (there is one term with a coefficient of
vd(vℓ(κ)−d ± v−ℓ(κ)+d).

9.2 T̂κ(Ĉλ) in terms of âκγ

We can now compute T̂κ(Ĉλ) in the basis of âκγ (and the unkown P̂ σ(γ, λ)).

Write Ĉλ =
∑

γ≤λ P̂
σ(γ, λ)âγ, T̂κ(Ĉλ) =

∑
γ≤λ P̂

σ(γ, λ)T̂κ(âγ). The con-

dition γ ≤ λ is superfluous because of the P̂ σ(γ, λ) term. Apply Lemma
9.1.7.
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T̂κ(Ĉλ) =
∑

γ

P (γ, λ)T̂κ(âγ)

=
∑

γ|κ 6∈τ(γ)

P (γ, λ)T̂κ(âγ) +
∑

γ|κ∈τ(γ)

P (γ, λ)T̂κ(âγ)

=
∑

γ|κ 6∈τ(γ)

[
P (γ, λ)(v + v−1)defγ(κ)

∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)âκγ′

]
+

∑

γ|κ∈τ(γ)

vdefγ(κ)
[
P (γ, λ)(vℓ(κ)−defγ(κ)âκγ + ζκ(γ)v

−ℓ(κ)+defγ(κ)âκwκ×γ)
]

=
∑

γ′|κ∈τ(γ′)

[
(v + v−1)defκ(γ

′)
∑

γ|γ′
κ
→γ

P (γ, λ)ǫ(γ′, γ)
]
âκγ′+

∑

γ|κ∈τ(γ)

vdefγ(κ)
[
P (γ, λ)vℓ(κ)−defγ(κ)âκγ + P (γ, λ)ζκ(γ)v

−ℓ(κ)+defγ(κ)âκwκ×γ

]

Interchange γ, γ′ in the first sum to conclude:

T̂κ(Ĉλ) =
∑

γ|κ∈τ(γ)

[
(v + v−1)defγ(κ)

∑

γ′|γ
κ
→γ′

P (γ′, λ)ǫ(γ, γ′)
]
âκγ+

∑

γ|κ∈τ(γ)

vdefγ(κ)
[
vℓ(κ)−defγ(κ)P (γ, λ) + ζκ(γ)v

−ℓ(κ)+defγ(κ)P (wκ × γ, λ)
]
âκγ

{l:coefficient}
Lemma 9.2.1 Fix γ with κ ∈ τ(γ). The coefficient of âκγ in T̂κ(Ĉλ) is

(9.2.2)

vdefγ(κ)
[
vℓ(κ)−defγ(κ)P̂ σ(γ, λ)+

ζκ(γ)v
−ℓ(κ)+defγ(κ)P̂ σ(wκ × γ, λ)]+

(v + v−1)defγ(κ)
∑

γ′|γ
κ
→γ′

P̂ σ(γ′, λ)ǫ(γ′, γ)

Here is the information needed to make this explicit. Assume κ ∈ τ(γ).
If tγ(κ) =1r2,2r22,1C-,2C-,3C- then wκ × γ 6= γ. In all other cases

wκ × γ = γ.
We need {γ′ | γ

κ
→ γ′}:

(1) tγ(κ) =1C-,2C-,3C-: wκ × γ;
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(2) tγ(κ) =1r2,2Cr,2r22,3Cr,3r: γκ (single valued);

(3) tγ(κ) =1r1f,2r21,2r11: {γ
1
κ, γ

2
κ} (double valued);

(4) tγ(κ) =1r1s,1ic,2ic,3ic: none

The defect defγ(κ) is 1 if tγ(κ) =2Cr,3Cr,3r, and 0 otherwise.

ζκ(γ) =





1 tγ(κ) = 1ic,2ic,3ic

0 tγ(κ) = 1C-,2C-,3C-

−1 otherwise

Table 9.2.3

coefficient of âκγ in T̂κ(Ĉλ)

tγ(κ) first term on the RHS of (9.2.2) second term on RHS of (9.2.2)

1C- vP̂ σ(γ, λ) P̂ σ(wκ × γ, λ)

1r1f (v − v−1)P̂ σ(γ, λ) P̂ σ(γ1
κ, λ) + P̂ σ(γ2

κ, λ)

1r1s (v − v−1)P̂ σ(γ, λ)

1r2 vP̂ σ(γ, λ)− v−1P̂ σ(wκ × γ, λ) P̂ σ(γκ, λ)

1ic (v + v−1)P̂ σ(γ, λ)

2C- v2P̂ σ(γ, λ) P̂ σ(wκ × γ, λ)

2Cr v(v − v−1)P̂ σ(γ, λ) (v + v−1)P̂ σ(γκ, λ)

2r22 v2P̂ σ(γ, λ)− v−2P̂ σ(wκ × γ, λ) P̂ σ(γκ, λ)

2r21 (v2 − v−2)P̂ σ(γ, λ)
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)P̂ σ(γ′, λ)

2r11 (v2 − v−2)P̂ σ(γ, λ) P̂ σ(γ1
κ, λ) + P̂ σ(γ2

κ, λ)

2ic (v2 + v−2)P̂ σ(γ, λ)

3C- v3P̂ σ(γ, λ) P̂ σ(wκ × γ, λ)

3Cr v(v2 − v−2)P̂ σ(γ, λ) (v + v−1)P̂ σ(γκ, λ))

3r v(v2 − v−2)P̂ σ(γ, λ) (v + v−1)P̂ σ(γκ, λ)

3ic (v3 + v−3)P̂ σ(γ, λ) {table:akappagammainTClambda
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Here is a condensed version of this table. Let k = ℓ(κ).

Table 9.2.4

coefficient of âκγ in T̂κ(Ĉλ)

tγ(κ) first term on the RHS of (9.2.2) second term on RHS of (9.2.2)

1C-,2C-,3C- vkP̂ σ(γ, λ) P̂ σ(wκ × γ, λ)

1ic,2ic,3ic (vk + v−k)P̂ σ(γ, λ)

2Cr,3Cr,3r v(vk−1 − v−k+1)P̂ σ(γ, λ) (v + v−1)P̂ σ(γκ, λ)

1r1f,2r11 (vk − v−k)P̂ σ(γ, λ) P̂ σ(γ1
κ, λ) + P̂ σ(γ2

κ, λ)

1r1s (v − v−1)P̂ σ(γ, λ)

1r2,2r22 vkP̂ σ(γ, λ)− v−kP̂ σ(wκ × γ, λ) P̂ σ(γκ, λ)

2r21 (v2 − v−2)P̂ σ(γ, λ)
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)P̂ σ(γ′, λ)

{table:akappagammainTClambda2

9.3 T̂κ(Ĉµ) in terms of Ĉγ
{l:tauinv}

Lemma 9.3.1 Suppose γ ∈ Dσ, κ ∈ S. Then κ ∈ τ(λ) iff

T̂κĈλ = (vℓ(κ) + v−ℓ(κ))Ĉλ.

This is the way “descent” is defined. In the geometric language of [5], the
condition means that the corresponding perverse sheaf is pulled back from
the partial flag variety of type κ. Compare [4, Theorem 4.4(c)] and [6, Lemma
6.7].

Recall the image of T̂κ has {âκγ | γ ∈ D
σ, κ ∈ τ(γ)} as a basis. We can

use {Ĉγ | γ ∈ D
σ, κ ∈ τ(γ)} instead.

{l:basis}
Lemma 9.3.2 Fix κ ∈ S.

(1) Suppose µ ∈ Dσ, and κ ∈ τ(µ). Then

(9.3.3) Ĉµ =
∑

γ|κ∈τ(γ)

P̂ σ(γ, µ)âκγ ;

The coefficient polynomials are exactly the ones from Theorem 7.5. In
particular Ĉµ is in the image of T̂κ.
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(2) The elements

{Ĉµ | µ ∈ D
σ, κ ∈ τ(µ)}

form a basis of the image of T̂κ.

Proof. For (1), write {e:easy}

(9.3.4)(a) Ĉµ =
∑

γ|κ∈τ(γ)

P̂ σ(γ, µ)âγ +
∑

γ|κ 6∈τ(γ)

P̂ σ(γ, µ)âγ.

By Lemmas 9.3.1 and 9.1.1(3) we can also write Ĉµ =
∑

γ|κ∈τ(γ)

R̂σ(γ, µ)âκγ for

some R̂σ(γ, µ) ∈ Z[v, v−1]. Plugging in the definition of âγ (Lemma 9.1.1(2))
gives

(9.3.4)(b) Ĉµ =
∑

γ|κ∈τ(γ)

R̂σ(γ, µ)[âγ + vℓ(γ
′)−ℓ(γ)

∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)âγ′ ].

