Petite and Relevant *K*-types for exceptional groups

Alessandra Pantano

joint work with Dan Barbasch

July 2005

Introduction

Let G be a real split group, with Lie algebra $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$. Let K be the maximal compact subgroup of G and let M be the centralizer in K of a maximal abelian subspace of \mathfrak{p} . If δ is a representation of M, we denote by W^0_{δ} the Weyl group of good coroots for δ .

For every petite K-type μ containing δ , there is a representation of W^0_{δ} on the space $\operatorname{Hom}_M(E_{\mu}, V^{\delta})$. We ask whether all the relevant W^0_{δ} -types can be realized this way.

Question: Given any *relevant* representation τ of W^0_{δ} , is there a *petite K*-type μ such that $\operatorname{Hom}_M(E_{\mu}, V^{\delta}) = \tau$?

Motivation

Let \mathbb{H}_{δ} be the p-adic split group associated to the root system of the good co-roots. Suppose that

- Every relevant W_0^{δ} type τ appears in $\text{Hom}_M(E_{\mu}, V^{\delta})$, for some petite K-type μ_{τ}
- Every relevant W_0^{δ} type τ , the intertwining operator on μ_{τ} matches the p-adic operator on τ .

Then we conclude that the (possibly non-spherical) Langlands quotient $\bar{X}(\delta,\nu)$ for G (real) is unitary *only* if the spherical Langlands quotient $\bar{X}(\delta,\nu)$ for \mathbb{H}_{δ} (p-adic) is unitary.

This is a non-unitarity certificate for $\bar{X}_P(\delta,\nu)$.

A remark

The previous argument gives a way to compare the unitarity of a *(possibly) non-spherical* Langlands quotient of the *real group* G with the unitarity of a *spherical* Langlands quotient of the *p-adic* group \mathbb{H}_{δ} .

If the root system of the good co-roots Δ_{δ} is of classical type, we can replace \mathbb{H}_{δ} with the *real* split group \mathbb{G}_{δ} associated to Δ_{δ} . Then the comparison remains in the category of *real* split groups:

	the real Langlands quotient $\bar{X}(\delta \otimes \nu)$ is unitary for G
	\downarrow
tł	he real Langlands quotient $\overline{X}(triv. \otimes \nu)$ is unitary for \mathbb{G}_{δ}

The Problem

Now that the motivation is understood, we describe the problem addressed in this talk...:

Let G be the double cover of a real split group of type E_6 , E_7 , E_8 or F_4 . Given any irreducible representation δ of M, and any petite K-type μ containing δ , compute the representation of W^0_{δ} on the space $\operatorname{Hom}_M(E_{\mu}, V^{\delta})$.

This is a complicated problem. We divide it in several steps.

step 1: Identify fine and petite K-types

We work with the double cover...

- Classify \tilde{K} -types (highest weight or fundamental weights) and find a formula to compute the level of a \tilde{K} -type
- Fine \tilde{K} -types have level 0, $\frac{1}{2}$ or 1
- **Petite** \tilde{K} -types have level 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, 2 or 3

step 2: Understand \bigotimes of repr.s of \tilde{M} , and find the restriction of \tilde{K} -types to \tilde{M}

- Restrict fine \tilde{K} -types to \tilde{M} (\rightarrow orbits of a single \tilde{M} -type). Each \tilde{M} -type δ appears in at least one fine \tilde{K} -type μ_{δ}
- To find $\delta_1 \otimes \delta_2$, look at the tensor product $\mu_{\delta_1} \otimes \mu_{\delta_2}$ and restrict the summands to M
- To find $Res_{\tilde{M}}\mu$, use an inductive algorithm:
 - Embed μ in a tensor product of fine \tilde{K} -types
 - Decompose the tensor products (using LiE)
 - Restrict the summands to M and guess how the various repr.s of M distribute among the composition factors...
- Problem: fine K-types don't generate the Grothendieck group!

step 3: Find the repr. of W^0_{δ} on the δ -isotypic, for δ trivial or genuine

We work simultaneously with spherical and genuine K-types. Induction, restriction and tensor product of Weyl group representations are computed using GAP.

