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These notes provide some practical tools for doing explicit calculations with represen-
tations of (complex) Weyl groups. We place special emphasis on branching rules and
permutation characters induced from reflection subgroups, since this kind of information
may prove to be useful for understanding the Weyl group action on characters (of real Lie
group representations) by coherent continuation.

1. Type A

The irreducible representations of Sn are indexed by partitions of n, or equivalently,
Young diagrams of size n. Being deliberately vague, we will write

Ŝn = {χλ : |λ| = n}

as a notation for either the set of irreducible representations or their characters.
There are various ways to nail down which representation corresponds to which parti-

tion, but for now, let us merely take note that

χ(n) = trivial; χ(1n) = sign; χλ = sign⊗ χλ′ ,

where λ′ denotes conjugation (transposition of Young diagrams).



A. The induction ring.
There is an obvious embedding of Sm × Sn in Sm+n, so the “induction product”

χ · θ := (χ× θ)↑Sm+n

Sm×Sn

provides a graded, associative, commutative ring structure for

R = RA :=
⊕

n>0

ZŜn.

Note that this product is NOT the tensor product that ZŜn enjoys by itself as a Grothen-
dieck ring. We will prevent confusion about this by consistently using three different mul-
tiplication symbols: · (for induction products), ⊗ (for tensor products of representations
of a single group), and × (for outer tensor products of representations of two groups).

It is not hard to show that the trivial and sign representations {χ(1), χ(2), χ(3), . . . } and
{χ(1), χ(11), χ(111), . . . } both provide algebraically independent generators for RA; i.e.,

RA = Z[χ(1), χ(2), χ(3), . . . ] = Z[χ(1), χ(11), χ(111), . . . ].

It follows that the monomials

πµ : = χ(µ1) · χ(µ2) · · · = 1↑Sn

Sµ1×Sµ2×···,

εµ : = χ1µ1 · χ1µ2 · · · = sgn↑Sn

Sµ1×Sµ2×···,

as µ varies over partitions of n, both form nice Z-bases for Ŝn.
Rephrasing for emphasis, the above remarks indicate that every representation of Sn is

(uniquely) expressible as a polynomial in the trivial representations of various symmetric
groups, so many calculations in Ŝn reduce to polynomial arithmetic.

B. Schur-Weyl duality.
It is useful to keep in mind that for all r > 1, the Grothendieck ring of polynomial

representations of glr is a quotient of the induction ring RA. More explicitly, there is a
ring morphism RA → Zĝlr in which

χλ 7→
{
Vλ if `(λ) 6 r,

0 if `(λ) > r,

where Vλ denotes the irreducible representation of glr with highest weight λ, and `(λ)
denotes the number of parts in λ (the number of rows in the Young diagram).

In particular, the images of the trivial and sign representations are symmetric and
exterior powers; i.e., χ(n) 7→ Sn(Cr) and χ(1n) 7→ Λn(Cr).

2



C. The Pieri rule.
To decompose πµ or εµ into irreducibles, it suffices to know the “Pieri rules”

χ(n) · χµ =
∑

λ∈Hn(µ)

χλ,

χ(1n) · χµ =
∑

λ′∈Hn(µ′)

χλ,

where Hn(µ) denotes the set of partitions that can be obtained from µ by adding a “hor-
izontal n-strip”; i.e., adding n nodes to the Young diagram of µ so that there is at most
one new node per column. Iterating these rules, one obtains

πµ =
∑

Kλ,µχ
λ, (1)

where Kλ,µ is the number of semistandard Young tableaux of shape λ and weight µ; i.e.,
the number of increasing chains of Young diagrams from 0 to λ so that the ith member of
the chain is obtained by adding a horizontal µi-strip to the previous member.

It is a remarkable miracle that Kλ,µ is also the dimension of the µ-weight space of Vλ.
Note that this miracle is manifested entirely within the glr-world (and hence is not simply
a warmed-over instance of Schur-Weyl duality): the dimension of the µ-weight space of Vλ
is also the multiplicity of Vλ in Sµ1(Cr)⊗ Sµ2(Cr)⊗ · · · .