Since κ 6∈ τ(γ′) for each term in the last sum, comparing coefficients of âγ
(κ ∈ τ(γ)) in (a) and (b) gives R̂(γ, µ) = P̂ σ(γ, µ). This gives (1), and (2)
follows. �

Comparing the coefficients of âγ with κ 6∈ τ(γ) gives the “easy” recurrence

relations for the P̂ σ(γ, λ). See Section 10.

Next we want to compute T̂κĈλ in the basis Ĉγ. When κ ∈ τ(λ) this is
given in Lemma 9.3.1. We turn now to the case κ 6∈ τ(λ).

{l:sumtau}
Lemma 9.3.5 (compare [4, Theorem 4.4(a,b)]) Suppose κ 6∈ τ(λ). Then

(9.3.6) T̂κĈλ =
∑

γ|κ∈τ(γ)

mκ(γ, λ)Ĉγ

for some mκ(γ, λ) ∈ Z[v, v−1]. Each mκ(γ, λ) is self-dual, and is of the form

mκ(γ, λ) =





mκ,0(γ, λ) ℓ(κ) = 1

mκ,0(γ, λ) +mκ,1(γ, λ)(v + v−1) ℓ(κ) = 2

mκ,0(γ, λ) +mκ,1(γ, λ)(v + v−1) +mκ,2(γ, λ)(v
2 + v−2) ℓ(κ) = 3

for some integers mκ,i(γ, λ).
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Proof. The existence of mκ(γ, δ) is (2) of Lemma 9.3.2. That the left side of

(9.3.6) is self-dual is [4, 4.8(e)], and since Ĉδ is self-dual this implies mκ(γ, δ)
is self-dual.

The highest order term of mκ(γ, λ) is v
ℓ(κ)−1. This follows by downward

induction on ℓ(γ). See [4, pg. 17 (Proof of Theorem 4.4)]. This gives the
remaining assertion. �

Remark 9.3.7 It is easy to see mκ(γ, λ) 6= 0 implies γ
κ
→ λ, or γ < λ, or

γ
κ
→ γ′ for some γ′ < λ. We make this more precise in Lemmas 9.4.1 and

9.4.5.

In the classical setting µ(γ, λ) is defined to be the coefficient of the top

degree term in P (γ, λ), i.e. q
1

2
(ℓ(λ)−ℓ(γ)−1). Furthermore if γ < λ then

m(γ, λ) = µ(γ, λ).

With our normalization the top degree term in P̂ σ(γ, λ) is v−1, which is
zero unless ℓ(λ)− ℓ(γ) is odd. We need a generalization to take κ of length
2, 3 into account.

Definition 9.3.8 For i = −1,−2,−3 let µ̂σ
i (γ, λ) be the coefficient of vi in

P̂ σ(γ, λ).

So

P̂ σ(γ, λ) = µ̂σ
−3(γ, λ)v

−3 + µ̂σ
−2(γ, λ)v

−2 + µ̂σ
−1(γ, λ)v

−1 (mod v−4).

It is clear that

(9.3.9) µ̂σ
−k(γ, λ) = 0 unless ℓ(γ)− ℓ(γ) = k (mod 2).

We can now state the main result of this section.
{t:T_kappa}

Theorem 9.3.10 Suppose κ 6∈ τ(λ). Then

T̂κĈλ =
∑

γ|κ∈τ(γ)

mκ(γ, λ)Ĉγ.

for coefficients mκ(γ, λ) given as follows.
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(1) If γ
κ
→ λ then

(9.3.11) mκ(γ, λ) = (v+v−1)defκ(γ)ǫ(γ, λ) =




ǫ(γ, λ) defλ(κ) = 0

(v + v−1) defλ(κ) = 1

(recall ǫ(λ, γ) = ±1, and is 1 unless tγ(κ) =2r21, cf. Definition 5.2.1).

(2) Assume γ
κ

6→ λ, and ℓ(κ) = 1. Then

mκ(γ, λ) = µ̂σ
−1(γ, λ).

(3) Assume γ
κ

6→ λ, and ℓ(κ) = 2.

(a) If ℓ(γ) 6≡ ℓ(λ) (mod 2) then

mκ(γ, λ) = µ̂σ
−1(γ, λ)(v + v−1).

(b) If ℓ(γ) ≡ ℓ(λ) (mod 2) then

mκ(γ, λ) = µ̂σ
−2(γ, λ)−

∑

δ
κ∈τ(δ)
γ<δ<λ

µ̂σ
−1(γ, δ)µ̂

σ
−1(δ, λ)

−

{
µ̂σ
−1(γ, λ

κ) tλ(κ) = 2Ci

0 else

}
+

{
µ̂σ
−1(γκ, λ) tγ(κ) = 2Cr

0 else

}

(4) Assume γ
κ

6→ λ, and ℓ(κ) = 3.

(a) If ℓ(γ) ≡ ℓ(λ) (mod 2) then

mκ(γ, λ) =
[
µ̂σ
−2(γ, λ)−

∑

δ
κ∈τ(δ)
γ<δ<λ

µ̂σ
−1(γ, δ)µ̂

σ
−1(δ, λ)

]
(v + v−1)
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(b) If ℓ(γ) 6≡ ℓ(λ) (mod 2) then

mκ(γ, λ) = µ̂σ
−3(γ, λ)(v

2 + v−2)

+
∑

δ,φ
κ∈τ(δ),κ∈τ(φ)

γ<δ<φ<λ

µ̂σ
−1(γ, δ)µ̂

σ
−1(δ, φ)µ̂

σ
−1(φ, λ)+

−
∑

δ
κ∈τ(δ)
γ<δ<λ

[
µ̂σ
−1(γ, δ)µ̂

σ
−2(δ, λ) + µ̂σ

−2(γ, δ)µ̂
σ
−1(δ, λ)

]

−




µ̂σ
−1(γ, λ

κ) tλ(κ) = 3Ci or 3i

0 else

+




µ̂σ
−1(γκ, λ) tγ(κ) = 3Cr or 3r

0 else

I’ve written the proof in great length for the sake of finding errors. See
the Appendix.

Theorem 9.3.10 gives us a basic identity which we use repeatedly.
Suppose κ 6∈ τ(λ). By Theorem 9.3.10 and (7.6):

(9.3.12)

T̂κĈλ =
∑

δ|κ∈τ(δ)

mκ(δ, λ)Ĉδ

=
∑

δ|κ∈τ(δ)

mκ(δ, λ)
∑

γ

P̂ σ(γ, λ)âγ

=
∑

γ

[ ∑

δ|κ∈τ(δ)

P̂ σ(γ, δ)mκ(δ, λ)
]
âγ

{p:basicidentity}
Proposition 9.3.13 Fix κ ∈ S, γ, λ ∈ Dσ, with κ 6∈ τ(λ). Then

(9.3.14)
∑

δ|κ∈τ(δ)

P̂ σ(γ, δ)mκ(δ, λ) = multiplicity of âγ in T̂κ(Ĉλ)

If κ ∈ τ(γ) the same equality holds with âκγ on the right hand side.
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9.4 Nonvanishing of mκ(γ, λ)

It is important to know when mκ(γ, λ) can be nonzero.
{l:mnotzero}

Lemma 9.4.1 Assume κ ∈ τ(γ), κ 6∈ τ(λ), and mκ(γ, λ) 6= 0. Then one of
the following conditions holds:

(a) γ
κ
→ λ

(b) γ < λ

(c) defγ(κ) = 1, γ 6< λ, and µ̂σ
−1(γκ, λ) 6= 0.

(c′) defλ(κ) = 1, γ 6< λ, and µ̂σ
−1(γ, λ

κ) 6= 0.

See Definition 9.1.4 for defγ(κ). Compare [6, Lemma 6.7], and [3, Section
3,II].

Remark 9.4.2 In the classical case either γ
κ
→ λ, or m(γ, λ) = µ(γ, λ) (the

top degree term of P (γ, λ)), which is nonzero only if γ < λ. So cases (c),
(c′) don’t occur. Since they allow mκ(γ, λ) 6= 0 for some γ 6< λ, these cause
some trouble.

Proof. Consulting the cases in the Theorem, if mκ(γ, λ) 6= 0 then either:

(1) γ
κ
→ λ (Case (1) of the Theorem)

(2) Some µ̂σ
−k(γ, δ) 6= 0 with δ ≤ λ. This implies γ < λ (γ 6= λ since they

have opposite τ -invariants).

