On the double cover of split F_{4} and its petite K-types

Alessandra Pantano
joint work with Dan Barbasch

Palo Alto, July 2006

Plan of the talk

- the double cover of split F_{4}
- the big unitarity problem (find all unitary parameters)
- the petit unitarity problem (find some not-unitary parameters)
- an informal definition of non-spherical petite K-types
- a formal definition of non-spherical petite K-types
- applications to the unitary dual of the double cover of split F_{4}

Plan of the talk

- the double cover of split F_{4}
- the big unitarity problem
- the petit unitarity problem
- an informal definition of non-spherical petite K-types
- a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_{4}

The double cover of F_{4}

- $G=$ the double cover of the split $F_{4}\left(F_{4}=G /\{ \pm I\}\right)$
- $\pi: G \rightarrow F_{4}=G /\{ \pm I\}$, the projection
- $K=S P(1) \times S P(3)$
- Representations of K (classified by highest weight): $\mu=\left(a_{1} \mid a_{2}, a_{3}, a_{4}\right)$, with $a_{1} \geq 0$ and $a_{2} \geq a_{3} \geq a_{4} \geq 0$
- Genuine K-types ($-I$ does not act trivially): $\mu=\left(a_{1} \mid a_{2}, a_{3}, a_{4}\right)$, with $a_{1}+a_{2}+a_{3}+a_{4}$ odd
- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$: Cartan decomposition of \mathfrak{g}
- \mathfrak{a} : maximal abelian subspace of $\mathfrak{p}, A=\exp (\mathfrak{a}), M=Z_{K}(\mathfrak{a})$
- $\Delta^{+}=\left\{2 \epsilon_{j} ; \epsilon_{i} \pm \epsilon_{j} ; \epsilon_{1} \pm \epsilon_{2} \pm \epsilon_{3} \pm \epsilon_{4}\right\}, \mathfrak{n}=\oplus_{\alpha \in \Delta+\mathfrak{g}_{\alpha}}, N=\exp (\mathfrak{n})$

Notations

For each root α, we can choose a Lie algebra homomorphism

$$
\phi_{\alpha}: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{g}
$$

such that

- | Z_{α} | $=\phi_{\alpha}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ belongs to $\mathfrak{t}=\operatorname{Lie}(K), ~(K) ~$ |
| :---: | :---: |
- $\sigma_{\alpha}=\exp \left(\frac{\pi}{2} Z_{\alpha}\right)$ belongs to $M^{\prime}=N_{K}(\mathfrak{a})$, and
- $m_{\alpha}=\exp \left(\pi Z_{\alpha}\right)$ belongs to $M=Z_{K}(\mathfrak{a})$.

Metaplectic Roots

Exponentiating ϕ_{α}, we obtain group homomorphisms

$$
\widetilde{\Phi}_{\alpha}: \widetilde{S L}(2, \mathbb{R}) \rightarrow G \quad \Phi_{\alpha}: S L(2, \mathbb{R}) \rightarrow G / \pm I=F_{4}
$$

The root α is called metaplectic if $\widetilde{\Phi}_{\alpha}$ does not factor to $S L(2, \mathbb{R})$.
only the long roots are metaplectic

Consequences:

- If α is short, then m_{α} has order two and is central in M
- If α is long, then m_{α} has order four and $m_{\alpha} m_{\beta}= \pm m_{\beta} m_{\alpha}$
- If α is short, the eigenvalues of $d \mu\left(i Z_{\alpha}\right)$ are integers $\forall \mu \in \hat{K}$
- If α is long, the eigenvalues of $d \mu\left(i Z_{\alpha}\right)$ are integers if μ is not genuine, and half-integers if μ is genuine.

Fine K-types

Let μ be an irreducible representation of K. Then

- μ has level l if $|\gamma| \leq l$, for every eigenvalue γ of $d \mu\left(i Z_{\alpha}\right)$ and every root α
- μ is fine if μ has level 1 (or less)

There are 2 genuine fine K-types: $(1 \mid 000)$ and $(0 \mid 100)$ and 3 non-genuine fine K-types: $(2 \mid 000),(1 \mid 100)$ and $(0 \mid 000)$.

