Functors for Matching Kazhdan-Lusztig polynomials for GL(n, F)

Peter E. Trapa (joint with Dan Ciubotaru)

 $F_{\lambda} : X \mapsto \mathrm{H}_0(X \otimes F)_{[\lambda + N\rho]}$

KLV polynomials

KLV polynomials

 $G_{\mathbb{R}}$ real reductive group, $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ $K_{\mathbb{R}}$ maximal compact subgroup, $K = (K_{\mathbb{R}})_{\mathbb{C}}$ \mathfrak{B} variety of Borel subalgebras in \mathfrak{g} . $\operatorname{Loc}_{K}(\mathfrak{B})$ set of irreducible K-equivariant locally constant sheaves supported on single K orbits on \mathfrak{B}

KLV polynomials

 $G_{\mathbb{R}}$ real reductive group, $\mathfrak{g} = \mathfrak{g}_{\mathbb{R}} \otimes_{\mathbb{R}} \mathbb{C}$ $K_{\mathbb{R}}$ maximal compact subgroup, $K = (K_{\mathbb{R}})_{\mathbb{C}}$ \mathfrak{B} variety of Borel subalgebras in \mathfrak{g} . $\operatorname{Loc}_{K}(\mathfrak{B})$ set of irreducible K-equivariant locally constant sheaves supported on single K orbits on \mathfrak{B}

Given $\mathcal{L}, \mathcal{L}' \in \operatorname{Loc}_K(\mathfrak{B})$, we can define the Kazhdan-Lusztig-Vogan polynomial

 $p_{\mathcal{LL}'}(q).$

If \mathcal{L} and \mathcal{L}' are the constant sheaves on $Q, Q' \in K \setminus \mathfrak{B}$, instead write

 $p_{Q,Q'} = p_{\mathcal{L},\mathcal{L}'}$

If $G_{\mathbb{R}}$ is already a complex Lie group, then the Bruhat decomposition identifies $K \setminus \mathfrak{B}$ with the Weyl group W of \mathfrak{g} .

If $G_{\mathbb{R}}$ is already a complex Lie group, then the Bruhat decomposition identifies $K \setminus \mathfrak{B}$ with the Weyl group W of \mathfrak{g} . In fact,

 $\operatorname{Loc}_{K}(\mathfrak{B}) \leftrightarrow W.$

If $G_{\mathbb{R}}$ is already a complex Lie group, then the Bruhat decomposition identifies $K \setminus \mathfrak{B}$ with the Weyl group W of \mathfrak{g} . In fact,

$$\operatorname{Loc}_{K}(\mathfrak{B}) \leftrightarrow W.$$

If Q(x) and Q(y) are two orbits parametrized by x and y, then we write

 $p_{x,y} = p_{Q(x),Q(y)}.$

Another example

$$G_{\mathbb{R}} = \mathrm{U}(p,q)$$

 $G_{\mathbb{R}} = U(p,q)$ $K_{\mathbb{R}} = U(p) \times U(q)$

$$G_{\mathbb{R}} = U(p,q)$$

$$K_{\mathbb{R}} = U(p) \times U(q)$$

$$K = GL(p,\mathbb{C}) \times GL(q,\mathbb{C})$$

$$G_{\mathbb{R}} = U(p,q)$$

$$K_{\mathbb{R}} = U(p) \times U(q)$$

$$K = GL(p,\mathbb{C}) \times GL(q,\mathbb{C})$$

In fact

$$\operatorname{Loc}_{K}(\mathfrak{B}) \leftrightarrow (\operatorname{GL}(p,\mathbb{C}) \times \operatorname{GL}(q,\mathbb{C})) \backslash \mathfrak{B}.$$

What does "matching KLV polynomials" mean?

Let $G^1_{\mathbb{R}}$ and $G^2_{\mathbb{R}}$ denote two real groups.