It is easy to show that (1) Kλ,λ = 1, and (2) Kλ,µ > 0 only if λ > µ, where ‘>’
denotes the usual “dominance” partial order (i.e., λ can be obtained from µ by a series of
operations that involve shrinking smaller parts and increasing larger parts). Conjugation
is order-reversing, so

πµ = χµ + later terms, (2)

εµ = χµ
′
+ earlier terms. (3)

This provides probably the least encumbered way to nail down which irreducible represen-
tation of Sn is which: χλ is the unique constituent common to both πλ and ελ

′
.

D. The Jacobi-Trudi identity.
We can invert (1), expressing χλ as a polynomial in trivial or sign representations:

χλ = det
[
χ(λi−i+j)]

16i,j6`(λ)
,

χλ
′
= det

[
χ1λi−i+j ]

16i,j6`(λ)
,

following the convention that χ(−r) = χ1−r

= 0 for r > 0. Of course these determinants
are to be evaluated in RA.

This provides a very efficient algorithm for decomposing a polynomial in RA into irre-
ducibles. Bearing in mind that χλ = πλ + later πµ’s (see (2)), it follows that if cµπµ is
the leading term of some polynomial π in the χ(r)’s, then cµ is multiplicity of χµ in π.
Evaluating the above determinant for χµ allows one to replace π ← π − cµχµ and iterate.
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E. The Littlewood-Richardson rule.
This is a rule for decomposing the induction product of two irreducibles; i.e.,

χµ · χν =
∑

λ

cλµνχ
λ,

or dually (by Frobenius reciprocity),

χλ ↓Sn

Sk×Sn−k
=

∑
µ,ν

cλµν χ
µ × χν .

These decompositions may be described in many different combinatorial terms. One de-
scription with relatively little baggage is as follows:

χµ · χν =
∑

T

χµ+wt(T ),

where the sum ranges over all semistandard tableaux T of shape ν such that µ+ wt(T>j)
is dominant for all j > 1, where T>j is the subtableau of T formed by columns j, j+1, . . . .

In other words, cλµ,ν is the number of semistandard tableaux of shape ν and weight λ−µ
such that µ+ wt(T>j) is dominant for all j > 1.

Note that it is clear from the definition (but not so clear from the rule) that

cλµν = cλνµ = cλ
′
µ′ν′ .

On the other hand, it is clear from the rule (but not so clear from the definition) that
cλµν = 0 unless λ contains the diagram of µ (and hence also ν, by symmetry).

As we shall see, the Littlewood-Richardson coefficients cλµν occur in many contexts
beyond the world of type A.

2. Type B

The irreducible representations of the Weyl group Bn are indexed by ordered pairs of
partitions of total size n; say,

B̂n := {χ(µ,ν) : |µ|+ |ν| = n}.

If we regard Bn as the group of n×n signed permutation matrices, then there is a natural
“ignore signs” epimorphism Bn → Sn, and each irreducible representation χλ of Sn lifts
back through this morphism to an irreducible representation of Bn. By convention, these
are the irreducible representations labeled χ(λ,0).

Let δ = δn denote the one-dimensional Bn-representation that tracks the parity of signs
in each signed permutation matrix (equivalently, this is the parity of “short” reflections).
By convention, the irreducible representation δn ⊗ χ(λ,0) is the one labeled χ(0,λ).

In these terms, the one-dimensional representations of Bn are as follows: χ(n,0) (trivial),
χ(0,n) = δn, χ(1n,0) (the parity of “long” reflections), and χ(0,1n) (the sign representation).
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A. The induction ring.
There is an obvious embedding of Bm ×Bn in Bm+n, so the induction product

χ · θ := (χ× θ)↑Bm+n

Bm×Bn

provides a graded, associative, commutative ring structure for

RB :=
⊕

n>0

ZB̂n.

Furthermore, the remaining irreducible representations are products in this ring:

χ(µ,ν) = χ(µ,0) · χ(0,ν).

The restriction of δm+n to Bm ×Bn is δm × δn, so tensoring by δ is a ring automorphism
of RB and

δ ⊗ χ(µ,ν) = χ(ν,µ).