(3) One of the terms in braces in Cases (3b) or (4b) is nonzero.

The cases 2Cr, 3Cr, 3r, 2Ci, 3Ci, 3i are exactly the ones in which the
defect is 1, and since µ̂σ

−1(γ, λ
κ) 6= 0 or µ̂σ

−1(γκ, λ) 6= 0 this gives the result.
�

{d:kappaless}

Definition 9.4.3 Suppose κ ∈ τ(γ), κ 6∈ τ(λ). We say γ
κ
≺ λ if one of

conditions (b,c,c′) of the Lemma hold:

(b) γ < λ

(c) defγ(κ) = 1, γ 6< λ, and µ̂σ
−1(γκ, λ) 6= 0.
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(c′) defλ(κ) = 1, γ 6< λ, and µ̂σ
−1(γ, λ

κ) 6= 0.

Thus (9.3.6) becomes

(9.4.4) T̂κĈλ =
∑

γ|κ∈τ(γ)

γ
κ
→λ

mκ(γ, λ)Ĉγ +
∑

γ|κ∈τ(γ)

γ
κ
≺λ

mκ(γ, λ)Ĉγ

We want to replace (b),(c),(c′) with (weaker) conditions in terms of length.
Obviously (b) implies ℓ(γ) < ℓ(λ). Suppose ℓ(γ) ≥ ℓ(λ), and (c) or (c′) holds.
This is quite rare.

Consider Case (c). We’re assuming ℓ(γκ) < ℓ(λ) ≤ ℓ(γ). It is hard to
satisfy this. Subtract ℓ(γκ) from each term, and use ℓ(γκ) = ℓ(γ)− ℓ(κ) + 1,
to see

0 < ℓ(λ)− ℓ(γκ) ≤ ℓ(κ)− 1 ∈ {1, 2}

But µ̂σ
−1(γκ, λ) 6= 0 implies ℓ(λ)− ℓ(γκ) is odd, so it equals 1, and

ℓ(γ) = ℓ(λ) + ℓ(κ)− 2, ℓ(γκ) = ℓ(λ)− 1.

Case (c′) is similar: tλ(κ) =2Cr,3Cr,3r, ℓ(γ) = ℓ(λ) + ℓ(κ)− 2, and ℓ(λκ) =
ℓ(γ) + 1.

These are illustrated by the following pictures. An arrow with a label:
α→

k
β indicates k = ℓ(α)− ℓ(β).

γ
ℓ(κ)−1−j

��
@

@

@

@

@

@

@

@

ℓ(κ)−1 κ

��

γ

ℓ(κ)−1−j
��

@

@

@

@

@

@

@

@

λκ<

j
oo

ℓ(κ)−1κ

��
γκ λ<

j
oo λ

The preceding argument shows that j = 1 in both cases.
This gives a nonvanishing criterion in terms of length.

{l:kappalesslength

Lemma 9.4.5 Assume κ ∈ τ(γ), κ 6∈ τ(λ), and γ
κ
≺ λ. Then one of the

following conditions holds:

(b) ℓ(γ) < ℓ(λ)

(c) ℓ(γ) = ℓ(λ) + ℓ(κ)− 2, defγ(κ) = 1

(c′) ℓ(γ) = ℓ(λ) + ℓ(κ)− 2, defλ(κ) = 1
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{r:rare}
Remark 9.4.6 Explicitly, Cases (c) and (c′) of the Lemma are:

(1) ℓ(κ) = 2, tγ(κ) =2Cr or tλ(κ) =2Ci, and ℓ(γ) = ℓ(λ);

(2) ℓ(κ) = 3, tγ(κ) =3Cr,3r or tλ(κ) =3Ci,3i, and ℓ(γ) = ℓ(λ) + 1.

� Cases (a,b,c,c′) in Lemmas 9.4.1 and 9.4.5 don’t precisely line up.
There can be γ in case (c) or (c′) of Lemma 9.4.1, so γ 6< λ, but

ℓ(γ) < ℓ(λ), putting it in case (b) of Lemma 9.4.5.

10 Computing P̂ σ(γ, µ)
{s:recursion}

10.1 Easy recurrence relations
{s:easy}

Recall (9.3.4)(a) and (b)

Ĉµ =
∑

γ|κ∈τ(γ)

P̂ σ(γ, µ)âγ +
∑

γ|κ 6∈τ(γ)

P̂ σ(γ, µ)âγ.

and

Ĉµ =
∑

γ|κ∈τ(γ)

P̂ σ(γ, µ)âγ +
∑

γ′|κ 6∈τ(γ′)

[ ∑

γ|γ
κ
→γ′

vℓ(γ
′)−ℓ(γ)P̂ σ(γ, µ)ǫ(γ, γ′)

]
âγ′ .

Equate the coefficients of âγ (κ 6∈ τ(γ)), and use (9.1.5) to conclude the
“easy” relations:

{l:easyrecursion}
Lemma 10.1.1 Suppose κ 6∈ τ(γ), κ ∈ τ(µ). Then

(10.1.2) P̂ σ(γ, µ) = v−ℓ(κ)+defγ(κ)
∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)P̂ σ(γ′, µ)

We will compute P̂ σ(γ, µ) (and mκ(γ, µ)) by induction on length as fol-

lows. To compute P̂ σ(γ, µ) we may assume we know:

(10.1.3)
P̂ σ(∗, µ′) if ℓ(µ′) < ℓ(µ)

P̂ σ(γ′, µ) if ℓ(γ′) > ℓ(γ).
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We know the right hand side of (10.1.2) by the inductive assumption. If

there is only one term on the right hand side P̂ σ(γ, µ) is equal (up to a power

of v) to a polynomial we have already computed. Otherwise P̂ σ(γ, µ) is the
sum of two terms.

Definition 10.1.4 Suppose γ < µ. Then (γ, µ) is:

• extremal if κ ∈ τ(µ)⇒ κ ∈ τ(γ)

• primitive if κ ∈ τ(µ)⇒ κ ∈ τ(γ) or κ 6∈ τ(γ), |{γ′ | γ′ κ
→ γ}| = 2.

I find the converses more natural:

Definition 10.1.5 Suppose γ < µ. Then (γ, µ) is:

• non-extremal if there exists κ ∈ τ(µ), κ 6∈ τ(γ).

• non-primitive if there exists κ ∈ τ(µ), κ 6∈ τ(γ) and |{γ′ | γ′ κ
→ γ}| < 2.

Explicitly (γ, µ) is:

• non-primitive if there exists κ ∈ τ(µ), κ 6∈ τ(γ) and tγ(κ) 6=1i2f,2i12.

Thus extremal ⊂ primitive and non-primitive ⊂ non-extremal.

If (γ, µ) is non-primitive, (10.1.2) writes P (γ, µ) = vkP (γ′, µ).

10.2 Direct Recursion Relations

Recall Proposition 9.3.13: {e:direct}

(10.2.1)(a)
∑

δ|κ∈τ(δ)

P̂ σ(γ, δ)mκ(δ, λ) = multiplicity of âγ in T̂κ(Ĉλ),

and if κ ∈ τ(γ) the same equality holds with âκγ on the right hand side.
By (9.4.4) the left hand side is:

(10.2.1)(b)
∑

δ|κ∈τ(δ)

δ
κ
→λ

P̂ σ(γ, δ)mκ(δ, λ) +
∑

δ|κ∈τ(δ)

δ
κ
≺λ

P̂ σ(γ, δ)mκ(δ, λ)

We introduce some notation for the final sum. See [6, after Lemma 6.7].
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{d:U}
Definition 10.2.2 For κ 6∈ τ(λ) define:

Ûκ(γ, λ) =
∑

δ|κ∈τ(δ)

δ
κ
≺λ

P̂ σ(γ, δ)mκ(δ, λ).

By (10.2.1)(a) and (b) we see:
{l:murecursion1}

Lemma 10.2.3 Fix γ, λ, with κ 6∈ τ(λ). Then

(10.2.4)
∑

δ|δ
κ
→λ

P̂ σ(γ, δ)mκ(δ, λ) = [coefficient of âγ in T̂κĈλ]− Ûκ(γ, λ).

If κ ∈ τ(γ) we can replace the term in brackets with

coefficient of âκγ in T̂κĈλ

We first dispense with a case which won’t be used until Section 11. In
the setting of the Lemma, if tλ(κ) =1i2s,1ic,2ic,3ic then, even though
κ ∈ τ(λ), there are no δ occuring in the sum on the left hand side.