(1) a subset $\mathcal{S}^1 \subset \operatorname{Loc}_{K^1}(\mathfrak{B}^1);$

- (1) a subset $\mathcal{S}^1 \subset \operatorname{Loc}_{K^1}(\mathfrak{B}^1);$
- (2) a subset $S^2 \subset \operatorname{Loc}_{K^2}(\mathfrak{B}^2)$; and

- (1) a subset $\mathcal{S}^1 \subset \operatorname{Loc}_{K^1}(\mathfrak{B}^1);$
- (2) a subset $S^2 \subset \operatorname{Loc}_{K^2}(\mathfrak{B}^2)$; and
- (3) a bijection $\Phi : \mathcal{S}^1 \to \mathcal{S}^2$

- (1) a subset $\mathcal{S}^1 \subset \operatorname{Loc}_{K^1}(\mathfrak{B}^1);$
- (2) a subset $S^2 \subset \operatorname{Loc}_{K^2}(\mathfrak{B}^2)$; and
- (3) a bijection $\Phi : \mathcal{S}^1 \to \mathcal{S}^2$

such that for any $\mathcal{L}, \mathcal{L}' \in \mathcal{S}^1$,

$$p_{\mathcal{L},\mathcal{L}'} = p_{\Phi(\mathcal{L}),\Phi(\mathcal{L}')}.$$

- (1) a subset $\mathcal{S}^1 \subset \operatorname{Loc}_{K^1}(\mathfrak{B}^1);$
- (2) a subset $S^2 \subset \operatorname{Loc}_{K^2}(\mathfrak{B}^2)$; and
- (3) a bijection $\Phi : \mathcal{S}^1 \to \mathcal{S}^2$

such that for any $\mathcal{L}, \mathcal{L}' \in \mathcal{S}^1$,

$$p_{\mathcal{L},\mathcal{L}'} = p_{\Phi(\mathcal{L}),\Phi(\mathcal{L}')}.$$

Then we say Φ implements a matching of KLV polynomials.

(1) a subset $\mathcal{S}^1 \subset \operatorname{Loc}_{K^1}(\mathfrak{B}^1);$

- (2) a subset $S^2 \subset \operatorname{Loc}_{K^2}(\mathfrak{B}^2)$; and
- (3) a bijection $\Phi : \mathcal{S}^1 \to \mathcal{S}^2$

such that for any $\mathcal{L}, \mathcal{L}' \in \mathcal{S}^1$,

$$p_{\mathcal{L},\mathcal{L}'} = p_{\Phi(\mathcal{L}),\Phi(\mathcal{L}')}.$$

Then we say Φ implements a matching of KLV polynomials.

Obviously this is more impressive if \mathcal{S}^1 is large.

• Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\operatorname{U}(p,q)$'s, p+q=n.

- Explicitly describe a matching for $\operatorname{GL}(n,\mathbb{C})$ with various $\operatorname{U}(p,q)$'s, p+q=n.
- The key will be an intermediate combinatorial set (which is really $GL(n, \mathbb{Q}_p)$ in disguise).

- Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\operatorname{U}(p,q)$'s, p+q=n.
- The key will be an intermediate combinatorial set (which is really $GL(n, \mathbb{Q}_p)$ in disguise).
- Indicate briefly a general setting to search for such matchings. (Works in all simple adjoint classical cases, for instance, but breaks in interesting ways in a handful of exceptional ones.)

- Explicitly describe a matching for $\operatorname{GL}(n, \mathbb{C})$ with various $\operatorname{U}(p,q)$'s, p+q=n.
- The key will be an intermediate combinatorial set (which is really $GL(n, \mathbb{Q}_p)$ in disguise).
- Indicate briefly a general setting to search for such matchings. (Works in all simple adjoint classical cases, for instance, but breaks in interesting ways in a handful of exceptional ones.)
- Handoff to Dan: a functor "implementing" the matching.

Fix $\lambda = (\lambda'_1 \ge \cdots \ge \lambda'_n)$ (an infinitesimal character in disguise).

Fix $\lambda = (\lambda'_1 \ge \cdots \ge \lambda'_n)$ (an infinitesimal character in disguise).

Everything reduces to the case

•
$$\lambda'_i \in \mathbb{Z}$$

• $\lambda'_i - \lambda'_{i+1} \in \{0, 1\}.$

Fix $\lambda = (\lambda'_1 \ge \cdots \ge \lambda'_n)$ (an infinitesimal character in disguise).