It follows that the trivial representations χ(n,0), and their δ-twists χ(0,n), both freely gen-
erate subrings of RB isomorphic to RA, and together freely generate RB ; i.e.,

RB = Z[χ(n,0), χ(0,n) : n > 1] ∼= RA ⊗RA.
In particular, every representation of Bn is (uniquely) expressible as a polynomial in the
trivial and δ-representations of Bk for k 6 n.

B. Branching from Bn to Bk ×Bn−k.
The induction product in Bn is completely determined by the Littlewood-Richardson

Rule (i.e., the type A induction product):

χ(µ,ν) · χ(α,β) = (χ(µ,0) · χ(α,0)) · (χ(0,ν) · χ(0,β))

=
(∑

θ

cθµ,α χ
(θ,0)

)
·
(∑

ψ

cψν,β χ
(0,ψ)

)
=

∑

θ,ψ

cθµ,αc
ψ
ν,β χ

(θ,ψ).

Applying Frobenius reciprocity, this yields a branching rule:

χ(θ,ψ) ↓Bn

Bk×Bn−k
=

∑

µ,ν,α,β

cθµ,αc
ψ
ν,β χ

(µ,ν) × χ(α,β).

C. Branching from Bn to Sn.
Littlewood-Richardson coefficients also show up when you branch from Bn to Sn:

χλ ↑Bn

Sn
=

∑
µ,ν

cλµ,νχ
(µ,ν),

χ(µ,ν) ↓Bn

Sn
=

∑

λ

cλµ,νχ
λ.

Special cases include 1↑Bn

Sn
=

∑n
k=0 χ

(k,n−k) and (sgn)↑Bn

Sn
=

∑n
k=0 χ

(1k,1n−k).
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D. Branching from S2n to Bn.
Note that Bn embeds in S2n as the centralizer of a fixed-point free involution (e.g., the

longest element). While this is not a reflection embedding, the fact that it occurs as the
centralizer of an involution indicates that induction/restriction between this pair of groups
is significant in the context of real Weyl groups.

If χ and θ are elements of RB of degrees m and n, then

(χ · θ)↑S2m+2n

Bm+n
=

(
χ↑S2m

Bm
× θ↑S2n

Bn

)↑S2m+2n

S2m×S2n
= χ↑S2m

Bm
· θ↑S2n

Bn
.

It follows that the maps χ 7→ χ↑S2n

Bn
define a degree-doubling ring morphism RB → RA.

Since χ(µ,ν) = χ(µ,0) ·χ(0,ν), and we already know how to compute induction products in
RA (e.g., using the Littlewood-Richardson Rule), it follows that we can reduce the problem
of Bn → S2n induction to the special cases χ(µ,0) ↑S2n

Bn
and χ(0,µ) ↑S2n

Bn
. However, as far as

we know, there are no general combinatorial rules known for the expansions

χ(µ,0) ↑S2n

Bn
=

∑

λ

S
(2)
µλ χ

λ, χ(0,µ) ↑S2n

Bn
=

∑

λ

Λ(2)
µλ χ

λ.

We chose the peculiar coefficient names S(2)
µλ and Λ(2)

µλ in order to emphasize that they also

occur in a natural (but equally unsolved) problem over in the gl-world: S(2)
µλ is the multi-

plicity of Vλ in the glr-representation obtained by restricting the glr(r+1)/2-representation
of highest weight µ to glr (embedded via the second symmetric power), and there is a

similar description involving the second exterior power for Λ(2)
λµ . Writing this in shorthand,

S
(2)
µλ = 〈Vµ(S2(Cr)), Vλ〉gl, Λ(2)

µλ = 〈Vµ(Λ2(Cr)), Vλ〉gl. (4)

To be a bit more careful, one should add the qualification that all of the above requires r
to be sufficiently large (in fact r = 2n is sufficiently large). If r is not sufficiently large,
then the only failure of (4) is that some left-hand sides may involve partitions λ that don’t
correspond to highest weights for glr (i.e., they have too many parts).