The group M

The group $M=Z_{K}(\mathfrak{a})$ is a finite group of order 32. Because $\pi(M)=M /\{ \pm I\}$ is abelian, the irreducible representations of M have dimension one or two.

There are 16 non-genuine linear characters, and 4 genuine two-dimensional irreducible representations.

The Weyl group acts on \hat{M}. The restrictions to M of a fine K-type is a single orbit, and every representation of M is contained in a unique fine K-type.

Definition: Fix $\delta \in \hat{M}$. A root α is good for δ if s_{α} stabilizes δ.

		orbit	dim.	$W(\delta)$	fine K-type
non-genuine	\rightarrow	δ_{0}	1	$W\left(F_{4}\right)$	$(0 \mid 0,0,0)$
non-genuine	\rightarrow	δ_{3}	3×1	$W\left(C_{4}\right)$	$(2 \mid 0,0,0)$
non-genuine	\rightarrow	δ_{12}	12×1	$W\left(B_{3} A_{1}\right)$	$(1 \mid 1,0,0)$
genuine	\rightarrow	δ_{2}	2	$W\left(F_{4}\right)$	$(1 \mid 0,0,0)$
genuine	\rightarrow	δ_{6}	3×2	$W\left(B_{4}\right)$	(0\|1, 0,0$)$

Plan of the talk

- the double cover of split F_{4}
- the big unitarity problem
- the petit unitarity problem
- an informal definition of petite K-types
- a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_{4}

Langlands quotient

For every irreducible representation $\left(\delta, V^{\delta}\right)$ of M, and every strictly dominant real character ν, we set
$X_{P}(\delta, \nu)=$ the minimal principal series induced from $\delta \otimes \nu$
$\bar{X}_{P}(\delta, \nu)=$ the unique irreducible composition factor of $X_{P}(\delta, \nu)$ which contains the fine K-type μ_{δ} corresponding to δ.

The Langlands quotient $\bar{X}_{P}(\delta, \nu)$ can be obtained as the quotient of $X_{P}(\delta, \nu)$ modulo the Kernel of an intertwining operator

$$
A: X_{P}(\delta, \nu) \longrightarrow X_{\bar{P}}(\delta, \nu)
$$

where \bar{P} is the opposite parabolic.

The big unitarity problem

For every irreducible representation δ of M, compute the set of unitary parameters

$$
\left\{\nu \in \mathfrak{a} \cap \mathbb{R}: \nu \text { is dominant and } \bar{X}_{P}(\delta, \nu) \text { is unitary }\right\}
$$

To check the unitarity of $\bar{X}_{P}(\delta, \nu)$, we need to

1. construct an invariant Hermitian form on $\bar{X}_{P}(\delta, \nu)$, if possible
2. verify whether this Hermitian form is positive definite.

Invariant Hermitian forms on $\bar{X}_{P}(\delta, \nu)$

The long Weyl group element of $F_{4}(\omega=-I d)$ carries δ into δ and ν in $-\nu$. So we can use ω to construct an Hermitian intertwining operator

$$
A(\omega, \delta, \nu): X_{P}(\delta, \nu) \rightarrow X_{P}(\delta,-\nu)
$$

This operator gives a non degenerate invariant Hermitian form on the Langlands quotient. ${ }^{\text {a }}$
$\bar{X}_{P}(\delta, \nu)$ is unitary if and only if $A(\omega, \delta, \nu)$ is positive semidefinite.
${ }^{\text {a }}$ Because $\bar{X}_{P}(\delta, \nu)$ contains only one copy of the fine K-type μ_{δ} corresponding to δ, we can normalize the operator by requiring that it acts trivially μ_{δ}. Then we obtain the unique non-degenerate invariant Hermitian form on $\bar{X}_{P}(\delta, \nu)$.

Remarks

The big unitarity problem is too hard:

Computing the signature of the operator $A(\omega, \delta, \nu)$ is extremely complicated, especially if the K-type is very big.
Moreover, we should check the signature on infinitely many K-types.

Instead, we look at the petit unitarity problem.

