Functors for Matching Kazhdan-Lusztig polynomials for GL (n, F)

Peter E. Trapa
(joint with Dan Ciubotaru)
$F_{\lambda}: X \mapsto \mathrm{H}_{0}(X \otimes F)_{[\lambda+N \rho]}$

KLV polynomials

$G_{\mathbb{R}}$ real reductive group, $\mathfrak{g}=\mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ $K_{\mathbb{R}}$ maximal compact subgroup, $K=\left(K_{\mathbb{R}}\right)_{\mathbb{C}}$ \mathfrak{B} variety of Borel subalgebras in \mathfrak{g}.
$\operatorname{Loc}_{K}(\mathfrak{B})$ set of irreducible K-equivariant locally constant sheaves supported on single K orbits on \mathfrak{B}

KLV polynomials

$G_{\mathbb{R}}$ real reductive group, $\mathfrak{g}=\mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$
$K_{\mathbb{R}}$ maximal compact subgroup, $K=\left(K_{\mathbb{R}}\right)_{\mathbb{C}}$
\mathfrak{B} variety of Borel subalgebras in \mathfrak{g}.
$\operatorname{Loc}_{K}(\mathfrak{B})$ set of irreducible K-equivariant locally constant sheaves supported on single K orbits on \mathfrak{B}

Given $\mathcal{L}, \mathcal{L}^{\prime} \in \operatorname{Loc}_{K}(\mathfrak{B})$, we can define the
Kazhdan-Lusztig-Vogan polynomial

$$
p_{\mathcal{L L}^{\prime}}(q)
$$

If \mathcal{L} and \mathcal{L}^{\prime} are the constant sheaves on $Q, Q^{\prime} \in K \backslash \mathfrak{B}$, instead write

$$
p_{Q, Q^{\prime}}=p_{\mathcal{L}, \mathcal{L}^{\prime}}
$$

If $G_{\mathbb{R}}$ is already a complex Lie group, then the Bruhat decomposition identifies $K \backslash \mathfrak{B}$ with the Weyl group W of \mathfrak{g}.

If $G_{\mathbb{R}}$ is already a complex Lie group, then the Bruhat decomposition identifies $K \backslash \mathfrak{B}$ with the Weyl group W of \mathfrak{g}. In fact,

$$
\operatorname{Loc}_{K}(\mathfrak{B}) \leftrightarrow W .
$$

If $G_{\mathbb{R}}$ is already a complex Lie group, then the Bruhat decomposition identifies $K \backslash \mathfrak{B}$ with the Weyl group W of \mathfrak{g}. In fact,

$$
\operatorname{Loc}_{K}(\mathfrak{B}) \leftrightarrow W
$$

If $Q(x)$ and $Q(y)$ are two orbits parametrized by x and y, then we write

$$
p_{x, y}=p_{Q(x), Q(y)} .
$$

$$
G_{\mathbb{R}}=\mathrm{U}(p, q)
$$

$$
\begin{aligned}
& G_{\mathbb{R}}=\mathrm{U}(p, q) \\
& K_{\mathbb{R}}=\mathrm{U}(p) \times \mathrm{U}(q)
\end{aligned}
$$

$$
\begin{aligned}
& G_{\mathbb{R}}=\mathrm{U}(p, q) \\
& K_{\mathbb{R}}=\mathrm{U}(p) \times \mathrm{U}(q) \\
& K=\operatorname{GL}(p, \mathbb{C}) \times \operatorname{GL}(q, \mathbb{C})
\end{aligned}
$$

$$
\begin{aligned}
& G_{\mathbb{R}}=\mathrm{U}(p, q) \\
& K_{\mathbb{R}}=\mathrm{U}(p) \times \mathrm{U}(q) \\
& K=\operatorname{GL}(p, \mathbb{C}) \times \operatorname{GL}(q, \mathbb{C})
\end{aligned}
$$

In fact

$$
\operatorname{Loc}_{K}(\mathfrak{B}) \leftrightarrow(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}
$$

What does "matching KLV polynomials" mean?

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.
Suppose we can find
(1) a subset $\mathcal{S}^{1} \subset \operatorname{Loc}_{K^{1}}\left(\mathfrak{B}^{1}\right)$;

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.
Suppose we can find
(1) a subset $\mathcal{S}^{1} \subset \operatorname{Loc}_{K^{1}}\left(\mathfrak{B}^{1}\right)$;
(2) a subset $\mathcal{S}^{2} \subset \operatorname{Loc}_{K^{2}}\left(\mathfrak{B}^{2}\right)$; and

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.
Suppose we can find
(1) a subset $\mathcal{S}^{1} \subset \operatorname{Loc}_{K^{1}}\left(\mathfrak{B}^{1}\right)$;
(2) a subset $\mathcal{S}^{2} \subset \operatorname{Loc}_{K^{2}}\left(\mathfrak{B}^{2}\right)$; and
(3) a bijection $\Phi: \mathcal{S}^{1} \rightarrow \mathcal{S}^{2}$

