Affine Weyl group and coherent families

David Vogan (Notes by Siddhartha Sahi)

AIM, Monday, July 7, 2008

1 Weyl groups

Let G be a complex reductive group, with dual group G^{\vee},
Weyl group W, character lattice X^{*}, and root lattice R
The affine Weyl group is $W^{a f f}:=W \ltimes R$
The extended affine Weyl group is $W^{e x t}:=W \ltimes X^{*}$
They act on $X^{*}, \mathfrak{h}_{\mathbb{R}}^{*}:=X^{*} \otimes_{\mathbb{Z}} \mathbb{R}$, and $\mathfrak{h}^{*}:=X^{*} \otimes_{\mathbb{Z}} \mathbb{C}$
$W^{\text {aff }} / W^{\text {ext }} \approx X^{*} / R \approx$ algebraic characters of $Z(G)$
$\mathfrak{h}_{\mathbb{R}}^{*} / W^{a f f}$ is the fundamental alcove
$\mathfrak{h}^{*} / W^{e x t} \leftrightarrow$ conjugacy classes of semisimple elements in G^{\vee}
$\mathfrak{h}^{*} / W \leftrightarrow$ characters of $\mathcal{Z}(\mathfrak{g})$ (Harish-Chandra isomorphism)

2 Coherent family

Let Ξ be an X^{*}-coset in \mathfrak{h}^{*} / X^{*}.
A coherent family for $G_{\mathbb{R}}$ based on Ξ is a map
$\Theta: \Xi \rightarrow$ \{virtual representations of $\left.G_{\mathbb{R}}\right\}$ such that

1. $\Theta(\xi)$ has infinitesimal character ξ, for all ξ in Ξ
2. for any finite dimensional representation F of G we have

$$
F \otimes \Theta(\xi)=\sum_{\mu} m_{F}(\mu) \Theta(\xi+\mu)
$$

where $m_{F}(\mu)$ is the multiplicity of the weight μ in F.
The set of all such Θ forms a \mathbb{Z}-module $C F(\Xi)$.
[More generally we can consider coherent families with values in other categories of representations]

Problem 1 Define a $W^{\text {aff }}$ representation on $C F(\Xi)$

$3 \quad W$ action

Given $w \in W$ and Θ in $C F(\Xi)$, define

$$
(w \Theta)(\xi):=\Theta\left(w^{-1} \xi\right) \text { for } \xi \in w \Xi
$$

Then $w \Theta$ is a coherent family based on $w \Xi$
This defines a W representation on the sum of the various $C F(w \Xi)$ as w ranges over W

However, consider the following subgroups of W :
$W_{[\Xi]}:=\{w \in W: w(\Xi)=\Xi\}$
$W_{\Xi}:=\{w \in W: w(\xi)-\xi \in R$ for some (hence all) ξ in $\Xi\}$
Then these act naturally on $C F(\Xi)$ itself.
[W_{Ξ} is a parabolic subgroup of $W^{\text {aff }}$, though not of W]
Let $s=s(\Xi)$ be the semisimple element in $H^{\vee} \subset G^{\vee}$ corresponding to the natural map $\mathfrak{h}^{*} / X^{*} \rightarrow \mathfrak{h}^{*} / W^{\text {ext }}$. Its centralizer G_{s}^{\vee} is reductive (perhaps disconnected).
Then $W_{[\Xi]}$ is the Weyl group $W\left(G_{s}^{\vee}, H^{\vee}\right)$ and we have $W_{[\Xi]} / W_{\Xi} \approx G_{s}^{\vee} /\{$ identity component $\}$

4 Associated variety and cycle

Suppose $\xi_{0} \in \Xi$ is regular. The map $\Theta \rightarrow \Theta\left(\xi_{0}\right)$ gives a bijection:
$C F(\Xi) \rightarrow\left\{\right.$ Virtual representations with infinitesimal character $\left.\xi_{0}\right\}$
Given Θ in $C F(\Xi)$, write $\Theta\left(\xi_{0}\right)=\sum m_{i} X_{i}$, where X_{i} are irreducible
The associated variety of X_{i} is a union of closures of nilpotent K orbits
Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ be the maximal such orbits (obtained as i varies).
This collection is independent of the regular $\xi_{0} \in \Xi$
Write $\mathcal{O}_{j} \approx K / K_{j}$ where K_{j} is the stabilizer of some point in \mathcal{O}_{j}.
The associated cycle of Θ gives for each ξ in Ξ,
a virtual representation $\tau_{i j}(\xi)$ of each K_{j}.
We define $\tau_{j}(\xi)=\sum_{i} m_{i} \tau_{i j}(\xi)$, then we have
$\tau_{j}(\xi) \otimes F=\sum_{\mu} m_{F}(\mu) \tau_{j}(\xi+\mu)$
We want to compute $\tau_{j}(\xi)$; the following result should be useful:
Proposition 2 If $\phi: X^{*} \rightarrow \mathbb{C}$ is a function satisfying

$$
\operatorname{dim}(F) \phi(\lambda)=\sum_{\mu} m_{F}(\mu) \phi(\lambda+\mu)
$$

Then ϕ is a harmonic polynomial in $S(\mathfrak{h})$.