Everything reduces to the case

• $\lambda'_i \in \mathbb{Z}$ • $\lambda'_i - \lambda'_{i+1} \in \{0, 1\}.$

We assume this is the case and rewrite

$$\lambda = (\overbrace{\lambda_1, \dots, \lambda_1}^{n_1} > \dots > \overbrace{\lambda_k, \dots, \lambda_k}^{n_k}).$$

Let $W(\lambda)$ = stabilizer of λ under the permutation action of $W = S_n$.

$$\lambda = (\overbrace{\lambda_1, \dots, \lambda_1}^{n_1} > \dots > \overbrace{\lambda_k, \dots, \lambda_k}^{n_k}).$$

Let $W(\lambda)$ = stabilizer of λ under the permutation action of $W = S_n$. So $W(\lambda) = S_{n_1} \times \cdots \times S_{n_k}$.

Consider a collection of k piles of dots, with the *i*th pile consisting of n_i dots labeled λ_i .

Consider a collection of k piles of dots, with the *i*th pile consisting of n_i dots labeled λ_i .

For instance, if $\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$, consider:

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

Consider a directed graph such that on this vertex set such that

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda = (5, 5, 4, 4, 4, 3, 3, 3, 2, 2, 1)$, we can consider the following graph:

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

- The only allowable edges are of the form $x_i \to x_{i+1}$ with x_i in the λ_i pile and x_{i+1} in the λ_{i+1} pile; and
- No two edges originate at the same vertex.

For instance, if $\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$, we can consider the following graphs:

Clearly $W(\lambda) \simeq S_{n_1} \times \cdots \times S_{n_k}$ acts on such graphs.

Intermediate Combinatorial Set

are in the same $S_2 \times S_4 \times S_3 \times S_2 \times S_1$ orbit.

Intermediate Combinatorial Set

are in the same $S_2 \times S_4 \times S_3 \times S_2 \times S_1$ orbit.

The set of equivalence classes, denoted $\mathcal{MS}(\lambda)$, are called λ -multisegments.

Let $G = GL(n, \mathbb{C}), \mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^*$, and consider

Let $G = \operatorname{GL}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^*$, and consider $\mathbf{0} \quad G(\lambda) = \operatorname{Ad-centralizer} \text{ of } \lambda \text{ in } G.$ Let G = GL(n, C), g = gl(n, C), view λ ∈ h*, and consider
G(λ) = Ad-centralizer of λ in G.
g₁(λ) = +1-eigenspace of ad(λ) on g

Let $G = \operatorname{GL}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^*$, and consider $\mathbf{0} \quad G(\lambda) = \operatorname{Ad-centralizer} \text{ of } \lambda \text{ in } G.$

2
$$\mathfrak{g}_1(\lambda) = +1$$
-eigenspace of $\operatorname{ad}(\lambda)$ on \mathfrak{g}

Except this doesn't make sense.

Let $G = \operatorname{GL}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^* \simeq \mathfrak{h}^{\vee}$, and consider

Let $G = \operatorname{GL}(n, \mathbb{C}), \mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$, view $\lambda \in \mathfrak{h}^* \simeq \mathfrak{h}^{\vee}$, and consider $\mathbf{0} \quad G^{\vee}(\lambda) = \operatorname{Ad-centralizer} \text{ of } \lambda \text{ in } G^{\vee}.$

Let G = GL(n, C), g = gl(n, C), view λ ∈ h* ≃ h[∨], and consider
G[∨](λ) = Ad-centralizer of λ in G[∨].
g[∨]₁(λ) = +1-eigenspace of ad[∨](λ) on g[∨]

Then $G^{\vee}(\lambda)$ naturally acts on $\mathfrak{g}_1^{\vee}(\lambda)$.

Then $G^{\vee}(\lambda)$ naturally acts on $\mathfrak{g}_1^{\vee}(\lambda)$.

 $\mathcal{MS}(\lambda)$ parametrizes these orbits.

Then $G^{\vee}(\lambda)$ naturally acts on $\mathfrak{g}_1^{\vee}(\lambda)$.

 $\mathcal{MS}(\lambda)$ parametrizes these orbits.

