Petite and Relevant K-types for exceptional groups

Alessandra Pantano

joint work with Dan Barbasch

July 2005

Introduction

Let G be a real split group, with Lie algebra $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$. Let K be the maximal compact subgroup of G and let M be the centralizer in K of a maximal abelian subspace of \mathfrak{p}.
If δ is a representation of M, we denote by W_{δ}^{0} the Weyl group of good coroots for δ.

For every petite K-type μ containing δ, there is a representation of W_{δ}^{0} on the the space $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. We ask whether all the relevant W_{δ}^{0}-types can be realized this way.

Question: Given any relevant representation τ of W_{δ}^{0}, is there a petite K-type μ such that $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\tau$?

Motivation

Let \mathbb{H}_{δ} be the p-adic split group associated to the root system of the good co-roots. Suppose that

- Every relevant W_{0}^{δ} type τ appears in $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$, for some petite K-type μ_{τ}
- Every relevant W_{0}^{δ} type τ, the intertwining operator on μ_{τ} matches the p-adic operator on τ.

Then we conclude that the (possibly non-spherical) Langlands quotient $\bar{X}(\delta, \nu)$ for G (real) is unitary only if the spherical Langlands quotient $\bar{X}(\delta, \nu)$ for \mathbb{H}_{δ} (p-adic) is unitary.

This is a non-unitarity certificate for $\bar{X}_{P}(\delta, \nu)$.

Non-unitarity certificates for Langlands quotients

the real Langlands quotient $\bar{X}(\delta \otimes \nu)$ is unitary

$$
\Uparrow
$$

$$
R_{\mu}(\omega, \nu) \text { is positive semidefinite, for all } K \text {-types } \mu
$$

\Downarrow
$R_{\mu}(\omega, \nu)$ is positive semidefinite, for all relevant K-types μ
I
$R_{\tau}(\omega, \nu)$ is positive semidefinite, for all relevant W-types τ
I
the p-adic Langlands quotient $\bar{X}(\nu)$ is unitary

A remark

The previous argument gives a way to compare the unitarity of a (possibly) non-spherical Langlands quotient of the real group G with the unitarity of a spherical Langlands quotient of the p-adic group \mathbb{H}_{δ}.

If the root system of the good co-roots Δ_{δ} is of classical type, we can replace \mathbb{H}_{δ} with the real split group \mathbb{G}_{δ} associated to Δ_{δ}. Then the comparison remains in the category of real split groups:
the real Langlands quotient $\bar{X}(\delta \otimes \nu)$ is unitary for G \Downarrow
the real Langlands quotient $\bar{X}($ triv. $\otimes \nu)$ is unitary for \mathbb{G}_{δ}

The Problem

Now that the motivation is understood, we describe the problem addressed in this talk...:

Let G be the double cover of a real split group of type E_{6}, E_{7}, E_{8} or F_{4}. Given any irreducible representation δ of M, and any petite K-type μ containing δ, compute the representation of W_{δ}^{0} on the space $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$.

This is a complicated problem. We divide it in several steps.
\square

Step 3 | $\begin{array}{l}\text { Find the representation of } W_{\delta}^{0} \\ \text { on the isotypic component of } \delta, \\ \text { for } \delta \text { trivial or genuine }\end{array}$ |
| :--- |

 \(\Downarrow\)
 step 4 Complete the work (for other δ 's)

step 1: Identify fine and petite K-types

We work with the double cover...

- Classify \tilde{K}-types (highest weight or fundamental weights) and find a formula to compute the level of a \tilde{K}-type
- Fine \tilde{K}-types have level $0, \frac{1}{2}$ or 1
- Petite \tilde{K}-types have level $0, \frac{1}{2}, 1, \frac{3}{2}, 2$ or 3
- Restrict fine \tilde{K}-types to $\tilde{M}(\rightarrow$ orbits of a single \tilde{M}-type). Each \tilde{M}-type δ appears in at least one fine \tilde{K}-type μ_{δ}
- To find $\delta_{1} \otimes \delta_{2}$, look at the tensor product $\mu_{\delta_{1}} \otimes \mu_{\delta_{2}}$ and restrict the summands to M
- To find $\operatorname{Res}_{\tilde{M}} \mu$, use an inductive algorithm:
- Embed μ in a tensor product of fine \tilde{K}-types
- Decompose the tensor products (using $L i E$)
- Restrict the summands to M and guess how the various repr.s of M distribute among the composition factors...

A Problem: fine K-types don't generate the Grothendieck group!

We work simultaneously with spherical and genuine K-types. Induction, restriction and tensor product of Weyl group representations are computed using GAP.