{l:lhsempty}
Lemma 10.2.5 Assume tλ(κ) = 1i2s,1rn,2rn,3rn. Equivalently κ 6∈ τ(λ)
but there does not exist δ satisfying δ

κ
→ λ. Then

coefficient of âγ in T̂κĈλ = Ûκ(γ, λ)

We turn now to the main case, in which the left hand side of (10.2.4) is
nonempty. In this case this sum has 1 or 2 terms. We’re mainly interested
when it has 1 term, in which case it gives a formula for P̂ σ(γ, µ). For this
reason it is convenient to change variables. This gives the main result.

{p:recursion}
Proposition 10.2.6 Suppose κ ∈ τ(γ), κ ∈ τ(µ), and tµ(κ) 6=1r1s, 1ic,

2ic, 3ic. Choose λ satisfying µ
κ
→ λ. Then

(10.2.7)
∑

µ′|µ′
κ
→λ

P̂ σ(γ, µ′)mκ(µ
′, λ) = [coefficient of âκγ in T̂κĈλ]− Ûκ(γ, λ)

The sum on the left hand side is over {µ,wκ × µ} if tµ(κ) =1r2, 2r22,

2r21, and just µ otherwise.
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This is our main recursion relation. We analyse its effectiveness in the
next section.

Since we are assuming κ ∈ τ(γ) we have replaced âγ with âκγ as in Lemma
10.2.3.

Note that the term mκ(µ, λ) is computed by the first case of Theorem
9.3.10, i.e. µ

κ
→ λ, and either equals ǫ(µ, λ) = ±1 (see Definition 5.2.1) or

(v + v−1).
Consulting Theorem 9.3.10 we make the left side of the Proposition ex-

plicit.

Table 10.2.8

tµ(κ) LHS of (10.2.7)

1C-,1r1f,2C-,2r11,3C- P̂ σ(γ, µ)

1r2,2r22 P̂ σ(γ, µ) + P̂ σ(γ, wκ × µ)

2r21
∑

µ′|µ
κ
→µ′

ǫ(µ, µ′)P̂ σ(γ, µ′)

2Cr,3Cr,3r (v + v−1)P̂ σ(γ, µ)

In the 2r21 case, recall µ comes in an ordered pair (µ1, µ2). Then µ
κ
→ λ

says that λ is one member of the ordered pair µκ = (λ1, λ2).
We turn to the right hand side of (10.2.7). The first term is given by

Lemma 9.2.1. Let k = ℓ(κ). This is copied from Table 9.2.4, which is a
condensed version of Table 9.2.3.

{table:condensed2}

Table 10.2.9
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tγ(κ) first term on RHS of (10.2.7)

1C-,2C-,3C- vkP̂ σ(γ, λ) + P̂ σ(wκ × γ, λ)

1ic,2ic,3ic (vk + v−k)P̂ σ(γ, λ)

2Cr,3Cr,3r v(vk−1 − v−k+1)P̂ σ(γ, λ) + (v + v−1)P̂ σ(γκ, λ)

1r1f,2r11 (vk − v−k)P̂ σ(γ, λ) + P̂ σ(γ1
κ, λ) + P̂ σ(γ2

κ, λ)

1r1s (v − v−1)P̂ σ(γ, λ)

1r2,2r22 vkP̂ σ(γ, λ)− v−kP̂ σ(wκ × γ, λ) + P̂ σ(γκ, λ)

2r21 (v2 − v−2)P̂ σ(γ, δ)+
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)P̂ σ(γ′, δ)

10.3 Analysis of the Recursion
{s:analysis}

Fix γ, µ with κ ∈ τ(γ) and tµ(κ) =1C-, 1r1f, 2C-, 2r11, 3C-, 2Cr,

3Cr, 3r. Choose λ with µ
κ
→ λ. Then Proposition 10.2.6 says

(10.3.1) P̂ σ(γ, µ) = coefficient of âκγ in T̂κĈλ − Ûκ(γ, λ).

Recall Ûκ(γ, λ) is given in Definition 10.2.2. We analyse how this fits in our
recursive scheme.

Recall to compute P (γ, µ) we may assume we know:

(10.3.2)
P̂ σ(∗, µ′) if ℓ(µ′) < ℓ(µ)

P̂ σ(γ′, µ) if ℓ(γ′) > ℓ(γ).

To compute the first term right hand side of (10.3.1) we only need various

P̂ σ(∗, λ), which we know by induction since ℓ(λ) < ℓ(µ). See Table 10.2.9.

This leaves Ûκ(γ, λ).
{l:U}

Lemma 10.3.3 Fix κ. For all γ, λ with κ 6∈ τ(λ): {e:U}

(10.3.4)(a)

Ûκ(γ, λ) =
∑

δ|κ∈τ(δ)
ℓ(γ)≤ℓ(δ)<ℓ(λ)

P̂ σ(γ, δ)mκ(δ, λ)+

∑

δ|tδ(κ)=2Cr,3Cr,3r
ℓ(δ)=ℓ(λ)+ℓ(κ)−2

P̂ σ(γ, δ)µ̂σ
−1(δκ, λ)+

∑

δ|κ∈τ(δ)
ℓ(δ)=ℓ(λ)+ℓ(κ)−2

P̂ σ(γ, δ)µ̂σ
−1(δ, λ

κ)
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The final sum occurs only if tγ(λ) =2Ci,3Ci,3i, i.e. defλ(κ) = 1. Further-
more the first sum can be further decomposed

(10.3.4)(b) Ûκ(γ, λ) = mκ(γ, λ) +
∑

δ|κ∈τ(δ)
ℓ(γ)<ℓ(δ)<ℓ(λ)

P̂ σ(γ, δ)mκ(δ, λ)

with the first term included only if κ ∈ τ(γ).

Proof. Recall Ûκ(γ, λ) is defined by the sum over δ
κ
≺ λ. Of course

P̂ σ(γ, δ) 6= 0 implies γ ≤ δ. Therefore, by the definition of
κ
≺, Ûκ(γ, λ)

is the sum over δ satisfying κ ∈ τ(δ), and one of:

(1) γ ≤ δ < λ

(2) defδ(κ) = 1, δ 6< λ, δκ < λ

(3) defλ(κ) = 1, δ 6< λ, δ < λκ

Every such term appears in (10.3.4). Conversely any nonzero term in (10.3.4)
appears in one of these cases. �

{p:directrecursion
Proposition 10.3.5 (Direction Recursion) Suppose κ ∈ τ(γ), κ ∈ τ(µ),
and tµ(κ) =1C-, 1r1f, 2C-, 2r11, 3C-, 2Cr, 3Cr, 3r. By induction

we know all terms necessary to compute P̂ σ(γ, µ) unless tµ(κ) =2Cr,3Cr,3r
and ℓ(µ)− ℓ(γ) is odd. In this case:

(v + v−1)P̂ σ(γ, µ) = µ̂σ
−1(γ, µ) + (∗)

where all terms in (*) are known. This can be solved for P̂ σ(γ, µ).

Remark 10.3.6 This computes P̂ σ(γ, µ) (κ ∈ τ(γ), τ(µ)) unless:

(1) there is no λ with µ
κ
→ λ: 1r1s,1ic,2ic,3ic

(2) µ
κ
→ λ for some λ, but |{µ′|µ′ κ

→ λ}| = 2: 1r2,2r22,2r21.

See Section 12.
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Proof.
Since κ ∈ τ(γ), and λ is not of type 2Ci,3Ci,3i, Lemma 10.3.3 says:

(10.3.7)

Ûκ(γ, λ) = m(γ, λ) +
∑

δ|κ∈τ(δ)
ℓ(γ)<ℓ(δ)<ℓ(λ)

P̂ σ(γ, δ)mκ(δ, λ)+

∑

δ|tδ(κ)=2Cr,3Cr,3r
ℓ(δ)=ℓ(λ)+ℓ(κ)−2

P̂ σ(γ, δ)µ̂σ
−1(δκ, λ)

In the first sum ℓ(δ) < ℓ(λ) < ℓ(µ). In the second ℓ(δ) = ℓ(λ)+ℓ(κ)−2 <

ℓ(λ) + ℓ(κ)− defµ(κ) = ℓ(µ). So we know all terms P̂ σ(γ, δ) occuring by the
inductive hypothesis.