Plan of the talk

- the double cover of split F_{4}
- the big unitarity problem
- the petit unitarity problem
- an informal definition of petite K-types
- a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_{4}

the petit unitarity problem

- find finitely many K-types (called "petite") on which it is easy to compute the signature of the intertwining operator
- use these petite K-types to rule out big regions of not-unitarity. ${ }^{\text {a }}$
${ }^{\text {a }}$ The notion of spherical petite K-type is due to Vogan and Barbasch. We will present a generalization to the non-spherical case.

Spherical Petite K-Types

Let be μ a spherical K-type, i.e. assume that $\operatorname{Res}_{M}(\mu)$ contains the trivial representation of M.
μ is called petite if it has level ≤ 3.

Remark: if μ is a spherical petite K-type, then $d \mu\left(Z_{\alpha}^{2}\right)$ acts on the isotypic component of the trivial representation of M with eigenvalues 0 or -4 . This condition makes the intertwining operator on μ "very special", and relatively easy to compute.
intertwining operator on spherical petite K-types

The intertwining operator has a decomposition as a product of operators corresponding to simple reflections.
The factor corresponding to α acts by

Intertwining operator on spherical petite K-types

On a spherical petite K-type the intertwining operator behaves exactly like a p-adic operator.

Because the p-adic spherical unitary dual in known, this matching provides non-unitarity certificates.

We obtain an embedding of the real spherical unitary dual into the p-adic spherical unitary dual.

Plan of the talk

- the double cover of split F_{4}
- the big unitarity problem
- the petit unitarity problem
- an informal definition of non-spherical petite K-types
- a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_{4}

To every non-trivial representation δ of M, we associate a real linear group G_{0} (depending on δ).

A K-type μ containing δ is called "petite for δ " if the non-spherical intertwining operator for G on μ matches a spherical intertwining operator for G_{0} on some petite K_{0}-type μ_{0}.

The spherical unitary dual of G_{0} is known, and is detected by a finite number of relevant K_{0}-types.

If we can match all the relevant K_{0}-types, then we obtain non-unitarity certificates for Langlands quotients of G :

$$
\bar{X}^{G}(\delta, \nu) \text { is unitary } \Rightarrow \bar{X}^{G_{0}}\left(\text { triv }, \nu_{0}\right) \text { is unitary. }
$$

the linear group $G_{0}=G_{0}(\delta)$

The Weyl group W of G acts on \hat{M} by

$$
([\sigma] \cdot \tau)(m)=\tau\left(\sigma^{-1} m \sigma\right)
$$

Let $W(\delta) \subseteq W$ be the stabilizer of δ.

It turns out that $W(\delta)$ is the Weyl group of some root system Δ_{0}. Δ_{0} has the same rank as Δ, and in general is not a sub-root system.

We define G_{0} to be

- the real split group with root system Δ_{0} if δ is non-genuine
- the real split group with root system | Δ_{0} |
| :---: |
| if δ | is genuine.

G_{0} is always linear, and in general is not a subgroup of G.

non-genuine	\rightarrow	orbit-type	Δ_{0}	linear group $G_{0}(\delta)$
		δ_{0}	F_{4}	F_{4}
	\rightarrow	δ_{3}	C_{4}	$S P(4)$
non-genuine	\rightarrow	δ_{12}	$B_{3} A_{1}$	$S O(3,4) \times S L(2)$
genuine	\rightarrow	δ_{2}	F_{4}	$F_{4}{ }^{\text {² }}$
genuine	\rightarrow	δ_{6}	B_{4}	$S P(4)$

If we have "enough" petite K-types for δ, then we can relate the unitarity of a Langlands quotient of G induced from δ to the unitarity of a Langlands quotient of $G_{0}(\delta)$ induced from the trivial.

the spherical K_{0}-type μ_{0}

Suppose that there exists a spherical K_{0}-type μ_{0} s.t.

1. μ_{0} has level at most 3
2. as $W(\delta)$-representations

$$
\operatorname{Hom}_{M}\left(V^{\mu}, V^{\delta}\right)=\operatorname{Hom}_{M_{0}}\left(V^{\mu_{0}}, V^{\delta_{0}}\right)
$$

Then μ is petite if and only if the intertwining operator for G on μ matches an intertwining operator for G_{0} on μ_{0}.