There is a beautiful generalization to all types (Kawanaka, Lusztig, Vinberg).

Take $\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1).$

Take
$$\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$$
. So
 $G^{\vee}(\lambda) \simeq$
 $\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$

Take
$$\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$$
. So
 $G^{\vee}(\lambda) \simeq$
 $\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$
 $\mathfrak{g}_{1}^{\vee}(\lambda) \simeq \left\{ \mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1} \right\}$

Take
$$\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$$
. So
 $G^{\vee}(\lambda) \simeq$
 $\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$
 $\mathfrak{g}_{1}^{\vee}(\lambda) \simeq \left\{ \mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1} \right\}$

For instance,

Take
$$\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$$
. So
 $G^{\vee}(\lambda) \simeq$
 $\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$
 $\mathfrak{g}_{1}^{\vee}(\lambda) \simeq \left\{ \mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1} \right\}$

For instance,

Take
$$\lambda = (5, 5, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1)$$
. So
 $G^{\vee}(\lambda) \simeq$
 $\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(4, \mathbb{C}) \times \operatorname{GL}(3, \mathbb{C}) \times \operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$
 $\mathfrak{g}_{1}^{\vee}(\lambda) \simeq \left\{ \mathbb{C}^{2} \xrightarrow{A} \mathbb{C}^{4} \xrightarrow{B} \mathbb{C}^{3} \xrightarrow{C} \mathbb{C}^{2} \xrightarrow{D} \mathbb{C}^{1} \right\}$

For instance,

Another kind of KL polynomial

Since $\mathcal{MS}(\lambda)$ parametrizes orbits of $G^{\vee}(\lambda)$ on $\mathfrak{g}_1^{\vee}(\lambda)$, given $\mathbf{s}, \mathbf{s}' \in \mathcal{MS}(\lambda)$ we can consider

$$p_{\mathbf{s},\mathbf{s}'}(q) := p_{\mathcal{L},\mathcal{L}'}(q)$$

where $\mathcal{L}, \mathcal{L}' \in \operatorname{Loc}_{G^{\vee}(\lambda)}(\mathfrak{g}_1^{\vee}(\lambda))$ are the constant sheaves on the orbits parametrized by \mathbf{s}, \mathbf{s}' .

Since $\mathcal{MS}(\lambda)$ parametrizes orbits of $G^{\vee}(\lambda)$ on $\mathfrak{g}_1^{\vee}(\lambda)$, given $\mathbf{s}, \mathbf{s}' \in \mathcal{MS}(\lambda)$ we can consider

$$p_{\mathbf{s},\mathbf{s}'}(q) := p_{\mathcal{L},\mathcal{L}'}(q)$$

where $\mathcal{L}, \mathcal{L}' \in \operatorname{Loc}_{G^{\vee}(\lambda)}(\mathfrak{g}_1^{\vee}(\lambda))$ are the constant sheaves on the orbits parametrized by \mathbf{s}, \mathbf{s}' .

In general, Lusztig (2006) has given an algorithm to compute these polynomials.

The plan

The plan

We are going to define injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

The plan

We are going to define injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

 and

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n$$
The plan

We are going to define injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

 and

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n$$

such that all Kazhdan-Lusztig-Vogan polynomials match:

$$p_{\mathbf{s},\mathbf{s}'} = p_{\Phi_1(\mathbf{s}),\Phi_1(\mathbf{s}')} = p_{\Phi_2(\mathbf{s}),\Phi_2(\mathbf{s}')}.$$

The plan

We are going to define injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

and

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \prod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n$$

such that all Kazhdan-Lusztig-Vogan polynomials match:

$$p_{\mathbf{s},\mathbf{s}'} = p_{\Phi_1(\mathbf{s}),\Phi_1(\mathbf{s}')} = p_{\Phi_2(\mathbf{s}),\Phi_2(\mathbf{s}')}.$$

In particular, this gives a matching of KLV polynomials for $\operatorname{GL}(n,\mathbb{C})$ and $\operatorname{U}(p,q)$.

Set $\sigma = (1 \ 3 \ 4 \ 7 \ 10 \ 12)(4 \ 8 \ 11)$.