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.
Suppose we can find
(1) a subset $\mathcal{S}^{1} \subset \operatorname{Loc}_{K^{1}}\left(\mathfrak{B}^{1}\right)$;
(2) a subset $\mathcal{S}^{2} \subset \operatorname{Loc}_{K^{2}}\left(\mathfrak{B}^{2}\right)$; and
(3) a bijection $\Phi: \mathcal{S}^{1} \rightarrow \mathcal{S}^{2}$
such that for any $\mathcal{L}, \mathcal{L}^{\prime} \in \mathcal{S}^{1}$,

$$
p_{\mathcal{L}, \mathcal{L}^{\prime}}=p_{\Phi(\mathcal{L}), \Phi\left(\mathcal{L}^{\prime}\right)}
$$

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.
Suppose we can find
(1) a subset $\mathcal{S}^{1} \subset \operatorname{Loc}_{K^{1}}\left(\mathfrak{B}^{1}\right)$;
(2) a subset $\mathcal{S}^{2} \subset \operatorname{Loc}_{K^{2}}\left(\mathfrak{B}^{2}\right)$; and
(3) a bijection $\Phi: \mathcal{S}^{1} \rightarrow \mathcal{S}^{2}$
such that for any $\mathcal{L}, \mathcal{L}^{\prime} \in \mathcal{S}^{1}$,

$$
p_{\mathcal{L}, \mathcal{L}^{\prime}}=p_{\Phi(\mathcal{L}), \Phi\left(\mathcal{L}^{\prime}\right)}
$$

Then we say Φ implements a matching of KLV polynomials.

Let $G_{\mathbb{R}}^{1}$ and $G_{\mathbb{R}}^{2}$ denote two real groups.
Suppose we can find
(1) a subset $\mathcal{S}^{1} \subset \operatorname{Loc}_{K^{1}}\left(\mathfrak{B}^{1}\right)$;
(2) a subset $\mathcal{S}^{2} \subset \operatorname{Loc}_{K^{2}}\left(\mathfrak{B}^{2}\right)$; and
(3) a bijection $\Phi: \mathcal{S}^{1} \rightarrow \mathcal{S}^{2}$
such that for any $\mathcal{L}, \mathcal{L}^{\prime} \in \mathcal{S}^{1}$,

$$
p_{\mathcal{L}, \mathcal{L}^{\prime}}=p_{\Phi(\mathcal{L}), \Phi\left(\mathcal{L}^{\prime}\right)}
$$

Then we say Φ implements a matching of KLV polynomials.
Obviously this is more impressive if \mathcal{S}^{1} is large.

Plan

- Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\mathrm{U}(p, q)$'s, $p+q=n$.

Plan

- Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\mathrm{U}(p, q)$'s, $p+q=n$.
- The key will be an intermediate combinatorial set (which is really $\mathrm{GL}\left(n, \mathbb{Q}_{p}\right)$ in disguise).

Plan

- Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\mathrm{U}(p, q)$'s, $p+q=n$.
- The key will be an intermediate combinatorial set (which is really $\mathrm{GL}\left(n, \mathbb{Q}_{p}\right)$ in disguise).
- Indicate briefly a general setting to search for such matchings. (Works in all simple adjoint classical cases, for instance, but breaks in interesting ways in a handful of exceptional ones.)

Plan

- Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\mathrm{U}(p, q)$'s, $p+q=n$.
- The key will be an intermediate combinatorial set (which is really $\mathrm{GL}\left(n, \mathbb{Q}_{p}\right)$ in disguise).
- Indicate briefly a general setting to search for such matchings. (Works in all simple adjoint classical cases, for instance, but breaks in interesting ways in a handful of exceptional ones.)
- Handoff to Dan: a functor "implementing" the matching.

Intermediate Combinatorial Set

Intermediate Combinatorial Set

Fix $\lambda=\left(\lambda_{1}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}\right)$ (an infinitesimal character in disguise).

Intermediate Combinatorial Set

Fix $\lambda=\left(\lambda_{1}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}\right)$ (an infinitesimal character in disguise).
Everything reduces to the case
(1) $\lambda_{i}^{\prime} \in \mathbb{Z}$
(2) $\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime} \in\{0,1\}$.

Intermediate Combinatorial Set

Fix $\lambda=\left(\lambda_{1}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}\right)$ (an infinitesimal character in disguise).
Everything reduces to the case
(1) $\lambda_{i}^{\prime} \in \mathbb{Z}$
(2) $\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime} \in\{0,1\}$.

We assume this is the case and rewrite

$$
\lambda=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Intermediate Combinatorial Set

$$
\lambda=\overbrace{\left(\lambda_{1}, \ldots, \lambda_{1}\right.}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Intermediate Combinatorial Set

$$
\lambda=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Let $W(\lambda)=$ stabilizer of λ under the permutation action of $W=S_{n}$.