Plan of the talk

- the double cover of split F_{4}
- the big unitarity problem
- the petit unitarity problem
- an informal definition of non-spherical petite K-types
- a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_{4}

Let μ be a K-type containing δ. If μ is petite, the intertwining operator on μ should have certain properties (...).

The intertwining operator acts on

$$
\operatorname{Hom}_{M}\left(V^{\mu}, V^{\mu_{\delta}}\right)=\bigoplus_{j} \operatorname{Hom}_{M}\left(V^{\mu}, V^{\delta_{j}}\right)
$$

and depends on the eigenvalues of the $d \mu\left(Z_{\alpha}^{2}\right)$'s (α simple) on the isotypic component in μ of all the M-types δ_{j} in the W-orbit of δ a $^{\text {a }}$

To define a petite K-type for δ, we essentially need to impose some restrictions on the eigenvalues of the various Z_{α}^{2} 's.

[^0]Let μ be a K-type containing δ. If μ is petite, the intertwining operator on μ should should have certain properties (...).

The intertwining operator acts on

$$
\operatorname{Hom}_{M}\left(V^{\mu}, V^{\mu_{\delta}}\right)=\bigoplus_{j} \operatorname{Hom}_{M}\left(V^{\mu}, V^{\delta_{j}}\right)
$$

and depends on the eigenvalues of the various $d \mu\left(Z_{\alpha}^{2}\right)$'s on the isotypic component in μ of the W-orbit of $\delta .^{\text {a }}$

It is clear that the definition of petite K-type must be a restriction on these eigenvalues.

[^1]
Technicalities

- The intertwining operator on μ has a factorization as a product of operators $R_{\mu}\left(s_{\alpha}, \gamma\right)$ corresponding to simple reflections.
- The action of a single factor $R_{\mu}\left(s_{\alpha}, \gamma\right)$ does not respect the decomposition

$$
\operatorname{Hom}_{M}\left(V^{\mu}, V^{\mu_{\delta}}\right)=\bigoplus_{j} \operatorname{Hom}_{M}\left(V^{\mu}, V^{\delta_{j}}\right)
$$

but preserves the decomposition of $\operatorname{Hom}_{M}\left(V^{\mu}, V^{\mu}\right)$ in eigenspaces of $d \mu\left(Z_{\alpha}^{2}\right): \operatorname{Hom}_{M}\left(V^{\mu}, V^{\mu_{\delta}}\right)=\bigoplus_{n \in \mathbb{N} / 2} E\left(-n^{2}\right)$.

- $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts on the $\left(-n^{2}\right)$-eigenspace of $d \mu\left(Z_{\alpha}^{2}\right)$ by

$$
R_{\mu}\left(s_{\alpha}, \gamma\right) T(v)=\underbrace{c(\alpha, \gamma, n)}_{\text {a scalar }} \underbrace{\mu_{\delta}\left(\sigma_{\alpha}\right) T\left(\mu\left(\sigma_{\alpha}\right)^{-1} v\right)}_{\text {action of } s_{\alpha} \text { on } \operatorname{Hom}_{M}\left(V^{\mu}, V^{\mu}\right)}
$$

example 1: $d \mu\left(Z_{\alpha}^{2}\right)$ has even eigenvalues

The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts on $\left[\bigoplus_{n \in 2 \mathbb{N}} E\left(-n^{2}\right)\right]$ by

with $x=\langle\gamma, \check{\alpha}\rangle$.

example 2: $d \mu\left(Z_{\alpha}^{2}\right)$ has odd eigenvalues

The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts on $\left[\bigoplus_{n \in 2 \mathbb{N}+1} E\left(-n^{2}\right)\right]$ by

with $x=\langle\gamma, \check{\alpha}\rangle$.

The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts on $\left[\bigoplus_{n \in \mathbb{N}+\frac{1}{2}} E\left(-n^{2}\right)\right]$ by

with $x=\langle\gamma, \check{\alpha}\rangle$.

intertwining operator on non- spherical petite K-types

If μ is a petite K-type, every factor $R_{\mu}\left(s_{\alpha_{i}}, \gamma_{i}\right)$ of the intertwining operator must satisfy some conditions.