Set $\sigma = (1 \ 3 \ 4 \ 7 \ 10 \ 12)(4 \ 8 \ 11)$. And

 $\Phi_1(\mathbf{s}) := \text{longest element in } \sigma W(\lambda).$

Defining $\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$

Defining $\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$

Let

 $\Sigma_{\pm}(n) = \{$ involutions in S_n with signed fixed points $\}$.

Defining $\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$

Let

 $\Sigma_{\pm}(n) = \{ \text{involutions in } S_n \text{ with signed fixed points} \}.$

Then there is a bijection

$$\Sigma_{\pm}(n) \leftrightarrow \prod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n$$

A few details on the $\Sigma_{\pm}(n)$ parametrization.

A few details on the $\Sigma_{\pm}(n)$ parametrization.

Set $G = GL(n, \mathbb{C})$ and fix a torus T.

Set $G = \operatorname{GL}(n, \mathbb{C})$ and fix a torus T. Fix the inner class of (classical) real forms represented by

$$\{\mathbf{U}(p,q)\mid p+q=n,p\geq q\}.$$

Set $G = \operatorname{GL}(n, \mathbb{C})$ and fix a torus T. Fix the inner class of (classical) real forms represented by

$$\{\mathrm{U}(p,q)\mid p+q=n,p\geq q\}.$$

$$\mathcal{X} = \{(z,T',B') \mid T' \subset B', z^2 \in Z(G), xT'x^{-1} = T'\}/G$$

Set $G = \operatorname{GL}(n, \mathbb{C})$ and fix a torus T. Fix the inner class of (classical) real forms

$$\{\mathrm{U}(p,q)\mid p+q=n,p\geq q\}.$$

$$\mathcal{X}(e) = \{(z,T',B') \mid T' \subset B', z^2 = e, xT'x^{-1} = T'\}/G$$

Set $G = \operatorname{GL}(n, \mathbb{C})$ and fix a torus T. Fix the inner class of (classical) real forms

$$\{ \mathrm{U}(p,q) \mid p+q=n, p \geq q \}.$$

$$\mathcal{X}(e) = \{(z,T',B') \mid T' \subset B', z^2 = e, xT'x^{-1} = T'\}/G$$

$$= \{z \in N_G(T) \mid z^2 = e\}/T$$

Set $G = \operatorname{GL}(n, \mathbb{C})$ and fix a torus T. Fix the inner class of (classical) real forms

$$\{ \mathrm{U}(p,q) \mid p+q=n, p \geq q \}.$$

$$\mathcal{X}(e) = \{(z,T',B') \mid T' \subset B', z^2 = e, xT'x^{-1} = T'\}/G$$

$$= \{ z \in N_G(T) \mid z^2 = e \} / T \leftrightarrow \Sigma_{\pm}(n).$$

$$\mathcal{X}(e) \leftrightarrow \prod_{i} K_i \backslash \mathfrak{B}_n$$

where the union is over all strong real forms (lying over e).

$$\mathcal{X}(e) \leftrightarrow \prod_i K_i \backslash \mathfrak{B}_n$$

where the union is over all *strong* real forms (lying over e). Our case (G conjugacy classes of elements of order 2):

$$\mathcal{X}(e) \leftrightarrow \prod_{i} K_i \backslash \mathfrak{B}_n$$

where the union is over all *strong* real forms (lying over e). Our case (G conjugacy classes of elements of order 2):

$$\mathcal{X}(e) \leftrightarrow \prod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$$

$$\mathcal{X}(e) \leftrightarrow \prod_{i} K_i \backslash \mathfrak{B}_n$$

where the union is over all *strong* real forms (lying over e). Our case (G conjugacy classes of elements of order 2):

$$\Sigma_{\pm}(n) \leftrightarrow \prod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \backslash \mathfrak{B}_n.$$

$$p = (\# \text{ of } + \text{ signs}) + \frac{1}{2} (\# \text{ non-fixed points})$$

$$p = (\# \text{ of } + \text{ signs}) + \frac{1}{2} (\# \text{ non-fixed points}) = 6 + \frac{4}{2} = 8.$$

$$p = (\# \text{ of } + \text{ signs}) + \frac{1}{2} (\# \text{ non-fixed points}) = 6 + \frac{4}{2} = 8.$$
$$q = (\# \text{ of } - \text{ signs}) + \frac{1}{2} (\# \text{ non-fixed points})$$

$$p = (\# \text{ of } + \text{ signs}) + \frac{1}{2} (\# \text{ non-fixed points}) = 6 + \frac{4}{2} = 8.$$

$$q = (\# \text{ of} - \text{ signs}) + \frac{1}{2} (\# \text{ non-fixed points}) = 2 + \frac{4}{2} = 4.$$