Intermediate Combinatorial Set

$$
\lambda=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Let $W(\lambda)=$ stabilizer of λ under the permutation action of $W=S_{n}$. So

$$
W(\lambda)=S_{n_{1}} \times \cdots \cdots \cdots \times S_{n_{k}} .
$$

Intermediate Combinatorial Set

$$
\lambda=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Intermediate Combinatorial Set

$$
\lambda=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Consider a collection of k piles of dots, with the i th pile consisting of n_{i} dots labeled λ_{i}.

Intermediate Combinatorial Set

$$
\lambda=(\overbrace{\lambda_{1}, \ldots, \lambda_{1}}^{n_{1}}>\cdots \cdots \cdots>\overbrace{\lambda_{k}, \ldots, \lambda_{k}}^{n_{k}}) .
$$

Consider a collection of k piles of dots, with the i th pile consisting of n_{i} dots labeled λ_{i}.
For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, consider:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we cannot consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we cannot consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we cannot consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graph:

Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_{i} \rightarrow x_{i+1}$ with x_{i} in the λ_{i} pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$, we can consider the following graphs:

Clearly $W(\lambda) \simeq S_{n_{1}} \times \cdots \times S_{n_{k}}$ acts on such graphs.

Intermediate Combinatorial Set

For instance,

are in the same $S_{2} \times S_{4} \times S_{3} \times S_{2} \times S_{1}$ orbit.

Intermediate Combinatorial Set

For instance,

are in the same $S_{2} \times S_{4} \times S_{3} \times S_{2} \times S_{1}$ orbit.
The set of equivalence classes, denoted $\mathcal{M S}(\lambda)$, are called λ-multisegments.

How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*}$, and consider

How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*}$, and consider
(1) $G(\lambda)=$ Ad-centralizer of λ in G.

How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*}$, and consider
(1) $G(\lambda)=$ Ad-centralizer of λ in G.
(2) $\mathfrak{g}_{1}(\lambda)=+1$-eigenspace of $\operatorname{ad}(\lambda)$ on \mathfrak{g}

How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*}$, and consider
(1) $G(\lambda)=$ Ad-centralizer of λ in G.
(2) $\mathfrak{g}_{1}(\lambda)=+1$-eigenspace of $\operatorname{ad}(\lambda)$ on \mathfrak{g}

Except this doesn't make sense.

Try again: How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*} \simeq \mathfrak{h}^{\vee}$, and consider

Try again: How do multisegments naturally arise?

Let $G=\mathrm{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*} \simeq \mathfrak{h}^{\vee}$, and consider
(1) $G^{\vee}(\lambda)=$ Ad-centralizer of λ in G^{\vee}.

Try again: How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*} \simeq \mathfrak{h}^{\vee}$, and consider
(1) $G^{\vee}(\lambda)=$ Ad-centralizer of λ in G^{\vee}.
(2) $\mathfrak{g}_{1}^{\vee}(\lambda)=+1$-eigenspace of $\operatorname{ad}^{\vee}(\lambda)$ on \mathfrak{g}^{\vee}

Try again: How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*} \simeq \mathfrak{h}^{\vee}$, and consider
(1) $G^{\vee}(\lambda)=$ Ad-centralizer of λ in G^{\vee}.
(2) $\mathfrak{g}_{1}^{\vee}(\lambda)=+1$-eigenspace of $\operatorname{ad}^{\vee}(\lambda)$ on \mathfrak{g}^{\vee}

Then $G^{\vee}(\lambda)$ naturally acts on $\mathfrak{g}_{1}^{\vee}(\lambda)$.

Try again: How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*} \simeq \mathfrak{h}^{\vee}$, and consider
(1) $G^{\vee}(\lambda)=$ Ad-centralizer of λ in G^{\vee}.
(2) $\mathfrak{g}_{1}^{\vee}(\lambda)=+1$-eigenspace of $\operatorname{ad}^{\vee}(\lambda)$ on \mathfrak{g}^{\vee}

Then $G^{\vee}(\lambda)$ naturally acts on $\mathfrak{g}_{1}^{\vee}(\lambda)$.
$\mathcal{M S}(\lambda)$ parametrizes these orbits.

Try again: How do multisegments naturally arise?

Let $G=\operatorname{GL}(n, \mathbb{C}), \mathfrak{g}=\mathfrak{g l}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^{*} \simeq \mathfrak{h}^{\vee}$, and consider
(1) $G^{\vee}(\lambda)=$ Ad-centralizer of λ in G^{\vee}.
(2) $\mathfrak{g}_{1}^{\vee}(\lambda)=+1$-eigenspace of $\operatorname{ad}^{\vee}(\lambda)$ on \mathfrak{g}^{\vee}

Then $G^{\vee}(\lambda)$ naturally acts on $\mathfrak{g}_{1}^{\vee}(\lambda)$.
$\mathcal{M S}(\lambda)$ parametrizes these orbits.
There is a beautiful generalization to all types (Kawanaka, Lusztig, Vinberg).

Example of parametrization

Take $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$.

Example of parametrization

Take $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$. So

$$
G^{\vee}(\lambda) \simeq
$$

$$
\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(4, \mathbb{C}) \times \mathrm{GL}(3, \mathbb{C}) \times \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})
$$

Example of parametrization

Take $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$. So

$$
\begin{aligned}
& G^{\vee}(\lambda) \simeq \\
& \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(4, \mathbb{C}) \times \mathrm{GL}(3, \mathbb{C}) \times \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C}) \\
& \mathfrak{g}_{1}^{\vee}(\lambda) \simeq\left\{\mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1}\right\}
\end{aligned}
$$

Example of parametrization

Take $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$. So

$$
\begin{aligned}
& G^{\vee}(\lambda) \simeq \\
& \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(4, \mathbb{C}) \times \mathrm{GL}(3, \mathbb{C}) \times \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C}) \\
& \mathfrak{g}_{1}^{\vee}(\lambda) \simeq\left\{\mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1}\right\}
\end{aligned}
$$

For instance,

Example of parametrization

Take $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$. So

$$
\begin{aligned}
& G^{\vee}(\lambda) \simeq \\
& \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C}) \\
& \mathfrak{g}_{1}^{\vee}(\lambda) \simeq\left\{\mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1}\right\}
\end{aligned}
$$

For instance,

Example of parametrization

Take $\lambda=(5,5,4,4,4,4,3,3,3,2,2,1)$. So

$$
\begin{aligned}
& G^{\vee}(\lambda) \simeq \\
& \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C}) \\
& \mathfrak{g}_{1}^{\vee}(\lambda) \simeq\left\{\mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1}\right\}
\end{aligned}
$$

For instance,

Another kind of KL polynomial

Since $\mathcal{M S}(\lambda)$ parametrizes orbits of $G^{\vee}(\lambda)$ on $\mathfrak{g}_{1}^{\vee}(\lambda)$, given
$\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{M S}(\lambda)$ we can consider

$$
p_{\mathbf{s}, \mathbf{s}^{\prime}}(q):=p_{\mathcal{L}, \mathcal{L}^{\prime}}(q)
$$

where $\mathcal{L}, \mathcal{L}^{\prime} \in \operatorname{Loc}_{G^{\vee}}(\lambda)\left(\mathfrak{g}_{1}^{\vee}(\lambda)\right)$ are the constant sheaves on the orbits parametrized by $\mathbf{s}, \mathbf{s}^{\prime}$.

Another kind of KL polynomial

Since $\mathcal{M S}(\lambda)$ parametrizes orbits of $G^{\vee}(\lambda)$ on $\mathfrak{g}_{1}^{\vee}(\lambda)$, given $\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{M S}(\lambda)$ we can consider

$$
p_{\mathbf{s}, \mathbf{s}^{\prime}}(q):=p_{\mathcal{L}, \mathcal{L}^{\prime}}(q)
$$

where $\mathcal{L}, \mathcal{L}^{\prime} \in \operatorname{Loc}_{G^{\vee}}(\lambda)\left(\mathfrak{g}_{1}^{\vee}(\lambda)\right)$ are the constant sheaves on the orbits parametrized by $\mathbf{s}, \mathbf{s}^{\prime}$.

In general, Lusztig (2006) has given an algorithm to compute these polynomials.

The plan

We are going to define injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

The plan

We are going to define injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

and

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

The plan

We are going to define injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

and

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

such that all Kazhdan-Lusztig-Vogan polynomials match:

$$
p_{\mathbf{s}, \mathbf{s}^{\prime}}=p_{\Phi_{1}(\mathbf{s}), \Phi_{1}\left(\mathbf{s}^{\prime}\right)}=p_{\Phi_{2}(\mathbf{s}), \Phi_{2}\left(\mathbf{s}^{\prime}\right)}
$$

The plan

We are going to define injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

and

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

such that all Kazhdan-Lusztig-Vogan polynomials match:

$$
p_{\mathbf{s}, \mathbf{s}^{\prime}}=p_{\Phi_{1}(\mathbf{s}), \Phi_{1}\left(\mathbf{s}^{\prime}\right)}=p_{\Phi_{2}(\mathbf{s}), \Phi_{2}\left(\mathbf{s}^{\prime}\right)}
$$

In particular, this gives a matching of KLV polynomials for $\mathrm{GL}(n, \mathbb{C})$ and $\mathrm{U}(p, q)$.

Defining $\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}$

Defining $\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}$

Defining $\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}$

\(\left.\begin{array}{l}1-3-7-10-12

2

4-8-11

5\end{array}\right) 9\)| |
| :--- |
| |
| 6 |

Defining $\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}$

Set $\sigma=(13471012)(4811)$.

DEFINING $\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}$

Set $\sigma=(13471012)(4811)$. And

$$
\Phi_{1}(\mathbf{s}):=\text { longest element in } \sigma W(\lambda) .
$$

Defining
 $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}$.

Defining
 $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}$.

Let

$$
\Sigma_{ \pm}(n)=\left\{\text { involutions in } S_{n} \text { with signed fixed points }\right\}
$$

Defining
 $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}$.

Let

$$
\Sigma_{ \pm}(n)=\left\{\text { involutions in } S_{n} \text { with signed fixed points }\right\}
$$

Then there is a bijection

$$
\Sigma_{ \pm}(n) \leftrightarrow \coprod_{p+q=n}(\operatorname{GL}(p, \mathbb{C}) \times \operatorname{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Set $G=\operatorname{GL}(n, \mathbb{C})$ and fix a torus T.

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Set $G=\mathrm{GL}(n, \mathbb{C})$ and fix a torus T.
Fix the inner class of (classical) real forms represented by

$$
\{\mathrm{U}(p, q) \mid p+q=n, p \geq q\} .
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Set $G=\mathrm{GL}(n, \mathbb{C})$ and fix a torus T.
Fix the inner class of (classical) real forms represented by

$$
\{\mathrm{U}(p, q) \mid p+q=n, p \geq q\} .
$$

Consider its one-sided parameter space

$$
\mathcal{X}=\left\{\left(z, T^{\prime}, B^{\prime}\right) \mid T^{\prime} \subset B^{\prime}, z^{2} \in Z(G), x T^{\prime} x^{-1}=T^{\prime}\right\} / G
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Set $G=\operatorname{GL}(n, \mathbb{C})$ and fix a torus T.
Fix the inner class of (classical) real forms

$$
\{\mathrm{U}(p, q) \mid p+q=n, p \geq q\} .
$$

Consider its one-sided parameter space

$$
\mathcal{X}(e)=\left\{\left(z, T^{\prime}, B^{\prime}\right) \mid T^{\prime} \subset B^{\prime}, z^{2}=e, x T^{\prime} x^{-1}=T^{\prime}\right\} / G
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Set $G=\operatorname{GL}(n, \mathbb{C})$ and fix a torus T.
Fix the inner class of (classical) real forms

$$
\{\mathrm{U}(p, q) \mid p+q=n, p \geq q\} .
$$

Consider its one-sided parameter space

$$
\begin{aligned}
\mathcal{X}(e)= & \left\{\left(z, T^{\prime}, B^{\prime}\right) \mid T^{\prime} \subset B^{\prime}, z^{2}=e, x T^{\prime} x^{-1}=T^{\prime}\right\} / G \\
& =\left\{z \in N_{G}(T) \mid z^{2}=e\right\} / T
\end{aligned}
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Set $G=\operatorname{GL}(n, \mathbb{C})$ and fix a torus T.
Fix the inner class of (classical) real forms

$$
\{\mathrm{U}(p, q) \mid p+q=n, p \geq q\} .
$$

Consider its one-sided parameter space

$$
\begin{aligned}
\mathcal{X}(e)= & \left\{\left(z, T^{\prime}, B^{\prime}\right) \mid T^{\prime} \subset B^{\prime}, z^{2}=e, x T^{\prime} x^{-1}=T^{\prime}\right\} / G \\
& =\left\{z \in N_{G}(T) \mid z^{2}=e\right\} / T \leftrightarrow \Sigma_{ \pm}(n)
\end{aligned}
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Recall the reason for introducing $\mathcal{X}(e)$:

$$
\mathcal{X}(e) \leftrightarrow \coprod_{i} K_{i} \backslash \mathfrak{B}_{n}
$$

where the union is over all strong real forms (lying over e).

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Recall the reason for introducing $\mathcal{X}(e)$:

$$
\mathcal{X}(e) \leftrightarrow \coprod_{i} K_{i} \backslash \mathfrak{B}_{n}
$$

where the union is over all strong real forms (lying over e).
Our case (G conjugacy classes of elements of order 2):

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Recall the reason for introducing $\mathcal{X}(e)$:

$$
\mathcal{X}(e) \leftrightarrow \coprod_{i} K_{i} \backslash \mathfrak{B}_{n}
$$

where the union is over all strong real forms (lying over e).
Our case (G conjugacy classes of elements of order 2):

$$
\mathcal{X}(e) \leftrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

A few details on the $\Sigma_{ \pm}(n)$ parametrization.

Recall the reason for introducing $\mathcal{X}(e)$:

$$
\mathcal{X}(e) \leftrightarrow \coprod_{i} K_{i} \backslash \mathfrak{B}_{n}
$$

where the union is over all strong real forms (lying over e).
Our case (G conjugacy classes of elements of order 2):

$$
\Sigma_{ \pm}(n) \leftrightarrow \coprod_{p+q=n}(\operatorname{GL}(p, \mathbb{C}) \times \operatorname{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

Notation

Notation

$$
+\bullet \overleftrightarrow{\leftarrow+-\quad++\nrightarrow \bullet \bullet} \in \Sigma_{ \pm}(12) .
$$

Read off

$$
p=(\# \text { of }+ \text { signs })+\frac{1}{2}(\# \text { non-fixed points })
$$

Read off

$$
p=(\# \text { of }+ \text { signs })+\frac{1}{2}(\# \text { non-fixed points })=6+\frac{4}{2}=8
$$

Notation

Read off

$$
\begin{aligned}
& p=(\# \text { of }+ \text { signs })+\frac{1}{2}(\# \text { non-fixed points })=6+\frac{4}{2}=8 . \\
& q=(\# \text { of }- \text { signs })+\frac{1}{2}(\# \text { non-fixed points })
\end{aligned}
$$

Notation

Read off

$$
\begin{aligned}
& p=(\# \text { of }+ \text { signs })+\frac{1}{2}(\# \text { non-fixed points })=6+\frac{4}{2}=8 . \\
& q=(\# \text { of }- \text { signs })+\frac{1}{2}(\# \text { non-fixed points })=2+\frac{4}{2}=4 .
\end{aligned}
$$

Notation

Notation

A convenient short-hand (as in Monty's talk):

Notation

A convenient short-hand (as in Monty's talk): Rewrite

A convenient short-hand (as in Monty's talk): Rewrite

$$
+\bullet \ll++--++\rightarrow \bullet \bullet \in \Sigma_{ \pm}(12) .
$$

as

$$
+12++--+++21
$$

A few comments on the $\Sigma_{ \pm}(n)$ parametrization.

General features:

A few comments on the $\Sigma_{ \pm}(n)$ parametrization.

General features:
(1) This parametrization is "dual" to the one for $\operatorname{Loc}_{\mathrm{O}(n, \mathbb{C})}\left(\mathfrak{B}_{n}\right)$, i.e. the representation theory of $\mathrm{GL}(n, \mathbb{R})$.

A few comments on the $\Sigma_{ \pm}(n)$ parametrization.

General features:
(1) This parametrization is "dual" to the one for $\operatorname{Loc}_{\mathrm{O}(n, \mathbb{C})}\left(\mathfrak{B}_{n}\right)$, i.e. the representation theory of $\mathrm{GL}(n, \mathbb{R})$.
(2) The closed orbits are parametrized by diagrams consisting of all signs.

A few comments on the $\Sigma_{ \pm}(n)$ parametrization.

General features:
(1) This parametrization is "dual" to the one for $\operatorname{Loc}_{\mathrm{O}(n, \mathbb{C})}\left(\mathfrak{B}_{n}\right)$, i.e. the representation theory of $\mathrm{GL}(n, \mathbb{R})$.
(2) The closed orbits are parametrized by diagrams consisting of all signs.
(3) It's easy to translate the information from the atlas command kgb in this parametrization.

An example of the parametrization for
$(p, q)=(2,1)$.

An example of the parametrization for

 $(p, q)=(2,1)$.Set $\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}$, and consider $(\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})) \backslash \mathfrak{B}_{3}$.

An example of the parametrization for

 $(p, q)=(2,1)$.Set $\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}$, and consider $(\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})) \backslash \mathfrak{B}_{3}$.

$$
+-+
$$

$$
-++
$$

An example of the parametrization for

 $(p, q)=(2,1)$.```
Set \alpha= e
(GL}(2,\mathbb{C})\times\textrm{GL}(1,\mathbb{C}))\\mp@subsup{\mathfrak{B}}{3}{}
```


$-++$

## An example of the parametrization for

 $(p, q)=(2,1)$.```
Set \alpha= e
(GL}(2,\mathbb{C})\times\textrm{GL}(1,\mathbb{C}))\\mp@subsup{\mathfrak{B}}{3}{}
```


An example of the parametrization for

 $(p, q)=(2,1)$.Set $\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}$, and consider $(\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})) \backslash \mathfrak{B}_{3}$.

An example of the parametrization for

 $(p, q)=(2,1)$.Set $\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}$, and consider $(\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})) \backslash \mathfrak{B}_{3}$.

An example of the parametrization for

 $(p, q)=(2,1)$.Set $\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}$, and consider $(\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})) \backslash \mathfrak{B}_{3}$.

Defining $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \Sigma_{ \pm}(n)$

Consider our running example:

Defining $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \Sigma_{ \pm}(n)$

Consider our running example:

Defining $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \Sigma_{ \pm}(n)$

Consider our running example:

Defining $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \Sigma_{ \pm}(n)$

Consider our running example:

Defining $\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \Sigma_{ \pm}(n)$

Consider our running example:

Now "flatten".

Flatten...

Flatten...

The flattening procedure is not well-defined.

The flattening procedure is not well-defined.
Remedy: take largest dimensional orbit obtained this way.

The upshot

We have defined injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

The upshot

We have defined injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

and

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

The upshot

We have defined injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

and

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

Theorem (Zelevinsky, CT)
All Kazhdan-Lusztig-Vogan polynomials match:

$$
p_{\mathbf{s}, \mathbf{s}^{\prime}}=p_{\Phi_{1}(\mathbf{s}), \Phi_{1}\left(\mathbf{s}^{\prime}\right)}=p_{\Phi_{2}(\mathbf{s}), \Phi_{2}\left(\mathbf{s}^{\prime}\right)}
$$

The upshot

We have defined injections

$$
\Phi_{1}: \mathcal{M S}(\lambda) \longrightarrow S_{n}
$$

and

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

Theorem (Zelevinsky, CT)

All Kazhdan-Lusztig-Vogan polynomials match:

$$
p_{\mathbf{s}, \mathbf{s}^{\prime}}=p_{\Phi_{1}(\mathbf{s}), \Phi_{1}\left(\mathbf{s}^{\prime}\right)}=p_{\Phi_{2}(\mathbf{s}), \Phi_{2}\left(\mathbf{s}^{\prime}\right)} .
$$

In particular, this gives a matching of KLV polynomials for $\mathrm{GL}(n, \mathbb{C})$ and $\mathrm{U}(p, q)$.

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}.

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}. Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}.

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}.
Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example $\operatorname{GL}(n, \mathbb{R})$ if n is odd; and

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}.
Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example
$\mathrm{GL}(n, \mathbb{R})$ if n is odd; and
$\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{GL}(n / 2, \mathbb{H})$ if n is even.

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}.
Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example
$\mathrm{GL}(n, \mathbb{R})$ if n is odd; and
$\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{GL}(n / 2, \mathbb{H})$ if n is even.
Simplify: \mathcal{G} adjoint.

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}.
Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example
$\mathrm{GL}(n, \mathbb{R})$ if n is odd; and
$\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{GL}(n / 2, \mathbb{H})$ if n is even.
Simplify: \mathcal{G} adjoint. Then main result of ABV
$\bigoplus_{i} K \mathcal{H C}\left(G_{i}\right) \stackrel{\text { dual }}{\leftrightarrow}$ geometry of $\mathcal{G}^{\vee}(\mathbb{C})$ orbits on $X_{\mathbb{R}}$.

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R}.
Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example $\mathrm{GL}(n, \mathbb{R})$ if n is odd; and
$\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{GL}(n / 2, \mathbb{H})$ if n is even.
Simplify: \mathcal{G} adjoint. Then main result of ABV
$\bigoplus_{i} K \mathcal{H C}\left(G_{i}\right)_{\lambda} \stackrel{\text { dual }}{\leftrightarrow}$ geometry of $\mathcal{G}^{\vee}(\mathbb{C})$ orbits on $X_{\mathbb{R}, \lambda}$.

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F=\mathbb{Q}_{p}$.

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F=\mathbb{Q}_{p}$. Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}.

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F=\mathbb{Q}_{p}$. Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example

$$
\left\{\mathrm{GL}\left(n / d, E_{d}\right)|d| n\right\}
$$

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F=\mathbb{Q}_{p}$. Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example

$$
\left\{\mathrm{GL}\left(n / d, E_{d}\right)|d| n\right\}
$$

Then Deligne-Langlands-Lusztig:
$\bigoplus_{i} K \mathcal{U} \mathcal{N}\left(G_{i}\right) \stackrel{\text { dual }}{\leftrightarrow}$ geometry of $\mathcal{G}^{\vee}(\mathbb{C})$ orbits on X_{F}.

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F=\mathbb{Q}_{p}$. Fix an inner class of real forms $\left\{G_{1}, \ldots, G_{k}\right\}$ of \mathcal{G}. For example

$$
\left\{\mathrm{GL}\left(n / d, E_{d}\right)|d| n\right\}
$$

Then Deligne-Langlands-Lusztig:
$\bigoplus \operatorname{KU\mathcal {N}}\left(G_{i}\right)_{\lambda} \stackrel{\text { dual }}{\leftrightarrow}$ geometry of $\mathcal{G}^{\vee}(\mathbb{C})$ orbits on $X_{F, \lambda}$.

Write out the spaces. If λ is real, then there is a natural map

$$
X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda} .
$$

Write out the spaces. If λ is real, then there is a natural map

$$
X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda} .
$$

In the case of $\mathcal{G}=\mathcal{G} \mathcal{L}(n)$, this unravels (on the level of orbits) to give the map

$$
\Phi_{2}: \mathcal{M S}(\lambda) \longrightarrow \coprod_{p+q=n}(\mathrm{GL}(p, \mathbb{C}) \times \operatorname{GL}(q, \mathbb{C})) \backslash \mathfrak{B}_{n}
$$

Generalizations?

If \mathcal{G} is simple, adjoint, and classical, one may unravel the natural map $X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}$ in much the same way.