These conditions depend on whether the reflection $s_{\alpha_{i}}$ stabilizes a certain M-type δ_{i} in the orbit of $\delta .{ }^{\text {a }}$

- If α_{i} stabilizes δ_{i} (i.e. it is good for $\left.\delta_{i}\right)$, then $R_{\mu}\left(s_{\alpha_{i}}, \gamma_{i}\right)$ should behave as a factor of a petite spherical intertwining operator.
- If α_{i} does not stabilize δ_{i} (i.e. it is $\underline{\left.\text { bad for } \delta_{i}\right) \text {, then } R_{\mu}\left(s_{\alpha_{i}}, \gamma_{i}\right), ~(1) ~}$ should be independent of the parameter γ_{i}.

This behavior is equivalent to some eigenvalues-restrictions.

[^2]```
restrictions for }\mu\mathrm{ petite and }\mp@subsup{\alpha}{i}{}\mathrm{ good for }\mp@subsup{\delta}{i}{
```

Look at the eigenvalues of $d \mu\left(Z_{\alpha_{i}}^{2}\right)$ on the $\delta_{i}$-isotypic in $\mu$.
If the eigenvalues are of the form $-(2 n)^{2}$, we only allow 0 and -4


If the eigenvalues are of the form $-\left(\frac{2 n+1}{2}\right)^{2}$, we only allow $-\frac{1}{4},-\frac{9}{4}$


## restrictions for $\mu$ petite and $\alpha_{i}$ bad for $\delta_{i}$

Again, look at the eigenvalues of $d \mu\left(Z_{\alpha_{i}}^{2}\right)$ on the $\delta_{i}$-isotypic in $\mu$. If the eigenvalues are of the form $-(2 n+1)^{2}$, we only allow -1


If the eigenvalues are of the form $-\left(\frac{2 n+1}{2}\right)^{2}$, we only allow $-\frac{1}{4}$


## The Main Theorem

Let $\mu$ be a petite $K$-type for $\delta$, i.e. assume that $\mu$ satisfies the eigenvalues-conditions described above.

Suppose that there exists a spherical $K_{0}$-type $\mu_{0}$ s.t.

1. $\mu_{0}$ has level at most 3
2. as $W(\delta)$-representations

$$
\operatorname{Hom}_{M}\left(V^{\mu}, V^{\delta}\right)=\operatorname{Hom}_{M_{0}}\left(V^{\mu_{0}}, V^{\delta_{0}}\right)
$$

Then the intertwining operator for $G$ on $\mu$ matches an intertwining operator for $G_{0}$ on $\mu_{0}$.

## A technical remark

Let $\mu$ be a petite $K$-type. The restrictions on the eigenvalues of $d \mu\left(Z_{\alpha_{i}}^{2}\right)$ are "local" conditions: they are imposed on the isotypic of the various $\delta_{i}$ in $\mu$, not "globally" on $\mu$.

It follows that, if $\delta$ is non-trivial, we cannot identify a petite $K$-type for $\delta$ just by looking at its level. ${ }^{\text {a }}$
Most often, an explicit construction of the $K$-type is required. ${ }^{\text {b }}$

This is just one of the many complications that make the non-spherical case so much harder than the spherical one.

[^3]genuine petite $K$-types and other $K$-types of level $\leq 3$

| $K$-type | mult. of $\delta_{6}$ |
| :---: | :---: |
| $(0 \mid 1,0,0)$ | 1 |
| $(2 \mid 1,0,0)$ | 3 |
| $(1 \mid 2,0,0)$ | 4 |
| $(1 \mid 1,1,0)$ | 4 |
| $(0 \mid 1,1,1)$ | 1 |
| $(2 \mid 1,1,1)$ | 3 |
| $(4 \mid 1,0,0)$ | 5 |
| $(3 \mid 2,0,0)$ | 8 |
| $(3 \mid 1,1,0)$ | 8 |
| $(0 \mid 3,0,0)$ | 5 |
| $(2 \mid 3,0,0)$ | 8 |
| $(0 \mid 2,1,0)$ | 8 |
| $(2 \mid 2,1,0)$ | 5 |
| $(1 \mid 2,1,1)$ | 8 |


| $K$-type | mult. of $\delta_{2}$ |
| :---: | :---: |
| $(1 \mid 0,0,0)$ | 1 |
| $(3 \mid 0,0,0)$ | 2 |
| $(1 \mid 2,0,0)$ | 9 |
| $(1 \mid 1,1,0)$ | 2 |
| $(0 \mid 1,1,1)$ | 4 |
| $(2 \mid 1,1,1)$ | 12 |
| $(5 \mid 0,0,0)$ | 3 |
| $(3 \mid 2,0,0)$ | 18 |
| $(3 \mid 1,1,0)$ | 4 |
| $(0 \mid 3,0,0)$ | 4 |
| $(2 \mid 3,0,0)$ | 12 |
| $(0 \mid 2,1,0)$ | 8 |
| $(2 \mid 2,1,0)$ | 24 |
| $(1 \mid 2,1,1)$ | 10 |

## Plan of the talk

- the double cover of split $F_{4}$
- the big unitarity problem
- the petit unitarity problem
- an informal definition of non-spherical petite $K$-types
- a more technical definition of petite $K$-types
- applications to the unitary dual

Find a good definition of petite $K$-types
$\downarrow$
For each given $\delta$, find all the petite $K$-types
$\square$

For each $\mu$ petite, find the representation of the stabilizer of $\delta$ on $\operatorname{Hom}_{M}\left(V^{\mu}, V^{\delta}\right)$. Guess $\mu_{0}$

Verify that the intertwining operators match

$$
\delta_{2}, \delta_{12} \swarrow \quad \searrow \delta_{3}, \delta_{6}
$$

If you can match all the relevant $K_{0}$-types, deduce the existence of an inclusion of unitary duals

Otherwise, compute the intert. operator on some non-petite $K$-types and see what happens

## example 1: $\delta_{2}$

$\delta_{2}$ is an irreducible genuine representation of $M$.

The stabilizer of $\delta_{2}$ is the entire Weyl group $W=W\left(F_{4}\right)$. In particular, every root of $F_{4}$ is good for $\delta_{2}$. This is an easy example!

We ask whether it is possible to realize all the relevant $W(F 4)$-types using petite $K$-types for $\delta_{2}$.

The relevant $W\left(F_{4}\right)$-types are: $1_{1}, 2_{1}, 2_{3}, 4_{2}, 8_{1}$ and $9_{1}$.

| petite $K$-type | mult. of $\delta_{2}$ | repres. of $W\left(F_{4}\right)$ |
| :---: | :---: | :---: |
| $(1 \mid 0,0,0)$ | 1 | $1_{1}$ |
| $(3 \mid 0,0,0)$ | 2 | $2_{3}$ |
| $(1 \mid 2,0,0)$ | 9 | $9_{1}$ |
| $(1 \mid 1,1,0)$ | 2 | $2_{1}$ |
| $(0 \mid 1,1,1)$ | 4 | $4_{2}$ |
| $(0 \mid 3,0,0)$ | 4 | $4_{3}$ |
| $(0 \mid 2,1,0)$ | 8 | $8_{1}$ |
| $(1 \mid 2,1,1)$ | 10 | $1_{2}+9_{2}$ |

We match all of them! So there is an inclusion of unitary duals:

$$
\bar{X}^{G}\left(\delta_{2}, \nu\right) \text { unitary } \Rightarrow \bar{X}^{G}(\text { triv }, \nu) \text { unitary. }
$$

## example 2: $\delta_{12}$

Choose a set of simple roots for $G$ (type $F_{4}$ ):

$\delta_{12}$ contains 12 one-dimensional representations of $M$. For each of them, the stabilizer is $W\left(B_{3} \times A_{1}\right)$.
Let $\bar{\delta}_{12}$ be the character in $\delta_{12}$ that admits

as a basis for the good roots.

The following table shows that we can realize all the relevant $W\left(B_{3}\right)$-types and all the relevant $W\left(A_{1}\right)$-types using petite $K$-types for $\bar{\delta}_{12}$ :

| petite $K$-type | mult. of $\delta_{12}$ | repres. of $W\left(B_{3} \times A_{1}\right)$ |
| :---: | :---: | :---: |
| $(1 \mid 1,0,0)$ | 1 | $(3 \times 0) \times$ triv |
| $(0 \mid 1,1,0)$ | 1 | $(3 \times 0) \times$ sign |
| $(3 \mid 1,0,0)$ | 2 | $(21 \times 0) \times$ triv |
| $(2 \mid 1,1,0)$ | 3 | $(2 \times 1) \times$ triv |
| $(2 \mid 2,0,0)$ | 3 | $(1 \times 2) \times$ sign |
| $(0 \mid 2,0,0)$ | 1 | $(0 \times 3) \times$ triv |

Because we can match all the relevant $W\left(B_{3} \times A_{1}\right)$-types, there exists an inclusion of unitary duals: ${ }^{\text {a }}$

$$
\bar{X}^{G}\left(\delta_{12}, \gamma\right) \text { unitary } \Rightarrow \bar{X}^{S O(3,4) \times S L(2)}\left(\text { triv }, \gamma_{0}\right) \text { unitary }
$$

Notice that there is a shifting of parameters: if $\gamma=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, then $\gamma_{0}=\left(n_{1}+n_{4}, n_{1}-n_{4}, n_{2}+n_{3}, n_{2}-n_{3}\right)$.

[^4]If $\gamma=\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ is the parameter for $F_{4}$, let $\gamma_{0}=\left(\tilde{n}_{1}, \tilde{n}_{2}, \tilde{n}_{3}, \tilde{n}_{4}\right)$ be the corresponding parameter for $B 3 \times A 1$.

The inner product of $\gamma$ with a basis for the good co-roots in $F_{4}$ should match the inner product of $\gamma_{0}$ with the simple co-roots in $B_{3} \times A_{1}$ :


## example 3: $\delta_{6}$

$\delta_{6}$ contains three 2-dimensional irreducible representations of $M$. For each of them, the stabilizer of $\delta$ is $W(B 4)$.

Let $\bar{\delta}_{6}$ the irreducible component of $\delta_{6}$ that admits

as a basis for the good roots.

We would like to realize all the relevant $W\left(B_{4}\right)$-types using petite $K$-types for $\bar{\delta}_{6}$.

The following is a complete list of petite $K$-types for $\bar{\delta}_{6}$ :

| petite $K$-type | mult. of $\bar{\delta}_{6}$ | repres. of $W\left(B_{4}\right)$ |
| :---: | :---: | :---: |
| $(0 \mid 1,0,0)$ | 1 | $4 \times 0$ |
| $(2 \mid 1,0,0)$ | 3 | $31 \times 0$ |
| $(1 \mid 2,0,0)$ | 4 | $1 \times 3$ |
| $(1 \mid 1,1,0)$ | 4 | $3 \times 1$ |
| $(0 \mid 1,1,1)$ | 1 | $0 \times 4$ |
| $(2 \mid 1,1,1)$ | 3 | $0 \times 31$ |

The relevant $W\left(B_{4}\right)$-types are:

$$
4 \times 0 \quad 31 \times 0 \quad 3 \times 1 \quad \begin{array}{|ccc}
2 \times 2 & 1 \times 3 & 0 \times 4 .
\end{array}
$$

We cannot match $2 \times 2!!!$

The relevant $W\left(B_{4}\right)$-type $2 \times 2$ is missing. So we cannot deduce an inclusion of unitary duals.

We only get a weaker result: ${ }^{\text {a }}$


The region ruled out by $2 \times 2$ consists of all parameters of the form $\gamma_{0}=(a+1 / 2, a-1 / 2, b, 1)$ with $(a, b)$ in the triangle delimited by the lines $a=1 / 2, b=0$ and $a+b=3 / 2$.

[^5]
## example 4: $\delta_{3}$

$\delta_{3}$ contains three 1-dimensional irreducible representations of $M$. For each of them, the stabilizer of $\delta$ is $W(C 4)$.

Let $\bar{\delta}_{3}$ the irreducible component of $\delta_{3}$ that admits

as a basis for the good roots.