This is the algorithm used for E_{6} and E_{8} (the easiest cases):

Any δ is included in one fine K-type μ_{δ}. As a W-representation:

$$
\left(\mu_{\delta} \otimes \mu_{\delta}^{\star}\right)^{M}=\operatorname{Ind} d_{W_{\delta}^{0}=W^{\delta}}^{W}(\text { trivial })
$$

You get the action of W on μ^{M}, for all K-types μ in $\left(\mu_{\delta} \otimes \mu_{\delta}^{\star}\right)$

There is one genuine M-type δ_{g}. For Θ genuine, $\left.\Theta\right|_{M}=a \delta_{g}$, so $\operatorname{Hom}_{M}\left(\Theta, \delta_{g}\right)=\operatorname{Hom}_{M}\left(\Theta, \mu_{\delta_{g}}\right)=\left(\Theta \otimes \mu_{\delta_{g}}^{\star}\right)^{M} \longleftarrow$ known, by (1)

You get the action of $W_{0}^{\delta_{g}}=W$ on $V_{\Theta}\left(\delta_{g}\right)$, for some Θ genuine
\Uparrow
If Θ_{1}, Θ_{2} are genuine
\upharpoonright known, by (2)
$\left(\Theta_{1} \otimes \Theta_{2}^{\star}\right)^{M}=\operatorname{Hom}_{M}\left(\Theta_{1}, \Theta_{2}\right)=\overbrace{\operatorname{Hom}_{M}\left(\Theta_{1}, \delta_{g}\right) \otimes \operatorname{Hom}_{M}\left(\delta_{g}, \Theta_{2}\right)}$
You get the action of W on μ^{M}, for all K-types μ in $\left(\Theta_{1} \otimes \Theta_{2}^{\star}\right)$
© The algorithm is bit harder for E_{7}, and a lot harder for F_{4}.

Find the repr. of W_{δ}^{0} on the δ-isotypic, for δ trivial or genuine

Modifying the algorithm for $E_{7} \ldots$

- For E_{7}, R_{δ} can have order two. In this case δ is contained in two fine K-types, and

$$
\text { Ind } d_{W_{\delta}^{0}}^{W}(\text { trivial })=\left(\mu_{\delta}^{1} \otimes\left(\mu_{\delta}^{1}\right)^{\star}\right)^{M}+\left(\mu_{\delta}^{1} \otimes\left(\mu_{\delta}^{2}\right)^{\star}\right)^{M}
$$

- E_{7} has two genuine M-types, both with $W_{\delta}^{0}=W$. The relation

$$
\operatorname{Hom}_{M}\left(\Theta_{1}, \Theta_{2}\right)=\operatorname{Hom}_{M}\left(\Theta_{1}, \delta_{g}\right) \otimes \operatorname{Hom}_{M}\left(\delta_{g}, \Theta_{2}\right)
$$

works only if $\left.\Theta_{1}\right|_{M}=a \delta_{g}$ and $\left.\Theta_{2}\right|_{M}=b \delta_{g}$.

Find the repr. of W_{δ}^{0} on the δ-isotypic, for δ trivial or genuine

The case of F_{4} is by far the hardest:

- if μ is genuine, $\left.\mu\right|_{M}=a \delta_{2}+b \delta_{6}$ (not isotypic ...)
- the genuine M-type δ_{6} has $W_{\delta_{6}}^{0} \neq W$.

The other genuine M-type has $W_{\delta_{2}}^{0}=W$, and the isomorphism

$$
\operatorname{Hom}_{M}\left(\Theta_{1}, \Theta_{2}\right)=\operatorname{Hom}_{M}\left(\Theta_{1}, \delta_{2}\right) \otimes \operatorname{Hom}_{M}\left(\delta_{2}, \Theta_{2}\right)
$$

works only if $\left.\Theta_{1}\right|_{M}=a \delta_{2}$ and $\left.\Theta_{2}\right|_{M}=b \delta_{2}+c \delta_{6}$.
When $\left.\Theta_{1}\right|_{M}=a \delta_{6}$ and $\left.\Theta_{2}\right|_{M}=b \delta_{2}+c \delta_{6}$, we can use:

$$
\operatorname{Hom}_{M}\left(\Theta_{1}, \Theta_{2}\right)=\operatorname{Ind}_{W\left(B_{4}\right)}^{W}\left[\operatorname{Hom}_{M}\left(\Theta_{1}, \delta_{6}\right) \otimes \operatorname{Hom}_{M}\left(\delta_{6}, \Theta_{2}\right)\right]
$$

Sometimes it is useful to look at the inclusion of F_{4} into E_{6}. for δ non-trivial and non-genuine

We only discuss the easiest case E_{6}. A similar, but more complicated argument works for other groups.

Suppose that δ_{g} is genuine for M, Θ is genuine for K and $\left.\Theta\right|_{M}$ contains δ_{g}. Then $\left.\left(\mu_{\delta_{g}} \otimes \Theta\right)\right|_{M}$ contains δ, and

$$
\operatorname{Hom}_{M}\left(\delta, \mu_{\delta_{g}} \otimes \Theta\right)=\operatorname{Res}_{W_{\delta}^{0}}^{W_{\delta}^{0}}=W \underbrace{\operatorname{Hom}_{M}\left(\delta_{g}, \Theta\right)}_{\text {known, by step } 3}
$$

We can use this isomorphism to compute the repr. of W_{δ}^{0} on the isotypic component of δ in the composition factors of $\mu_{\delta_{g}} \otimes \Theta$.

ค This gets very tricky, especially for F_{4} (too much ambiguity...)