We also need various mκ(δ, λ) with ℓ(γ) < ℓ(δ) < ℓ(λ). By Theorem

9.3.10 this requires some terms P̂ σ(∗, λ′) with ℓ(λ′) ≤ ℓ(λ), which we know by
induction. We also need some terms µ̂σ

−1(δκ, λ) (when tδ(κ) =2Cr,3Cr,3r).
Since ℓ(λ) < ℓ(µ) we know all of these terms by the inductive hypothesis. We
also need to know terms of the form µ̂σ

−1(δ, λ
κ) (when tλ(κ) =2Ci,3Ci,3i).

Since λκ = µ, this requires P̂ σ(δ, µ) with ℓ(δ) > ℓ(γ), which we know.
This takes care of all terms except the lead term mκ(γ, λ).

To compute mκ(γ, λ) we again need various P̂ σ(∗, λ′) (ℓ(λ′) < ℓ(λ)) and
µ̂σ
−1(γκ, λ), all of which we know. This leaves only µ̂σ

−1(γ, λ
κ) = µ̂σ

−1(γ, µ),
when tλ(κ) =2Ci, 3Ci, 3i. Consulting the cases of Theorem 9.3.10, we
see this term appears if ℓ(κ) = ℓ(γ)− ℓ(λ) (mod 2), in which case µ̂σ

−1(γ, µ)
is the constant term of mκ(γ, µ). We conclude that the right hand side of
the formula in Proposition 10.2.6 is of the form µ̂σ

−1(γ, µ) + (∗) where (∗)

is known by induction. Also, the left hand side is (v + v−1)P̂ σ(γ, µ). This

implies P̂ σ(γ, ν) ∈ v−1
Z[v−2] (which also follows by checking lengths).

The remaining case is provided by the next Lemma. �

{l:topterm}
Lemma 10.3.8 Suppose f(v) ∈ v−1

Z[v−2], and we know all terms of f(v)(v+
v−1) except the constant term. Then we can compute f(v).

Proof. Write f(v) = cnv
−1 + cn−1v

−3 + · · ·+ c0v
−(2n+1), and

(v + v−1)f(v) = bn+1 + bnv
−2 + vn−1v

−4 + · · ·+ b0v
−2n−2
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and we know b0, . . . , bn. Starting at v−2n−2 we see c0 = b0, (c1 + c0) =
b1, (c2 + c1) = b2, . . . . This is easy to solve for ci: c0 = b0, c1 = b0 − b1, c2 =
b2 − b1 + b0, . . . . That is:

ck = (−1)k
k∑

0

(−1)jbj (0 ≤ k ≤ n).

�

Remark 10.3.9 It might be easier to think about this if we multiply by
v2n+2 and replace v2 with q. This gives

(1 + q)(c0 + c1q
2 + · · ·+ cnq

n) = b0 + b1q + · · ·+ bn+1q
n+1

If we know all terms on the right hand side except for bn+1, we can find all
ci.

11 New Recursion Relations
{s:new}

We return now to the setting of Lemma 10.2.3, and the case we skipped
earlier.

{l:lhsempty2}

Lemma 11.1 Assume tλ(κ) = 1i2s,1rn,2rn,3rn. Equivalently κ 6∈ τ(λ)
but there does not exist λ′ satisfying λ′ κ

→ λ. Then for any γ:

(11.2)
∑

µ

P̂ σ(µ, λ)(multiplicity of âγ in T̂κ(âµ)) = Ûκ(γ, λ)

This is an immediate consequence of Lemma 10.2.5, which says that under
this assumption coefficient of âγ in T̂κĈλ = Ûκ(γ, λ).

The left hand side has at most 3 terms, which can be read off from the
tables in Section 8.1, or Table 8.2.1. One of the terms is a polynomial times
P̂ σ(γ, λ), and we wish to solve for P̂ σ(γ, λ).

If κ 6∈ τ(γ) then the only possibilities for µ are µ = γ, µ = wκ × γ, or

µ
κ
→ γ. These are all well suited to using induction to computing P̂ σ(γ, λ),

unless tγ(κ) =1i2s,1rn,2rn,3rn, in which case the coefficient of P̂ σ(γ, λ) is
0.
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If κ ∈ τ(γ) then µ = γ, µ = wκ × γ or γ
κ
→ µ. If γ

κ
→ µ then γ > µ

and this is not well suited to our inductive hypothesis. So this case is only
effective if there is no such µ, i.e. tγ(κ) =1r1s,1ic,2ic,3ic.

Here are the resulting formulas.
{table:newnotkappa

Table 11.3

Formula (11.2): κ 6∈ τ(γ)

tγ(κ) LHS

1C+ v−1P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ)

1i1 v−1P̂ σ(γ, λ) + v−1P̂ σ(wκ × γ, λ) + (1− v−2)P̂ σ(γκ, λ)

1i2f 2v−1P̂ σ(γ, λ) + v−1(v − v−1)(P̂ σ(γκ
1 , λ) + P̂ σ(γκ

2 , λ))

1i2s 0

1rn 0

2C+ v−2P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ)

2Ci v−1(v + v−1)P̂ σ(γ, λ) + (v − v−1)P̂ σ(γκ, λ)

2i11 v−2(P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ)) + (1− v−4)P̂ σ(γκ, λ)

2i12 2v−2P̂ σ(γ, λ) + (1− v−4)
∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)P̂ σ(γ′, λ)

2i22 2v−2P̂ σ(γ, λ) + (1− v−4)(P̂ σ(γκ
1 , λ) + P̂ σ(γκ

2 , λ))

2rn 0

3C+ v−3P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ)

3Ci,3i v−2(v + v−1)P̂ σ(γ, λ) + (v2 − v−2)v−1P̂ σ(γκ, λ)

3rn 0

{table:newkappa}
Table 11.4
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Formula (11.2): κ ∈ τ(γ)

tγ(κ) LHS

1r1s (v − v−1)P̂ σ(γ, λ)

1ic (v + v−1)P̂ σ(γ, λ)

2ic (v2 + v−2)P̂ σ(γ, λ)

3ic (v3 + v−3)P̂ σ(γ, λ)

Solve these for P̂ σ(γ, λ).

Lemma 11.5 Assume tλ(κ) =1i2s,1rn,2rn,3rn. Then:
{table:new}

Table 11.6
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Formula for P̂ σ(γ, λ), tλ(κ) =1i2s,1rn,2rn,3rn.

tγ(κ) Formula for P̂ σ(γ, λ)

κ 6∈ τ(γ)

1C+ P̂ σ(γ, λ) = −vP̂ σ(wκ × γ, λ) + vÛκ(γ, λ)

1i1 P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ) = −(v − v−1)P̂ σ(γκ, λ) + vÛκ(γ, λ)

1i2f P̂ σ(γ, λ) = −2(v − v−1)(P̂ σ(γκ
1 , λ) + P̂ σ(γκ

2 , λ)) + 2vÛκ(γ, λ)

1i2s none

1rn none

2C+ P̂ σ(γ, λ) = −v2P̂ σ(wκ × γ, λ) + v2Ûκ(γ, λ)

2Ci (v + v−1)P̂ σ(γ, λ) = −v(v − v−1)P̂ σ(γκ, λ) + vÛκ(γ, λ)

2i11 P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ) = −(v2 − v−2)P̂ σ(γκ, λ) + v2Ûκ(γ, λ)

2i12 2v−2P̂ σ(γ, λ) = −1
2
(v2 − v−2)

∑

γ′|γ′
κ
→γ

ǫ(γ′, γ)P̂ σ(γ′, λ) + 1
2
v2Ûκ(γ, λ)

2i22 P̂ σ(γ, λ) = −1
2
(v2 − v−2)(P̂ σ(γκ

1 , λ) + P̂ σ(γκ
2 , λ)) +

1
2
v2Ûκ(γ, δ)

2rn none

3C+ P̂ σ(γ, λ) = −v3P̂ σ(wκ × γ, λ) + v3Ûκ(γ, δ)

3Ci,3i (v + v−1)P̂ σ(γ, λ) = −v(v2 − v−2)P̂ σ(γκ, λ) + v2Ûκ(γ, λ)

3rn none

κ ∈ τ(γ)

1r1s (v − v−1)P̂ σ(γ, λ) = Ûκ(γ, λ)

1ic (v + v−1)P̂ σ(γ, λ) = Ûκ(γ, λ)

2ic (v2 + v−2)P̂ σ(γ, λ) = Ûκ(γ, λ)

3ic (v3 + v−3)P̂ σ(γ, λ) = Ûκ(γ, λ)

In every case we know all terms on the RHS by induction, with the
possible exception of Ûκ(γ, λ). By Lemma 10.3.3, since tλ(κ) 6=2Ci,3Ci,3i,
(11.7)

Ûκ(γ, λ) =
∑

δ|κ∈τ(δ)
ℓ(γ)≤ℓ(δ)<ℓ(λ)

P̂ σ(γ, δ)mκ(δ, λ) +
∑

δ|tδ(κ)=2Cr,3Cr,3r
ℓ(δ)=ℓ(λ)+ℓ(κ)−2

P̂ σ(γ, δ)µ̂σ
−1(δκ, λ)

The second sum is problematic, so we give it a name.
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{d:Udagger}
Definition 11.8 Suppose κ 6∈ τ(λ). Define:

(11.9) Û †
κ(γ, λ)

∑

δ|tδ(κ)=2Cr,3Cr,3r
ℓ(δ)=ℓ(λ)+ℓ(κ)−2

P̂ σ(γ, δ)µ̂σ
−1(δκ, λ)

This term doesn’t fit well in our recursion scheme, since ℓ(δ) > ℓ(λ). (In
the direct recursion section this wasn’t an issue, since we were computing
P̂ σ(γ, µ), and ℓ(µ) > ℓ(δ).) We’re hoping this term is usually 0.

