Affine Weyl group and coherent families

David Vogan (Notes by Siddhartha Sahi)

AIM, Monday, July 7, 2008

1 Weyl groups

Let G be a complex reductive group, with dual group G^{\vee} , Weyl group W, character lattice X^* , and root lattice R The affine Weyl group is $W^{aff} := W \ltimes R$ The extended affine Weyl group is $W^{ext} := W \ltimes X^*$ They act on X^* , $\mathfrak{h}^*_{\mathbb{R}} := X^* \otimes_{\mathbb{Z}} \mathbb{R}$, and $\mathfrak{h}^* := X^* \otimes_{\mathbb{Z}} \mathbb{C}$ $W^{aff}/W^{ext} \approx X^*/R \approx$ algebraic characters of Z(G) $\mathfrak{h}^*_{\mathbb{R}}/W^{aff}$ is the fundamental alcove $\mathfrak{h}^*/W^{ext} \leftrightarrow$ conjugacy classes of semisimple elements in G^{\vee} $\mathfrak{h}^*/W \leftrightarrow$ characters of $\mathcal{Z}(\mathfrak{g})$ (Harish-Chandra isomorphism)

2 Coherent family

- Let Ξ be an X^* -coset in \mathfrak{h}^*/X^* . A coherent family for $G_{\mathbb{R}}$ based on Ξ is a map $\Theta: \Xi \to \{ \text{virtual representations of } G_{\mathbb{R}} \}$ such that
 - 1. $\Theta(\xi)$ has infinitesimal character ξ , for all ξ in Ξ
 - 2. for any finite dimensional representation F of G we have

 $F \otimes \Theta(\xi) = \sum_{\mu} m_F(\mu) \Theta(\xi + \mu)$

where $m_F(\mu)$ is the multiplicity of the weight μ in F.

The set of all such Θ forms a Z-module $CF(\Xi)$. [More generally we can consider coherent families with values in other categories of representations]

Problem 1 Define a W^{aff} representation on $CF(\Xi)$

3 W action

Given $w \in W$ and Θ in $CF(\Xi)$, define $(w\Theta)(\xi) := \Theta(w^{-1}\xi)$ for $\xi \in w\Xi$ Then $w\Theta$ is a coherent family based on $w\Xi$ This defines a W representation on the sum of the various $CF(w\Xi)$ as w ranges over WHowever, consider the following subgroups of W: $W_{\Xi} := \{w \in W : w(\Xi) = \Xi\}$

 $W_{[\Xi]} := \{ w \in W : w(\Xi) = \Xi \}$ $W_{\Xi} := \{ w \in W : w(\xi) - \xi \in R \text{ for some (hence all) } \xi \text{ in } \Xi \}$ Then these act naturally on $CF(\Xi)$ itself. $[W_{\Xi} \text{ is a parabolic subgroup of } W^{aff}, \text{ though not of } W]$

Let $s = s(\Xi)$ be the semisimple element in $H^{\vee} \subset G^{\vee}$ corresponding to the natural map $\mathfrak{h}^*/X^* \to \mathfrak{h}^*/W^{ext}$. Its centralizer G_s^{\vee} is reductive (perhaps disconnected). Then $W_{[\Xi]}$ is the Weyl group $W(G_s^{\vee}, H^{\vee})$ and we have $W_{[\Xi]}/W_{\Xi} \approx G_s^{\vee}/\{\text{identity component}\}$

4 Associated variety and cycle

Suppose $\xi_0 \in \Xi$ is regular. The map $\Theta \to \Theta(\xi_0)$ gives a bijection:

 $CF(\Xi) \to \{ \text{Virtual representations with infinitesimal character } \xi_0 \}$ Given Θ in $CF(\Xi)$, write $\Theta(\xi_0) = \sum m_i X_i$, where X_i are irreducible The associated variety of X_i is a union of closures of nilpotent K orbits Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be the maximal such orbits (obtained as i varies). This collection is independent of the regular $\xi_0 \in \Xi$ Write $\mathcal{O}_j \approx K/K_j$ where K_j is the stabilizer of some point in \mathcal{O}_j .

The associated cycle of Θ gives for each ξ in Ξ , a virtual representation $\tau_{ij}(\xi)$ of each K_j . We define $\tau_j(\xi) = \sum_i m_i \tau_{ij}(\xi)$, then we have $\tau_j(\xi) \otimes F = \sum_{\mu} m_F(\mu) \tau_j(\xi + \mu)$

We want to compute $\tau_i(\xi)$; the following result should be useful:

Proposition 2 If $\phi : X^* \to \mathbb{C}$ is a function satisfying

$$\dim (F) \phi (\lambda) = \sum_{\mu} m_F (\mu) \phi (\lambda + \mu)$$

Then ϕ is a harmonic polynomial in $S(\mathfrak{h})$.