A nice reduction of the problem may be obtained by noticing that the sign representation
of S2n restricts to δn, which implies that our RB → RA morphism intertwines the actions
of these two characters on RB and RA; i.e.,

(
δn ⊗ χ

)↑S2n

Bn
= sgn⊗ (

χ↑S2n

Bn

)
.

Thus the decompositions of χ(µ,0) ↑S2n

Bn
and χ(0,µ) ↑S2n

Bn
are sign twists of each other. This

has the amusing corollary that
S

(2)
µλ = Λ(2)

µλ′ ,

which is not at all obvious if you are stuck inside the gl-world.
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We should also mention that there are a few important special cases for which the
expansions in (4) are known explicitly. These two correspond to the glr-decompositions of
Sn(S2(Cr)) and Sn(Λ2(Cr)):

1↑S2n

Bn
=

∑

λ

χ2λ,

δn ↑S2n

Bn
=

∑

λ

χ(2λ)′ ,

and these two correspond to Λn(S2(Cr)) and Λn(Λ2(Cr)):

χ(1n,0) ↑S2n

Bn
=

∑

σ strict

χσ∗ ,

χ(0,1n) ↑S2n

Bn
=

∑

σ strict

χσ
∗
,

where σ ranges over partitions of n into distinct parts, and σ 7→ σ∗ = (σ∗)′ denotes the
following doubling operation, illustrated in the case σ = 6421:

x x x x x x
x x x x

x x
x

7−→

y x x x x x x
y y x x x x
y y y x x
y y y y x
y y
y

All four of these expansions are due to Littlewood.

E. Permutation representations induced by reflection subgroups.
The standard realizations of Sn, Bn (n > 1) and Dn (n > 2) involve reflections that

permute (up to sign) n coordinates. Even though there may be isomorphisms among
these groups (e.g., D3

∼= S4, B1
∼= S2), their standard realizations are all different (e.g.,

they involve permuting different numbers of coordinates). In this way, given any triple of
partitions (α;β; γ) of total size n (but with no 1’s in β), we can understand

W = Sα1 × Sα2 × · · · ×Dβ1 ×Dβ2 × · · · ×Bγ1 ×Bγ2 × · · ·

as specifying a reflection subgroup of Bn in which the n coordinates have been partitioned
into disjoint blocks of sizes αi, βi and γi, and then standard realizations of the appropriate
reflection (sub)groups of type S, D, or B have been selected for each block. In particular,
choosing αi = 1 amounts to selecting a coordinate that will be fixed by every reflection.

It is not hard to show that the type vector (α;β; γ) classifies the conjugacy classes of
reflection subgroups of Bn; i.e., every reflection subgroup of Bn is conjugate to a reflection
subgroup of exactly one of the types (α;β; γ).
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If W is of type (α;β; γ), then the action of Bn on Bn/W is an induction product
involving terms of the form 1↑Bm

Sm
=

∑
k χ

(k,m−k) (see §2C), 1↑Bm

Dm
= χ(m,0) + χ(0,m), and

1 ↑ Bm

Bm
= χ(m,0) for various m > 1. It follows that to decompose any such product into

irreducibles, all one needs to know are the multiplication rules

χ(k,0) · χ(µ,ν) =
∑

λ∈Hk(µ)

χ(λ,ν),

χ(0,k) · χ(µ,ν) =
∑

λ∈Hk(ν)

χ(µ,λ).

These are corollaries of the Pieri Rule in §1C.

3. Type D

Notice that Dn is the kernel of δn, so χ(µ,ν) and χ(ν,µ) = δn⊗χ(µ,ν) both restrict to the
same representation of Dn. Thus it is reasonable to define a family of Dn-representations
indexed by unordered pairs of partitions of total size n:

χ{µ,ν} := χ(µ,ν) ↓Bn

Dn
= χ(ν,µ) ↓Bn

Dn
.

It follows from standard facts about subgroups of index 2 that (1) if µ 6= ν (i.e., χ(µ,ν) 6∼=
δn ⊗ χ(µ,ν)), then χ{µ,ν} is irreducible, and (2) if µ = ν, then χ{µ,ν} decomposes into two
irreducible, nonisomorphic pieces, say

χ{µ,µ} = χ
{µ,µ}
+ + χ

{µ,µ}
− ,

and the outer automorphism of Dn provided by Bn interchanges these two pieces. Thus

D̂n =
{
χ{µ,ν} : |µ|+ |ν| = n, µ 6= ν

} ∪ {
χ
{µ,µ}
± : |µ| = n/2

}
.