A convenient short-hand (as in Monty's talk):

A convenient short-hand (as in Monty's talk): Rewrite

A convenient short-hand (as in Monty's talk): Rewrite

\mathbf{as}

A few comments on the $\Sigma_{\pm}(n)$ parametrization.

This parametrization is "dual" to the one for Loc_{O(n,C)}(𝔅_n), i.e. the representation theory of GL(n, ℝ).

- This parametrization is "dual" to the one for $\operatorname{Loc}_{\mathcal{O}(n,\mathbb{C})}(\mathfrak{B}_n)$, i.e. the representation theory of $\operatorname{GL}(n,\mathbb{R})$.
- On the closed orbits are parametrized by diagrams consisting of all signs.

- This parametrization is "dual" to the one for Loc_{O(n,C)}(𝔅_n), i.e. the representation theory of GL(n, ℝ).
- One closed orbits are parametrized by diagrams consisting of all signs.
- It's easy to translate the information from the atlas command kgb in this parametrization.
+ - +

-++

Set
$$\alpha = e_1 - e_2$$
, $\beta = e_2 - e_3$, and consider
(GL(2, \mathbb{C}) × GL(1, \mathbb{C}))\ \mathfrak{B}_3 .

+ + -

Set
$$\alpha = e_1 - e_2$$
, $\beta = e_2 - e_3$, and consider
(GL(2, \mathbb{C}) × GL(1, \mathbb{C}))\ \mathfrak{B}_3 .

Set
$$\alpha = e_1 - e_2$$
, $\beta = e_2 - e_3$, and consider
(GL(2, \mathbb{C}) × GL(1, \mathbb{C}))\ \mathfrak{B}_3 .

+ +

Set
$$\alpha = e_1 - e_2, \ \beta = e_2 - e_3$$
, and consider
(GL(2, \mathbb{C}) × GL(1, \mathbb{C}))\ \mathfrak{B}_3 .

Set
$$\alpha = e_1 - e_2, \ \beta = e_2 - e_3$$
, and consider
(GL(2, \mathbb{C}) × GL(1, \mathbb{C}))\ \mathfrak{B}_3 .

Set $\alpha = e_1 - e_2$, $\beta = e_2 - e_3$, and consider $(\operatorname{GL}(2,\mathbb{C}) \times \operatorname{GL}(1,\mathbb{C})) \setminus \mathfrak{B}_3$.

Set $\alpha = e_1 - e_2$, $\beta = e_2 - e_3$, and consider $(\operatorname{GL}(2,\mathbb{C}) \times \operatorname{GL}(1,\mathbb{C})) \setminus \mathfrak{B}_3$.

Now "flatten".

Flatten...

Flatten...

The flattening procedure is not well-defined.

The flattening procedure is not well-defined.

Remedy: take largest dimensional orbit obtained this way.

We have defined injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

We have defined injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

and

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \backslash \mathfrak{B}_n.$$

We have defined injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

and

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \prod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$$

THEOREM (ZELEVINSKY, CT)

All Kazhdan-Lusztig-Vogan polynomials match:

$$p_{\mathbf{s},\mathbf{s}'} = p_{\Phi_1(\mathbf{s}),\Phi_1(\mathbf{s}')} = p_{\Phi_2(\mathbf{s}),\Phi_2(\mathbf{s}')}.$$

We have defined injections

$$\Phi_1 : \mathcal{MS}(\lambda) \longrightarrow S_n$$

and

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \prod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$$

THEOREM (ZELEVINSKY, CT)

All Kazhdan-Lusztig-Vogan polynomials match:

$$p_{\mathbf{s},\mathbf{s}'} = p_{\Phi_1(\mathbf{s}),\Phi_1(\mathbf{s}')} = p_{\Phi_2(\mathbf{s}),\Phi_2(\mathbf{s}')}.$$

In particular, this gives a matching of KLV polynomials for $\operatorname{GL}(n,\mathbb{C})$ and $\operatorname{U}(p,q)$.