Definition 11.10 Fix κ ∈ S, γ, λ ∈ Dσ, with κ 6∈ τ(λ).
We say condition A holds for (κ, γ, λ) if

(A) κ ∈ τ(δ), defδ(κ) = 1, ℓ(δ) = ℓ(λ) + ℓ(κ) + 2⇒ P̂ σ(γ, δ)µ̂σ
−1(δκ, λ) = 0

This is automatic if ℓ(κ) = 1.
We say condition (†) holds for (κ, γ, λ) if

(†) Û †
κ(γ, λ) = 0

Obviously (A)⇒ (†), although (A) is easier to check. It often holds simply
because the set in (A) is empty.

So now we need to compute:

(11.11) Ûκ(γ, λ) = mκ(γ, λ) +
∑

δ|κ∈τ(δ)
ℓ(γ)<ℓ(δ)<ℓ(λ)

P̂ σ(γ, δ)mκ(δ, λ) + Û †
κ(γ, λ)

with the first term present only if κ ∈ τ(γ).
As in the discussion in Section 10.3 we know all of the terms in the first

sum. There is one crucial difference with the direct recursion of Proposition
10.3.5. In that lemma we were computing P̂ σ(γ, µ), and we needed P̂ σ(γ, λ),
where µ

κ
→ λ. This gave us a little extra room when applying the inductive

hypothesis that we know P̂ σ(∗, µ′) with µ′ < µ.
We consider the terms appearing in the sum in (11.11).
If κ ∈ τ(γ) we don’t know the term mκ(γ, λ).

By the inductive hypothesis we know all terms P̂ σ(γ, δ) occuring in (11.11).

Consider mκ(δ, λ). This requires various P̂ σ(∗, λ′) with ℓ(λ)′ < ℓ(λ), and
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P̂ σ(δ′, λ) with ℓ(δ′) ≥ ℓ(δ) > ℓ(γ), all of which we know. The only potential
problems are the terms

P̂ σ(γ, δ)µ̂σ
−1(δκ, λ) if defγ(κ) = 1

which occur in the formulas for mκ(δ, λ) (the opposite case P̂
σ(δ, λκ) does not

occur since tλ(κ) 6=2Ci,3Ci,3i). If ℓ(δκ) > ℓ(γ) we know this by induction.
This leaves:

P̂ σ(γ, δ)µ̂σ
−1(δκ, λ) ℓ(δκ) ≤ ℓ(γ) < ℓ(δ), defγ(κ) = 1.

This might be an issue. (In the Direct Recursion this was taken care of by
the fact that λ < µ). As in the discussion after Definition 9.4.3 this term is
nonzero only if:

ℓ(δ) = ℓ(γ) + ℓ(κ)− 2, ℓ(γκ) = ℓ(δ)− 1

Definition 11.12 Fix κ ∈ S, γ, λ ∈ Dσ, with κ 6∈ τ(λ). We say condition
(B) holds for (κ, γ, λ) if

(B) κ ∈ τ(δ), defδ(κ) = 1, ℓ(δ) = ℓ(γ) + ℓ(κ) + 2⇒ P̂ σ(γ, δ)µ̂σ
−1(δκ, λ) = 0

This is automatic if ℓ(κ) = 1.

Here is the conclusion.
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{p:newrecursion}

Proposition 11.13 Fix κ ∈ S, γ, λ ∈ Dσ, satisfying:

(1) tγ(κ) =1C+, 1i2f, 2C+, 2Ci, 2i12,2i22, 3C+, 3Ci, 3i, 1r1s, 1ic,

2ic, 3ic.

(2) tλ(κ) =1i2s,1rn,2rn,3rn

Assume conditions (A) and (B) hold. Then the formulas of Table 11.6 give an

effective recursion relation for P̂ σ(γ, λ). It is sufficient to assume Conditions
(†) and (B).

If tγ(κ) =1i1,2i11 the same result holds, except that we get a formuls

for P̂ σ(γ, λ) + P̂ σ(wκ × γ, λ).

Remark 11.14

(1) We allow λ if κ 6∈ τ(λ) but there is no λ′ with λ′ κ
→ λ (see Lemma

11.1): 1i2s,1rn,2rn,3rn. This gives the λ of the Proposition.

(2) If κ 6∈ τ(γ) we exclude γ if the formula has two terms on the LHS: 1i1,
2i11

(3) If κ 6∈ τ(γ) we exclude γ if there is no γ′ with γ′ κ
→ γ: type 1i2s,

1rn, 2rn, 3rn. Together (2) and (3) leave: 1C+, 1i2f, 2C+, 2Ci,

2i12,2i22, 3C+, 3Ci, 3i

(4) If κ ∈ τ(γ) we include γ if there is no γ′ with γ
κ
→ γ′: 1r1s,1ic,2ic,

3ic. (2-4) give the γ of the Proposition.

If κ 6∈ τ(γ) the term mκ(γ, λ) does not appear in (10.3.4), and the Lemma
is evident from the preceding discussion. If κ ∈ τ(γ) we need a generalization
of Lemma 10.3.8. Here are the cases.

In the column mκ(γ, λ) α is an unknown constant. We have written

P̂ σ(γ, λ) = v−1f(v−2) or v−2f(v−2), depending on the parity of ℓ(λ) − ℓ(γ),
where f is a polynomial. In the last column g is a polynomial which is known,
and α, β, γ are unkown constants. We want to solve for f .
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ℓ(κ) ℓ(λ)− ℓ(γ) mκ(γ, λ) equation

1 even 0 (v ± v−1)v−2f(v−2) = v−1g(v−2)

1 odd α (v ± v−1)v−1f(v−2) = α + v−2g(v−2)

2 even α (v2 − v−2)v−2f(v−2) = α + v−2g(v−2)

2 odd α(v + v−1) (v2 − v−2)v−1f(v−2) = αv + βv−1 + v−3g(v−2)

3 even α(v + v−1) (v3 − v−3)v−2f(v−2) = αv + βv−1 + v−3g(v−2)

3 odd α (v3 − v−3)v−1f(v−2) = βv2 + α + γv−2 + v−4g(v−2)

{l:topterm2}
Lemma 11.15 In each case in the table we can solve for f .

After multiplying by the appropriate power of v, these all come down to:

Lemma 11.16 Suppose (1±qk)f(q) = g(q) where g(q) is a polyomial. If we
know all but the top k coefficients of g, then we can solve for f .

12 Guide
{s:guide}

In the following tables, we’ve indicated which formulas to use in various cases.

(1) *: not primitive, easy recursion

(2) NE: not extremal (but primitive): easy recursion, but has a sum on the
right hand side

(3) *0: not primitive, necessarily 0

(4) DR: direct recursion (Proposition 10.3.5)

(5) DR+: new type of direct recursion (Proposition 11.13, ℓ(κ) = 1)

(6) DR+?: new type of direct recursion, but the recursion may not work.
See Proposition 11.13, ℓ(κ) = 2, 3; we need conditions (A) and (B).