Of course the split pieces do not exist when n is odd.
The only non-trivial Dn-representation of degree one is the sign representation χ{1

n,0}.
It acts on D̂n according to the rules sgn⊗ χ{µ,ν} = χ{µ

′,ν′} and

sgn⊗ χ{µ,µ}± =

{
χ
{µ′,µ′}
± if n/2 is even,

χ
{µ′,µ′}
∓ if n/2 is odd.

We will see that there is a quasi-natural way to nail down how the ‘+’ and ‘−’ labels
should be assigned to the two irreducible constituents of χ{µ,µ}. This may sound paradox-
ical at first, given that there is an automorphism that interchanges them, but the point is
that once we think of Dn as being a group of signed permutation matrices, then we have
distinguished a copy of Sn: the one formed by the subgroup of true permutation matrices.
Distinguishing this copy is equivalent to deciding which of the two nodes at the forked end
of the Dynkin diagram of Dn to throw away in order to generate Sn.
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A. Unsplit branching.
Branching rules for χ{µ,ν} are just warmed-over rules for Bn; e.g.,

χ{µ,ν} ↓Dn

Dk×Dn−k
=

∑

α,β,ψ,θ

cµα,ψc
ν
β,θ χ

{α,β} × χ{ψ,θ},

χ{µ,ν} ↓Dn

Sn
=

∑

λ

cλµν χ
λ.

B. Reflection subgroups.
Before tackling split branching, we need to consider the reflection subgroups of Dn. Cer-

tainly these are also reflection subgroups of Bn, so (following §2E) each of these subgroups
is conjugate (in Bn) to exactly one reflection subgroup of type (α;β; 0); i.e.,

Sα1 × Sα2 × · · · ×Dβ1 ×Dβ2 × · · · .

However, two reflection subgroups conjugate in Bn need not be conjugate in Dn. It is not
hard to see that there is no element of Bn −Dn that centralizes a reflection subgroup of
type (α;β; 0) if and only if β = 0 and every part of α is even. (In particular, n must be
even.) In such cases, reflection subgroups of this type split into two conjugacy classes. In
the particular case of Sn (i.e., (α;β; 0) = (n; 0; 0)), the parabolic subgroups obtained by
deleting either of the nodes at the forked end of the Dynkin diagram are representatives
of the two classes.

To remind us of the fact that there are ambiguities of conjugacy, let S+
n denote the

subgroup of permutation matrices in Dn.

C. Split branching from D2n to S+
2n.

It is somewhat unexpected (and definitely not well known) that there do exist combi-
natorial rules for describing the coefficients in the expansions

χ
{µ,µ}
± ↓D2n

S+
2n

=
∑

λ

cλµ(±)χλ.

More precisely, over in the gl-world, there is a combinatorial rule due to Carré and
Leclerc [CL] for describing the irreducible decomposition of the exterior square and sym-
metric square of any irreducible representation of glr. It turns out that these are exactly
the same multiplicities that occur above; i.e.,

cλµ(+) = 〈S2(Vµ), Vλ〉gl, cλµ(−) = 〈Λ2(Vµ), Vλ〉gl.

We have never seen this fact in print, although it can be deduced from Theorem 7.5 in [S].
This also justifies our previous remark that there is a “correct” way to label the two

constituents of χ{µ,µ}.
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Dualizing, we get the following induction rule:

χλ ↑D2n

S+
2n

=
∑

µ6=ν
cλµν χ

{µ,ν} +
∑
µ

cλµ(+)χ{µ,µ}+ +
∑
µ

cλµ(−)χ{µ,µ}− .