Where does all this come from?

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} .

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} . Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} . Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example $\operatorname{GL}(n, \mathbb{R})$ if n is odd; and Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} . Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example $\operatorname{GL}(n,\mathbb{R})$ if n is odd; and $\operatorname{GL}(n,\mathbb{R})$ and $\operatorname{GL}(n/2,\mathbb{H})$ if n is even. Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} . Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example $\operatorname{GL}(n,\mathbb{R})$ if n is odd; and $\operatorname{GL}(n,\mathbb{R})$ and $\operatorname{GL}(n/2,\mathbb{H})$ if n is even. Simplify: \mathcal{G} adjoint. Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} . Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example $\operatorname{GL}(n,\mathbb{R})$ if n is odd; and $\operatorname{GL}(n,\mathbb{R})$ and $\operatorname{GL}(n/2,\mathbb{H})$ if n is even. Simplify: \mathcal{G} adjoint. Then main result of ABV

$$\bigoplus_i K\mathcal{HC}(G_i) \stackrel{\text{dual}}{\leftrightarrow} \text{geometry of } \mathcal{G}^{\vee}(\mathbb{C}) \text{ orbits on } X_{\mathbb{R}}.$$

Suppose \mathcal{G} is a complex algebraic group defined over \mathbb{R} . Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example $\operatorname{GL}(n, \mathbb{R})$ if n is odd; and

 $\operatorname{GL}(n,\mathbb{R})$ and $\operatorname{GL}(n/2,\mathbb{H})$ if n is even.

Simplify: \mathcal{G} adjoint. Then main result of ABV

$$\bigoplus_i K\mathcal{HC}(G_i)_{\lambda} \stackrel{\text{dual}}{\leftrightarrow} \text{geometry of } \mathcal{G}^{\vee}(\mathbb{C}) \text{ orbits on } X_{\mathbb{R},\lambda}.$$

Where does all this come from?

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F = \mathbb{Q}_p$.

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F = \mathbb{Q}_p$. Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . Suppose \mathcal{G} is a an adjoint algebraic group defined over $F = \mathbb{Q}_p$. Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example

$$\left\{\operatorname{GL}(n/d,E_d) \; \middle| \; d|n\right\}$$

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F = \mathbb{Q}_p$. Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example

$$\left\{\operatorname{GL}(n/d,E_d) \; \middle| \; d|n\right\}$$

Then Deligne-Langlands-Lusztig:

$$\bigoplus_i KUN(G_i) \stackrel{\text{dual}}{\leftrightarrow} \text{geometry of } \mathcal{G}^{\vee}(\mathbb{C}) \text{ orbits on } X_F.$$

Suppose \mathcal{G} is a an adjoint algebraic group defined over $F = \mathbb{Q}_p$. Fix an inner class of real forms $\{G_1, \ldots, G_k\}$ of \mathcal{G} . For example

$$\left\{\operatorname{GL}(n/d,E_d) \; \middle| \; d|n\right\}$$

Then Deligne-Langlands-Lusztig:

$$\bigoplus_i KUN(G_i)_{\lambda} \stackrel{\text{dual}}{\leftrightarrow} \text{geometry of } \mathcal{G}^{\vee}(\mathbb{C}) \text{ orbits on } X_{F,\lambda}.$$

Where does all this come from?
Write out the spaces. If λ is real, then there is a natural map

 $X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}.$

Write out the spaces. If λ is real, then there is a natural map

$$X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}.$$

In the case of $\mathcal{G} = \mathcal{GL}(n)$, this unravels (on the level of orbits) to give the map

$$\Phi_2 : \mathcal{MS}(\lambda) \longrightarrow \coprod_{p+q=n} (\mathrm{GL}(p,\mathbb{C}) \times \mathrm{GL}(q,\mathbb{C})) \setminus \mathfrak{B}_n.$$

If \mathcal{G} is simple, adjoint, and classical, one may unravel the natural map $X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$ in much the same way.