This is the algorithm used for E_6 and E_8 (the easiest cases):

Any δ is included in *one* fine *K*-type μ_{δ} . As a *W*-representation:

$$(\mu_{\delta} \otimes \mu_{\delta}^{\star})^M = Ind_{W_{\delta}^0 = W^{\delta}}^W(trivial).$$

You get the action of W on μ^M , for all K-types μ in $(\mu_\delta \otimes \mu_\delta^{\star})$

$$\downarrow$$
There is one genuine *M*-type δ_g . For Θ genuine, $\Theta \mid_M = a\delta_g$, so
Hom_{*M*}(Θ, δ_g) = Hom_{*M*}(Θ, μ_{δ_g}) = ($\Theta \otimes \mu_{\delta_g}^*$)^{*M*} ($\leftarrow known, by$ (1)
You get the action of $W_0^{\delta_g} = W$ on $V_{\Theta}(\delta_g)$, for some Θ genuine

$$\uparrow$$
If Θ_1, Θ_2 are genuine
$$\uparrow known, by (2)$$
($\Theta_1 \otimes \Theta_2^*$)^{*M*} = Hom_{*M*}(Θ_1, Θ_2) = Hom_{*M*}(Θ_1, δ_g) \otimes Hom_{*M*}(δ_g, Θ_2)
You get the action of *W* on μ^M , for all *K*-types μ in ($\Theta_1 \otimes \Theta_2^*$)

 \blacklozenge The algorithm is bit harder for E_7 , and a lot harder for F_4 .

Find the repr. of W^0_{δ} on the δ -isotypic, for δ **trivial** or **genuine**

Modifying the algorithm for $E_7 \ldots$

• For E_7 , R_δ can have order two. In this case δ is contained in two fine K-types, and

$$Ind_{W_{\delta}^{0}}^{W}(trivial) = (\mu_{\delta}^{1} \otimes (\mu_{\delta}^{1})^{\star})^{M} + (\mu_{\delta}^{1} \otimes (\mu_{\delta}^{2})^{\star})^{M}$$

• E_7 has two genuine *M*-types, both with $W^0_{\delta} = W$. The relation

 $\operatorname{Hom}_{M}(\Theta_{1}, \Theta_{2}) = \operatorname{Hom}_{M}(\Theta_{1}, \delta_{g}) \otimes \operatorname{Hom}_{M}(\delta_{g}, \Theta_{2})$

works only if $\Theta_1 \mid_M = a\delta_g$ and $\Theta_2 \mid_M = b\delta_g$.

Find the repr. of W^0_{δ} on the δ -isotypic, for δ **trivial** or **genuine**

The case of F_4 is by far the hardest:

- if μ is genuine, $\mu \mid_M = a\delta_2 + b\delta_6$ (not isotypic ...)
- the genuine *M*-type δ_6 has $W^0_{\delta_6} \neq W$.

The other genuine *M*-type has $W_{\delta_2}^0 = W$, and the isomorphism

$$\operatorname{Hom}_{M}(\Theta_{1},\Theta_{2}) = \operatorname{Hom}_{M}(\Theta_{1},\delta_{2}) \otimes \operatorname{Hom}_{M}(\delta_{2},\Theta_{2})$$

works only if $\Theta_1 \mid_M = a\delta_2$ and $\Theta_2 \mid_M = b\delta_2 + c\delta_6$. When $\Theta_1 \mid_M = a\delta_6$ and $\Theta_2 \mid_M = b\delta_2 + c\delta_6$, we can use:

 $\operatorname{Hom}_{M}(\Theta_{1}, \Theta_{2}) = \operatorname{Ind}_{W(B_{4})}^{W} [\operatorname{Hom}_{M}(\Theta_{1}, \delta_{6}) \otimes \operatorname{Hom}_{M}(\delta_{6}, \Theta_{2})] .$

Sometimes it is useful to look at the inclusion of F_4 into E_6 .

step 4: Find the repr. of W^0_{δ} on the δ -isotypic, for δ non-trivial and non-genuine

We only discuss the easiest case E_6 . A similar, but more complicated argument works for other groups.

Suppose that δ_g is genuine for M, Θ is genuine for K and $\Theta \mid_M$ contains δ_g . Then $(\mu_{\delta_g} \otimes \Theta) \mid_M$ contains δ , and

$$\operatorname{Hom}_{M}(\delta, \mu_{\delta_{g}} \otimes \Theta) = \operatorname{Res}_{W_{\delta_{g}}^{0}}^{W_{\delta_{g}}^{0}} = W \underbrace{\operatorname{Hom}_{M}(\delta_{g}, \Theta)}_{known, \, by \, step \, 3}.$$

We can use this isomorphism to compute the repr. of W^0_{δ} on the isotypic component of δ in the composition factors of $\mu_{\delta_a} \otimes \Theta$.

This gets very tricky, especially for F_4 (too much ambiguity...)