In particular,

1↑D2n

S+
2n

=
∑

k<n

χ{k,2n−k} + χ
{n,n}
+ ,

sgn↑D2n

S+
2n

=
∑

k<n

χ{1
k,12n−k} + χ{1

n,1n}
ε ,

where ε = (−1)n. Notice that the action of sgn on D̂2n and Ŝ2n implies the following
relations among the multiplicities in exterior and symmetric squares:

cλµ(±) = cλ
′
µ′(±) if n is even, cλµ(±) = cλ

′
µ′(∓) if n is odd.

Once again, this is not at all obvious if you are stuck inside the gl-world.

D. Split branching from D2n to Dk ×D2n−k.

If k is odd, then χ{µ,µ}+ and χ{µ,µ}− have the same restriction to Dk ×D2n−k, so

χ
{µ,µ}
+ ↓D2n

Dk×D2n−k
= χ

{µ,µ}
− ↓D2n

Dk×D2n−k
=

1
2

∑

α,β,ψ,θ

cµαψc
µ
βθ χ

{α,β} × χ{ψ,θ}.

The ordered pairs (α, ψ) and (β, θ) are never equal (given that k is odd), so the above
expansion could be rewritten without a factor of 1/2 as a sum over unordered pairs of
ordered pairs.

If k is even, the above expansion is a first approximation to the restriction of χ{µ,µ}± ,
but now there are correction terms of the form

±1
2

∑

α,ψ

cµαψ χ
{α,α}
± × χ

{ψ,ψ}
±

for each of the four ways to choose an even number of ‘−’ signs (in the case of χ{µ,µ}+ ),

or an odd number (in the case of χ{µ,µ}− ). It follows that the net multiplicity of a split
product in a split restriction is

〈χ{µ,µ}± ↓D2n

Dk×D2n−k
, χ

{α,α}
± × χ

{ψ,ψ}
± 〉 =

{ (
c+1
2

)
if the number of ‘−’ is even,(

c
2

)
if the number of ‘−’ is odd,

(5)

where c = cµαψ. This can be deduced from Theorem 7.5 in [S].
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E. Permutations representations induced by reflection subgroups.
Let W be a reflection subgroup of Dn, say

S±α1
× S±α2

× · · · ×Dβ1 ×Dβ2 × · · · ,

allowing the ‘±’ so that we are sure to reach every conjugacy class. (Recall that this
matters only when all of the βi’s are 0 and all of the αi’s are even). All such permutation
representations are type D induction products involving terms of the form 1 ↑ Dm

S±m
and

1↑Dm

Dm
= χ{m,0}. We know that the former is a sum of terms of the form χ{k,m−k}, plus a

correction term of the form χ
{m/2,m/2}
± if m is even (see §3C).

Thus permutation character decompositions can be deduced from rules for decomposing
products of the form χ{k,m−k} · θ and χ

{m/2,m/2}
± · θ, for θ ∈ D̂n. We claim that most of

these calculations can be carried out in the induction ring RB , based on the following:

(
χ{µ,ν} ↑Bn

Dn

)↓Bn

Dn
=

(
χ(µ,ν) + χ(ν,µ)

)↓Bn

Dn
= 2χ{µ,ν},

(
χ
{µ,µ}
± ↑Bn

Dn

)↓Bn

Dn
= χ(µ,µ) ↓Bn

Dn
= χ

{µ,µ}
+ + χ

{µ,µ}
− .

This shows that if we seek the multiplicity of χ{µ,ν} in (say) χ · θ (where µ 6= ν), then we
can do the calculation up in RB and divide by 2.

On the other hand, if we want the multiplicity of χ{µ,µ}± in χ · θ, notice that the rules
for split branching in §3D show that these multiplicities are the same unless both factors
χ and θ are of the split type as well. In the not-both-split case, we can again induce the
calculation up to RB and this time take the multiplicity of χ(µ,µ) (without dividing by 2).

In the both-factors-split case, with χ = χ
{m/2,m/2}
± , rule (5) specializes to

〈χ{µ,µ}± , χ
{m/2,m/2}
± · χ{α,α}± 〉 =

{
1 if the number of ‘−’ is even and µ ∈ Hm/2(α),
0 otherwise.

4. The Exceptional Groups
For the exceptional groups, I prefer to use my Maple package coxeter.
Download it here: 〈www.math.lsa.umich.edu/~jrs/maple.html〉.
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