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Introduction

Let G be a real split group, with Lie algebra g = k + p. Let K be
the maximal compact subgroup of G and let M be the centralizer
in K of a maximal abelian subspace of p.

If δ is a representation of M , we denote by W 0
δ the Weyl group of

good coroots for δ.

For every petite K-type µ containing δ, there is a representation of
W 0

δ on the the space HomM (Eµ, V δ). We ask whether all the
relevant W 0

δ -types can be realized this way.

Question: Given any relevant representation τ of W 0
δ , is there a

petite K-type µ such that HomM (Eµ, V δ) = τ?
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Motivation

Let Hδ be the p-adic split group associated to the root system of
the good co-roots. Suppose that

• Every relevant W δ
0 type τ appears in HomM (Eµ, V δ), for some

petite K-type µτ

• Every relevant W δ
0 type τ , the intertwining operator on µτ

matches the p-adic operator on τ .

Then we conclude that the (possibly non-spherical) Langlands
quotient X̄(δ, ν) for G (real) is unitary only if the spherical
Langlands quotient X̄(δ, ν) for Hδ (p-adic) is unitary.

This is a non-unitarity certificate for X̄P (δ, ν).
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Non-unitarity certificates for Langlands quotients

the real Langlands quotient X̄(δ ⊗ ν) is unitary

m
Rµ(ω, ν) is positive semidefinite, for all K-types µ

⇓
Rµ(ω, ν) is positive semidefinite, for all relevant K-types µ

m
Rτ (ω, ν) is positive semidefinite, for all relevant W -types τ

m
the p-adic Langlands quotient X̄(ν) is unitary
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A remark

The previous argument gives a way to compare the unitarity of a
(possibly) non-spherical Langlands quotient of the real group G
with the unitarity of a spherical Langlands quotient of the p-adic
group Hδ.

If the root system of the good co-roots ∆δ is of classical type, we
can replace Hδ with the real split group Gδ associated to ∆δ.
Then the comparison remains in the category of real split groups:

the real Langlands quotient X̄(δ ⊗ ν) is unitary for G

⇓
the real Langlands quotient X̄(triv.⊗ ν) is unitary for Gδ
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The Problem

Now that the motivation is understood, we describe the problem
addressed in this talk. . . :

Let G be the double cover of a real split group of type E6, E7,
E8 or F4. Given any irreducible representation δ of M , and
any petite K-type µ containing δ, compute the representation
of W 0

δ on the space HomM (Eµ, V δ).

This is a complicated problem. We divide it in several steps.
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step 1 Identify fine and petite K-types

⇓

step 2
Understand

⊗
of repr.s of M, and

find restriction of K-types to M

⇓

step 3

Find the representation of W 0
δ

on the isotypic component of δ,
for δ trivial or genuine

⇓

step 4 Complete the work (for other δ’s)
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step 1: Identify fine and petite K-types

We work with the double cover. . .

• Classify K̃-types (highest weight or fundamental weights) and
find a formula to compute the level of a K̃-type

• Fine K̃-types have level 0, 1
2 or 1

• Petite K̃-types have level 0, 1
2 , 1, 3

2 , 2 or 3
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step 2:
Understand

⊗
of repr.s of M̃ , and

find the restriction of K̃-types to M̃

• Restrict fine K̃-types to M̃ (→ orbits of a single M̃ -type).
Each M̃ -type δ appears in at least one fine K̃-type µδ

• To find δ1 ⊗ δ2, look at the tensor product µδ1 ⊗ µδ2 and
restrict the summands to M

• To find ResM̃µ, use an inductive algorithm:

– Embed µ in a tensor product of fine K̃-types

– Decompose the tensor products (using LiE)

– Restrict the summands to M and guess how the various
repr.s of M distribute among the composition factors. . .

♠ Problem: fine K-types don’t generate the Grothendieck group!
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step 3:
Find the repr. of W 0

δ on the δ-isotypic,

for δ trivial or genuine

We work simultaneously with spherical and genuine K-types.
Induction, restriction and tensor product of Weyl group
representations are computed using GAP.

This is the algorithm used for E6 and E8 (the easiest cases):

1.

Any δ is included in one fine K-type µδ. As a W -representation:

(µδ ⊗ µ?
δ)

M = IndW
W 0

δ =W δ(trivial).

You get the action of W on µM , for all K-types µ in (µδ ⊗ µ?
δ)

⇓
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⇓

2.

There is one genuine M -type δg. For Θ genuine, Θ |M= aδg, so

HomM (Θ, δg) = HomM (Θ, µδg ) = (Θ⊗ µ?
δg

)M
¾ known, by (1)

You get the action of W
δg

0 = W on VΘ(δg), for some Θ genuine

m

3.

If Θ1, Θ2 are genuine Â known, by (2)

(Θ1⊗Θ?
2)

M = HomM (Θ1,Θ2) =
︷ ︸︸ ︷
HomM (Θ1, δg)⊗HomM (δg,Θ2)

You get the action of W on µM , for all K-types µ in (Θ1 ⊗Θ?
2)

♠ The algorithm is bit harder for E7, and a lot harder for F4.
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Find the repr. of W 0
δ on the δ-isotypic, for δ trivial or genuine

Modifying the algorithm for E7 . . .

• For E7, Rδ can have order two. In this case δ is contained in
two fine K-types, and

IndW
W 0

δ
(trivial) = (µ1

δ ⊗ (µ1
δ)

?)M + (µ1
δ ⊗ (µ2

δ)
?)M

• E7 has two genuine M -types, both with W 0
δ = W . The relation

HomM (Θ1, Θ2) = HomM (Θ1, δg)⊗HomM (δg, Θ2)

works only if Θ1 |M= aδg and Θ2 |M= bδg.
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Find the repr. of W 0
δ on the δ-isotypic, for δ trivial or genuine

The case of F4 is by far the hardest:

- if µ is genuine, µ |M= aδ2 + bδ6 (not isotypic . . . )

- the genuine M -type δ6 has W 0
δ6
6= W.

The other genuine M -type has W 0
δ2

= W , and the isomorphism

HomM (Θ1, Θ2) = HomM (Θ1, δ2)⊗HomM (δ2, Θ2)

works only if Θ1 |M= aδ2 and Θ2 |M= bδ2 + cδ6.
When Θ1 |M= aδ6 and Θ2 |M= bδ2 + cδ6, we can use:

HomM (Θ1,Θ2) = IndW
W (B4) [HomM (Θ1, δ6)⊗HomM (δ6,Θ2)] .

Sometimes it is useful to look at the inclusion of F4 into E6.
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step 4:
Find the repr. of W 0

δ on the δ-isotypic,

for δ non-trivial and non-genuine

We only discuss the easiest case E6. A similar, but more
complicated argument works for other groups.

Suppose that δg is genuine for M , Θ is genuine for K and Θ |M
contains δg. Then (µδg ⊗Θ) |M contains δ, and

HomM (δ, µδg
⊗Θ) = