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KLV polynomials

GR real reductive group, g = gR 
R C
KR maximal compact subgroup, K = (KR)C
B variety of Borel subalgebras in g.
LocK(B) set of irreducible K-equivariant locally constant
sheaves supported on single K orbits on B

Given L;L0 2 LocK(B), we can de�ne the
Kazhdan-Lusztig-Vogan polynomial

pLL0(q):
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Notation for special case

If L and L0 are the constant sheaves on Q;Q0 2 KnB, instead
write

pQ;Q0 = pL;L0



Notation for an even more special case

If GR is already a complex Lie group, then the Bruhat
decomposition identi�es KnB with the Weyl group W of g.

In
fact,

LocK(B) $ W:

If Q(x) and Q(y) are two orbits parametrized by x and y, then
we write

px;y = pQ(x);Q(y):
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Another example

GR = U(p; q)

KR = U(p)�U(q)
K = GL(p;C)�GL(q;C)

In fact
LocK(B) $ (GL(p;C)�GL(q;C))nB:
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What does \matching KLV polynomials" mean?

Let G1
R and G2

R denote two real groups.

Suppose we can �nd

(1) a subset S1 � LocK1(B1);

(2) a subset S2 � LocK2(B2); and

(3) a bijection � : S1 ! S2

such that for any L;L0 2 S1,

pL;L0 = p�(L);�(L0):

Then we say � implements a matching of KLV polynomials.

Obviously this is more impressive if S1 is large.
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Plan

� Explicitly describe a matching for GL(n;C) with various
U(p; q)'s, p+ q = n.

� The key will be an intermediate combinatorial set (which is
really GL(n;Qp) in disguise).

� Indicate briey a general setting to search for such
matchings. (Works in all simple adjoint classical cases, for
instance, but breaks in interesting ways in a handful of
exceptional ones.)

� Hando� to Dan: a functor \implementing" the matching.
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Intermediate Combinatorial Set

Fix � = (�01 � � � � � �0n) (an in�nitesimal character in disguise).

Everything reduces to the case

1 �0i 2 Z

2 �0i � �0i+1 2 f0; 1g.

We assume this is the case and rewrite

� = (

n1z }| {
�1; : : : ; �1 > � � � � � � � � � >

nkz }| {
�k; : : : ; �k):
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Intermediate Combinatorial Set

Consider a directed graph such that on this vertex set such that

� The only allowable edges are of the form xi ! xi+1 with xi
in the �i pile and xi+1 in the �i+1 pile; and

� No two edges originate at the same vertex.

For instance, if � = (5; 5; 4; 4; 4; 4; 3; 3; 3; 2; 2; 1), we can consider
the following graph:
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called �-multisegments.
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1 G(�) = Ad-centralizer of � in G.

2 g1(�) = +1-eigenspace of ad(�) on g
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Another kind of KL polynomial

Since MS(�) parametrizes orbits of G_(�) on g_1 (�), given
s; s0 2MS(�) we can consider

ps;s0(q) := pL;L0(q)

where L;L0 2 LocG_(�)(g
_
1 (�)) are the constant sheaves on the

orbits parametrized by s; s0.

In general, Lusztig (2006) has given an algorithm to compute
these polynomials.
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and
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such that all Kazhdan-Lusztig-Vogan polynomials match:
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In particular, this gives a matching of KLV polynomials for
GL(n;C) and U(p; q).
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A few details on the ��(n) parametrization.

Set G = GL(n;C) and �x a torus T .
Fix the inner class of (classical) real forms represented by

fU(p; q) j p+ q = n; p � qg:

Consider its one-sided parameter space

X = f(z; T 0; B0) j T 0 � B0; z2 2 Z(G); xT 0x�1 = T 0g=G
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A few comments on the ��(n) parametrization.

General features:

1 This parametrization is \dual" to the one for
LocO(n;C)(Bn), i.e. the representation theory of GL(n;R).

2 The closed orbits are parametrized by diagrams consisting
of all signs.

3 It's easy to translate the information from the atlas
command kgb in this parametrization.
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An example of the parametrization for

(p; q) = (2; 1).

Set � = e1 � e2, � = e2 � e3, and consider
(GL(2;C)�GL(1;C))nB3.
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2 Unipotent representations of GL(n;Qp); and

3 Harish Chandra modules for GL(n;R).
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