Generalizations?

If \mathcal{G} is simple, adjoint, and classical, one may unravel the natural map $X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}$ in much the same way.

Find an anologous matching of KLV polynomials for $\mathcal{U N}(\mathcal{G} / F)$ and $\mathcal{H C}(\mathcal{G} / \mathbb{R})$

Generalizations?

If \mathcal{G} is simple, adjoint, and classical, one may unravel the natural map $X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}$ in much the same way.

Find an anologous matching of KLV polynomials for $\mathcal{U N}(\mathcal{G} / F)$ and $\mathcal{H C}(\mathcal{G} / \mathbb{R})$ (and a weaker one for $\mathcal{H C}(\mathcal{G} / \mathbb{C}))$.

Generalizations?

If \mathcal{G} is simple, adjoint, and exceptional, the natural map $X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}$ is less well behaved.

Generalizations?

If \mathcal{G} is simple, adjoint, and exceptional, the natural map $X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}$ is less well behaved. (Two orbits can collapse to one, for instance.)

Back to the nice case of $\mathcal{G} \mathcal{L}(n)$

Back to the nice case of $\mathcal{G} \mathcal{L}(n)$

The matching of KLV polynomials implies there are nice relationships between character formuals for

Back to the nice case of $\mathcal{G L}(n)$

The matching of KLV polynomials implies there are nice relationships between character formuals for
(1) Harish-Chandra modules for $\operatorname{GL}(n, \mathbb{C})$;

Back to the nice case of $\mathcal{G} \mathcal{L}(n)$

The matching of KLV polynomials implies there are nice relationships between character formuals for
(1) Harish-Chandra modules for $\operatorname{GL}(n, \mathbb{C})$;
(2) Unipotent representations of $\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)$; and

Back to the nice case of $\mathcal{G} \mathcal{L}(n)$

The matching of KLV polynomials implies there are nice relationships between character formuals for
(1) Harish-Chandra modules for $\operatorname{GL}(n, \mathbb{C})$;
(2) Unipotent representations of $\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)$; and
(3) Harish Chandra modules for $\mathrm{GL}(n, \mathbb{R})$.

Back to the nice case of $\mathcal{G L}(n)$

The matching of KLV polynomials implies there are nice relationships between character formuals for
(1) Harish-Chandra modules for $\operatorname{GL}(n, \mathbb{C})$;
(2) Unipotent representations of $\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)$; and
(3) Harish Chandra modules for $\mathrm{GL}(n, \mathbb{R})$. Are there functors explaining these relationships?

Existence of Functors?

Existence of Functors?

Since we have maps

$$
\begin{aligned}
& \Phi_{1}: X_{F, \lambda} \longrightarrow X_{\mathbb{C}, \lambda} \\
& \Phi_{2}: X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}
\end{aligned}
$$

Existence of Functors?

Since we have maps

$$
\begin{aligned}
& \Phi_{1}: X_{F, \lambda} \longrightarrow X_{\mathbb{C}, \lambda} \\
& \Phi_{2}: X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}
\end{aligned}
$$

we anticipate functors

$$
\begin{aligned}
& \mathcal{H C}(\operatorname{GL}(n, \mathbb{C}))_{\lambda} \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right) \\
& \mathcal{H C}(\operatorname{GL}(n, \mathbb{R}))_{\lambda} \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right)
\end{aligned}
$$

Existence of Functors?

Since we have maps

$$
\begin{aligned}
& \Phi_{1}: X_{F, \lambda} \longrightarrow X_{\mathbb{C}, \lambda} \\
& \Phi_{2}: X_{F, \lambda} \longrightarrow X_{\mathbb{R}, \lambda}
\end{aligned}
$$

we anticipate functors

$$
\begin{aligned}
\mathcal{O}_{\lambda} & \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right) \\
\mathcal{H C}(\operatorname{GL}(n, \mathbb{R}))_{\lambda} & \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right)
\end{aligned}
$$

Existence of Functors?

We expect that the functors

$$
\begin{aligned}
\mathcal{O}_{\lambda} & \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right) \\
\mathcal{H C}(\operatorname{GL}(n, \mathbb{R}))_{\lambda} & \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right)
\end{aligned}
$$

should take standard modules to standard modules (or zero) and irreducibles to irreducibles (or zero).

Existence of Functors?

We expect that the functors

$$
\begin{aligned}
\mathcal{O}_{\lambda} & \longrightarrow \mathcal{U N}\left(\mathrm{GL}\left(n, \mathbb{Q}_{p}\right)\right) \\
\mathcal{H C}(\operatorname{GL}(n, \mathbb{R}))_{\lambda} & \longrightarrow \mathcal{U N}\left(\operatorname{GL}\left(n, \mathbb{Q}_{p}\right)\right)
\end{aligned}
$$

should take standard modules to standard modules (or zero) and irreducibles to irreducibles (or zero).

See Dan Ciubotaru's talk.