If \mathcal{G} is simple, adjoint, and classical, one may unravel the natural map $X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$ in much the same way.

Find an anologous matching of KLV polynomials for $\mathcal{UN}(\mathcal{G}/F)$ and $\mathcal{HC}(\mathcal{G}/\mathbb{R})$

- If \mathcal{G} is simple, adjoint, and classical, one may unravel the natural map $X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$ in much the same way.
- Find an anologous matching of KLV polynomials for $\mathcal{UN}(\mathcal{G}/F)$ and $\mathcal{HC}(\mathcal{G}/\mathbb{R})$ (and a weaker one for $\mathcal{HC}(\mathcal{G}/\mathbb{C})$).

If \mathcal{G} is simple, adjoint, and exceptional, the natural map $X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$ is less well behaved.

If \mathcal{G} is simple, adjoint, and exceptional, the natural map $X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$ is less well behaved. (Two orbits can collapse to one, for instance.)

Back to the nice case of $\mathcal{GL}(n)$

The matching of KLV polynomials implies there are nice relationships between character formuals for The matching of KLV polynomials implies there are nice relationships between character formuals for

• Harish-Chandra modules for $GL(n, \mathbb{C})$;

The matching of KLV polynomials implies there are nice relationships between character formulas for

- Harish-Chandra modules for $GL(n, \mathbb{C})$;
- **2** Unipotent representations of $GL(n, \mathbb{Q}_p)$; and

The matching of KLV polynomials implies there are nice relationships between character formulas for

- Harish-Chandra modules for $GL(n, \mathbb{C})$;
- **2** Unipotent representations of $GL(n, \mathbb{Q}_p)$; and
- **③** Harish Chandra modules for $GL(n, \mathbb{R})$.

The matching of KLV polynomials implies there are nice relationships between character formuals for

- Harish-Chandra modules for $GL(n, \mathbb{C})$;
- **2** Unipotent representations of $\operatorname{GL}(n, \mathbb{Q}_p)$; and
- **(3)** Harish Chandra modules for $GL(n, \mathbb{R})$.

Are there *functors* explaining these relationships?

Existence of Functors?

Existence of Functors?

Since we have maps

$$\Phi_1 : X_{F,\lambda} \longrightarrow X_{\mathbb{C},\lambda} \Phi_2 : X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$$

Since we have maps

$$\Phi_1 : X_{F,\lambda} \longrightarrow X_{\mathbb{C},\lambda} \Phi_2 : X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$$

we anticipate functors

$$\mathcal{HC}(\mathrm{GL}(n,\mathbb{C}))_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n,\mathbb{Q}_p)) \mathcal{HC}(\mathrm{GL}(n,\mathbb{R}))_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n,\mathbb{Q}_p))$$

Since we have maps

$$\Phi_1 : X_{F,\lambda} \longrightarrow X_{\mathbb{C},\lambda} \Phi_2 : X_{F,\lambda} \longrightarrow X_{\mathbb{R},\lambda}$$

we anticipate functors

$$\mathcal{O}_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n, \mathbb{Q}_p))$$
$$\mathcal{HC}(\mathrm{GL}(n, \mathbb{R}))_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n, \mathbb{Q}_p))$$

We expect that the functors

$$\mathcal{O}_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n, \mathbb{Q}_p))$$
$$\mathcal{HC}(\mathrm{GL}(n, \mathbb{R}))_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n, \mathbb{Q}_p))$$

should take standard modules to standard modules (or zero) and irreducibles to irreducibles (or zero).

We expect that the functors

$$\mathcal{O}_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n, \mathbb{Q}_p))$$
$$\mathcal{HC}(\mathrm{GL}(n, \mathbb{R}))_{\lambda} \longrightarrow \mathcal{UN}(\mathrm{GL}(n, \mathbb{Q}_p))$$

should take standard modules to standard modules (or zero) and irreducibles to irreducibles (or zero).

See Dan Ciubotaru's talk.