In (2), {non-primitive}⊂{non-extremal}; the pairs marked NE are in the
second set, but not the first (they are not non-primitive).
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Type 1

1C- 1r1f 1r1s 1r2 1ic 1C+ 1i1 1i2f 1i2s 1rn

1C- DR DR

1r1f DR DR

1r1s DR DR DR+ DR+

1r2 DR DR

1ic DR DR DR+ DR+

1C+ * * * * * DR+ DR+

1i1 * * * * *

1i2f NE NE NE NE NE DR+ DR+

1i2s *0 *0 *0 *0 *0

1rn *0 *0 *0 *0 *0

Type 2

2C- 2Cr 2r22 2r21 2r11 2ic 2C+ 2Cif 1i11 1i12 2i22 2rn

2C- DR DR DR

2Cr DR DR DR

2r22 DR DR DR

2r21 DR DR DR

2r11 DR DR DR

2ic DR DR DR DR+?

2C+ * * * * * * DR+?

2Ci *0 *0 *0 *0 *0 *0 DR+?

2i11 * * * * * *

2i12 NE NE NE NE NE NE DR+?

2i22 * * * * * * DR+?

2rn *0 *0 *0 *0 *0 *0
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Type 3

3C- 3Cr 3r 3ic 3C+ 3Ci 3i 3rn

3C- DR DR DR

3Cr DR DR DR

3r DR DR DR

3ic DR DR DR DR+?

3C+ * * * * DR+?

3Ci * * * * DR+?

3i * * * * DR+?

3rn *0 *0 *0 *0
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13 Appendix: Proof of Theorem 9.3.10

Throughout this section we assume κ ∈ τ(γ), κ 6∈ τ(λ). Recall we are trying
to find mκ(γ, λ) such that:

T̂κĈλ =
∑

γ|κ∈τ(γ)

mκ(γ, λ)Ĉγ

The main tool is the identity (9.3.14) (for κ 6∈ τ(λ)):

(13.1)
∑

µ|κ∈τ(µ)

P̂ σ(γ, µ)mκ(µ, λ) = multiplicity of âγ in T̂κ(Ĉλ)

The right hand side is given by Table 10.2.9, which we reproduce here.
{table:condensed3}

Table 13.2

tγ(κ) RHS of (13.1)

1C-,2C-,3C- vkP̂ σ(γ, λ) + P̂ σ(wκ × γ, λ)

1ic,2ic,3ic (vk + v−k)P̂ σ(γ, λ)

2Cr,3Cr,3r v(vk−1 − v−k+1)P̂ σ(γ, λ) + (v + v−1)P̂ σ(γκ, λ)

1r1f,2r11 (vk − v−k)P̂ σ(γ, λ) + P̂ σ(γ1
κ, λ) + P̂ σ(γ2

κ, λ)

1r1s (v − v−1)P̂ σ(γ, λ)

1r2,2r22 vkP̂ σ(γ, λ)− v−kP̂ σ(wκ × γ, λ) + P̂ σ(γκ, λ)

2r21 (v2 − v−2)P̂ σ(γ, λ)+
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)P̂ σ(γ′, λ)

We are going to look at the top degree terms of both sides.
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Write any element of Z[v, v−1] as f = f+ + f− where f+ ∈ Z[v] and
f− ∈ v−1

Z[v−1]. We make frequent use of:

Lemma 13.3 If γ = µ then

[P̂ σ(γ, µ)mκ(µ, λ)]
+ = mκ,0(µ, λ) +mκ,1(µ, λ)v +mκ,2(µ, λ)v

2

If γ < µ then

P̂ σ(γ, µ)mκ(µ, λ)
+ =[µ̂σ

−2(γ, µ)mκ,2(µ, λ) + µ̂σ
−1(γ, µ)mκ,1(µ, λ)]+

µ̂σ
−1(γ, µ)mκ,2(µ, λ)v

{l:length1}
Lemma 13.4 If ℓ(κ) = 1 then

(13.5) mκ(γ, λ) = mκ,0(γ, λ) =





1 γ
κ
→ λ

µ̂σ
−1(γ, λ) γ < λ

0 else

Proof. Since ℓ(κ) = 1, mκ(µ, λ) = mκ,0(µ, λ) for all µ, and on the left hand
side of (13.1) the maximal degree is 0. In each term on the right hand side,

[vP̂ σ(γ, λ)]+ = µ̂σ
−1(γ, λ) and [v−1P̂ σ(γ, λ)]+ = 0. On the other hand a term

P̂ σ(µ,wκ × γ), P̂ σ(µ, γκ) or P̂ σ(µ, γi
κ) contributes 1 if and only if the two

arguments are equal. So, [ ]+ of both sides gives (the last column is tγ(κ)):

(13.6) mκ(γ, λ) = µ̂σ
−1(γ, λ) +





δwκ×γ,λ 1C−

δγ,
κλ + δγ2

κ,λ
1r1f

0 1r1s

δγκ,λ 1r2

0 1ic

Each Kronecker δ after the brace is non-zero precisely when γ
κ
→ λ, in which

case γ > λ, so µ̂σ
−1(γ, λ) = 0. �

This proves Cases (1) (ℓ(κ) = 1) and (2) of Theorem 9.3.10. Note that
m(γ, λ) = 0 unless γ

κ
→ λ or γ < λ.
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13.1 ℓ(κ) = 2

Take the + part of both sides of (13.1). The left hand side is

(13.1.1)(a) [mκ,0(γ, λ) +
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)mκ,1(µ, λ)] +mκ,1(γ, λ)v

The first and last terms are from µ = γ, and the second sum is from all other
terms µ 6= γ. (Note that the summand is 0 if µ = γ.)

The right hand side is

(13.1.1)(b) µ̂σ
−2(γ, λ) + µ̂σ

−1(γ, λ)v +





δwκ×γ,λ 2C−

µ̂σ
−1(γκ, λ) + δγκ,λv 2Cr

δγκ,λ 2r22
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)δγ′,λ 2r21

δγ1
κ,λ

+ δγ2
κ,λ

2r11

0 2ic

Equating the coefficient of v in (a) and (b) gives

(13.1.1)(c) mκ,1(γ, λ) =





µ̂σ
−1(γ, λ) tγ(κ) 6= 2Cr

µ̂σ
−1(γ, λ) tγ(κ) = 2Cr, and γ < λ

1 tγ(κ) = 2Cr, and γ
κ
→ λ

0 tγ(κ) = 2Cr, otherwise

We can rewrite this

(13.1.1)(d) mκ,1(γ, λ) = µ̂σ
−1(γ, λ) +




δγκ,λ tγ(κ) = 2Cr

0 otherwise

In particular mκ,1(γ, λ) = 0 unless γ < λ or γ
κ
→ λ.

Now (d) holds for all γ with κ ∈ τ(γ), so we can apply it to all γ occuring
the sum in (13.1).
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So plug this back in to (a), keep only the constant term, and set this
equal to the constant term of (b)
(13.1.1)(e)

mκ,0(γ, λ) +
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)

[
µ̂σ
−1(µ, λ) +




δµκ,λ tµ(κ) = 2Cr

0 else

]
=

µ̂σ
−2(γ, λ) +





δwκ×γ,λ 2C−

µ̂σ
−1(γκ, λ) 2Cr

δγκ,λ 2r22−
∑

γ′|γ
κ
→γ′

ǫ(γ, γ′)δγ′,λ 2r21

δγ1
κ,λ

+ δγ2
κ,λ

2r11

0 2ic

Note that each Kronecker δ after the brace is 1 iff γ
κ
→ λ. Also we can

put ǫ(γ, λ) in front of each such term without changing anything (these are
1 unless tγ(κ) =2r21). Therefore

(13.1.2)

mκ,0(γ, λ) = µ̂σ
−2(γ, λ)

−
∑

µ

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ)

−
∑

µ

µ̂σ
−1(γ, µ) ∗




δµκ,δ tµ(κ) = 2Cr

0 else

+





µ̂σ
−1(γκ, λ) tγ(κ) = 2Cr

ǫ(γ, λ) γ
κ
→ λ, tγ(κ) 6= 2Cr

0 otherwise

Then
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(13.1.3)
∑

µ

µ̂σ
−1(γ, µ) ∗




δµκ,λ tµ(κ) = 2Cr

0 else

is equal to

(13.1.4)




µ̂σ
−1(γ, λ

κ) tλ(κ) = 2Ci

0 else

{l:length2}
Lemma 13.1.5 Assume κ ∈ τ(γ), κ 6∈ τ(λ), ℓ(κ) = 2. Then

(13.1.6)(a)

mκ,0(γ, λ) = µ̂σ
−2(γ, λ)−

∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ)