Next, we look at the complete list of petite $K$-types for $\bar{\delta}_{3}$, and we hope to realize all the relevant $W\left(C_{4}\right)$-types: $4 \times 0 \quad 0 \times 4$

$3 \times 1 \quad$| $1 \times 3$ | $2 \times 2$ |
| :---: | :---: |
| $31 \times 0$. |  |


| petite $K$-type | mult. of $\bar{\delta}_{3}$ | repres. of $W\left(C_{4}\right)$ |
| :---: | :---: | :---: |
| $(2 \mid 0,0,0)$ | 1 | $4 \times 0$ |
| $(4 \mid 0,0,0)$ | 1 | $0 \times 4$ |
| $(0 \mid 2,0,0)$ | 3 | $31 \times 0$ |
| $(2 \mid 2,0,0)$ | 6 | $2 \times 2$ |
| $(2 \mid 1,1,0)$ | 2 | $22 \times 0$ |
| $(1 \mid 3,0,0)$ | 4 | $111 \times 1$ |
| $(1 \mid 2,1,0)$ | 8 | $21 \times 1$ |
| $(1 \mid 1,1,1)$ | 4 | $3 \times 1$ |
| $(0 \mid 2,1,1)$ | 3 | $211 \times 0$ |
| $(2 \mid 2,1,1)$ | 7 | $11 \times 11+1111 \times 0$ |

We cannot match $1 \times 3!!$ !

The relevant $W\left(C_{4}\right)$-type $1 \times 3$ is missing. So we cannot deduce an inclusion of unitary duals.

Just like before, we only obtain a weaker result:

| set of unitary |
| :---: | :---: |
| parameters |
| for $\left(\bar{\delta}_{3}, G\right)$ |$\subseteq$| set of unitary <br> parameters <br> for $($ triv, $S P(4))$ |
| :---: |
| non-unitarity region <br> for $($ triv,$S P(4))$ <br> ruled out by $1 \times 3$ |

The region ruled out by $1 \times 3$ is the line segment

$$
\gamma_{0}=(3 / 2+t, 1 / 2+t,-1 / 2+t,-3 / 2+t)
$$

with $1 / 2 \leq t \leq 3 / 2$.

## work in progress

Understand if these "extra regions" contain any unitarity point.


[^0]:    ${ }^{\mathrm{a}} \mu_{\delta}$ is the unique fine $K$-type containing $\delta$. Every $M$-type $\delta_{j}$ in the $W$-orbit of $\delta$ appears in $\mu_{\delta}$ with multiplicity one: $\operatorname{Res}_{M}\left(\mu_{\delta}\right)=\bigoplus_{j} \delta_{j}$.

[^1]:    ${ }^{\mathrm{a}} \mu_{\delta}$ is the unique fine $K$-type containing $\delta$. Every $M$-type $\delta_{j}$ in the $W$-orbit of $\delta$ appears in $\mu_{\delta}$ with multiplicity one: $\operatorname{Res}_{M}\left(\mu_{\delta}\right)=\bigoplus_{j} \delta_{j}$.

[^2]:    ${ }^{\text {a }}$ If $\alpha_{1}, \alpha_{2} \ldots \alpha_{r}$ are the simple reflections involved in the decomposition, we define inductively $\delta_{1}=\delta, \delta_{2}=s_{\alpha_{1}}\left(\delta_{1}\right), \ldots, \delta_{r}=s_{\alpha_{r-1}}\left(\delta_{r-1}\right)$.

[^3]:    ${ }^{\text {a }}$ If $\delta$ is trivial, every $K$-type of level at most 3 is petite. If $\delta$ is non-trivial, only about a half of the $K$-types of level 3 turns out to be petite.
    ${ }^{\mathrm{b}}$ We have constructed all our petite $K$-types using mathematica.

[^4]:    ${ }^{\text {a }} S O(3,2) \times S L(2)$ is the real split group with root system $B_{3} \times A_{1}$.

[^5]:    ${ }^{\text {a }}$ Notice that the stabilizer of $\bar{\delta}_{6}$ is of type $B_{4}$ but we are taking $G_{0}=S P(4)$. Indeed, $\bar{\delta}_{6}$ is genuine, so $G_{0}$ must be the split group with co-roots of type $B_{4}$.