−




µ̂σ
−1(γ, λ

κ) tλ(κ) = 2Ci

0 else

+





µ̂σ
−1(γκ, λ) tγ(κ) = 2Cr

ǫ(γ, λ) γ
κ
→ λ, tγ(κ) 6= 2Cr

0 else

and

(13.1.6)(b) mκ,1(γ, λ) = µ̂σ
−1(γ, λ) +




δγκ,λ tγ(κ) = 2Cr

0 otherwise

Let’s look at some cases. First assume γ
κ
→ λ. In particular γ > δ, so

the first two terms are 0. A little checking gives

(13.1.7) mκ,0(γ, λ) =




ǫ(λ, γ) tλ(κ) 6= 2Ci

0 tλ(κ) = 2Ci
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Putting this together with formula (13.1.1)(d) for mκ,1 we get:

(13.1.8) γ
κ
→ λ⇒ mκ(γ, λ) =




v + v−1 tλ(κ) = 2Cr

ǫ(γ, λ) else

Assume γ
κ

6→ λ. We see:

mκ(γ, λ) = µ̂σ
−2(γ, λ)−

∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ)

−




µ̂σ
−1(γ, λ

κ) tλ(κ) = 2Ci

0 else
+




µ̂σ
−1(γκ, λ) tγ(κ) = 2Cr

0 else

+ µ̂σ
−1(γ, λ)(v + v−1)

If ℓ(λ) 6≡ ℓ(γ) (mod 2) all terms but the last are 0, so

(13.1.9) γ
κ

6→ λ, ℓ(γ) 6≡ ℓ(λ) (mod 2)⇒ mκ(γ, λ) = µ̂σ
−1(γ, λ)(v + v−1)

On the other hand ℓ(γ) = ℓ(λ) (mod 2) implies the last term is 0, and
(13.1.10)

mκ(γ, λ) = µ̂σ
−2(γ, λ)−

∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ)

−




µ̂σ
−1(γ, λ

κ) tλ(κ) = 2Ci

0 else
+




µ̂σ
−1(γκ, λ) tγ(κ) = 2Cr

0 else

I believe this agrees with [4, Theorem 4.4].
Note that all terms ofm(γ, δ) are 0 unless γ

κ
→ δ or γ < δ, except possibly

the last two.

13.2 ℓ(κ) = 3

We continue to assume κ ∈ τ(γ), κ 6∈ τ(λ). In particular γ 6= λ.
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Take the + part of both sides of (13.1). The left hand side is: {e:3main}
(13.2.1)(a)

[mκ,0(γ, λ) +
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)mκ,1(µ, λ) +

∑

µ|κ∈τ(µ)

µ̂σ
−2(γ, µ)mκ,2(µ, λ)]

+ [mκ,1(γ, λ) +
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)mκ,2(µ, λ)]v +mκ,2(γ, λ)v

2

The right hand side is
(13.2.1)(b)

µ̂σ
−3(γ, λ)+µ̂σ

−2(γ, λ)v + µ̂σ
−1(γ, λ)v

2 +





δwκ×γ,λ 3C−

µ̂σ
−1(γκ, λ) + δγκ,λv 3Cr

µ̂σ
−1(γκ, λ) + δγκ,λv 3r

0 3ic

Comparing the coefficient of v2 gives

(13.2.1)(c) mκ,2(γ, λ) = µ̂σ
−1(γ, λ)

Plugging this in to (13.2.1), the coefficient of v gives
(13.2.1)(d)

mκ,1(γ, λ) +
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ) = µ̂σ

−2(γ, λ) +





0 3C−

δγκ,λ 3Cr

δγκ,λ 3r

0 3ic

i.e.
(13.2.1)(e)

mκ,1(γ, λ) = µ̂σ
−2(γ, λ)−

∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ) +




0 tγ(κ) = 3C−, 3ic

δγκ,λ tγ(κ) = 3Cr, 3r

Turn the crank one more time, plugging this in, to compute the constant
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term:
(13.2.1)(f)

mκ,0(γ, λ) = −
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)mκ,1(µ, λ)−

∑

µ|κ∈τ(µ)

µ̂σ
−2(γ, µ)mκ,2(µ, λ)+

µ̂σ
−3(γ, λ) +





δwκ×γ,λ 3C−

µ̂σ
−1(γκ, λ) 3Cr

µ̂σ
−1(γκ, λ) 3r

0 3ic

Plug in (c) and (e):
(13.2.1)(g)

mκ,0(γ, λ) =

−
∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)

[
µ̂σ
−2(µ, λ)−

∑

φ|κ∈τ(φ)

µ̂σ
−1(µ, φ)µ̂

σ
−1(φ, λ)

+




0 tλ(κ) = 3C−, 3ic

δλκ,λ tλ(κ) = 3Cr, 3r

]

−

[ ∑

µ|κ∈τ(µ)

µ̂σ
−2(γ, µ)µ̂

σ
−1(µ, λ)

]
+ µ̂σ

−3(γ, λ) +





δwκ×γ,λ tγ(κ) = 3C−

µ̂σ
−1(γκ, λ) tγ(κ) = 3Cr

µ̂σ
−1(γκ, λ) tγ(κ) = 3r

0 tγ(κ) = 3ic

Note that if tγ(κ) = 3C−, δwκ×γ,λ = 1 if γ
κ
→ λ, and 0 otherwise. Also,

evaluating

(13.2.1)(h)
∑

µ

µ̂σ
−1(γ, µ) ∗




0 tλ(κ) = 3C−, 3ic

δλκ,λ tλ(κ) = 3Cr, 3r

as in the length 2 case gives

(13.2.1)(i)




µ̂σ
−1(γ, λ

κ) tλ(κ) = 3Ci or 3i

0 else
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Inserting this information, moving a few terms around, and taking λ < λ in
all sums as in the previous cases, gives

(13.2.1)(j)

mκ,0(γ, λ) = µ̂σ
−3(γ, λ)

+
∑

µ|κ∈τ(µ)
φ|κ∈τ(φ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, φ)µ̂

σ
−1(φ, λ)+

−
∑

µ|κ∈τ(µ)

[
µ̂σ
−1(γ, µ)µ̂

σ
−2(µ, λ) + µ̂σ

−2(γ, µ)µ̂
σ
−1(µ, λ)

]

−




µ̂σ
−1(γ, λ

κ) tλ(κ) = 3Ci or 3i

0 else

+





1 tγ(κ) = 3C−, γ
κ
→ λ

0 tγ(κ) = 3C−, γ
κ

6→ λ

µ̂σ
−1(γκ, λ) tγ(κ) = 3Cr

µ̂σ
−1(γκ, λ) tγ(κ) = 3r

0 tγ(κ) = 3ic

Summarizing the length 3 case:
{l:length3}

Lemma 13.2.2 Assume κ ∈ τ(γ), κ 6∈ τ(λ), ℓ(κ) = 3. Then mκ,2,mκ,1,mκ,0

are given by 13.2.1(c),(e), and (j), respectively.
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Let’s look at some cases.
Suppose γ

κ
→ λ. All µ̂σ

−i terms are 0, and

(13.2.3) γ
κ
→ λ⇒ mκ(γ, λ) =





1 tγ(κ) = 3C−

(v + v−1) tγ(κ) = 3Cr, 3r

0 tγ(κ) = 3ic

Now assume γ
κ

6→ λ, and ℓ(λ) ≡ ℓ(γ) (mod 2). Then mκ,2(γ, λ) =
mκ,0(γ, λ) = 0. The formula for mκ,1 doesn’t simplify, except that last term

is 0 since γ
κ

6→ λ, so

(13.2.4) mκ(γ, λ) =
[
µ̂σ
−2(γ, λ)−

∑

µ|κ∈τ(µ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, λ)

]
(v + v−1)

Finally assume γ
κ

6→ λ, and ℓ(λ) 6≡ ℓ(γ) (mod 2). Then mκ,1(γ, λ) = 0,
and mκ,0 simplifies a little, to give:

(13.2.5)

mκ(γ, λ) = µ̂σ
−3(γ, λ)(v

2 + v−2)

+
∑

µ|κ∈τ(µ)
φ|κ∈τ(φ)

µ̂σ
−1(γ, µ)µ̂

σ
−1(µ, φ)µ̂

σ
−1(φ, λ)+

−
∑

µ|κ∈τ(µ)

[
µ̂σ
−1(γ, µ)µ̂

σ
−2(µ, λ) + µ̂σ

−2(γ, µ)µ̂
σ
−1(µ, λ)

]

−




µ̂σ
−1(γ, λ

κ) tλ(κ) = 3Ci or 3i

0 else

+




µ̂σ
−1(γκ, λ) tγ(κ) = 3Cr or 3r

0 else

As in the length 2 case, all terms are zero unless γ
κ
→ λ or γ < λ, except

possibly the last two.
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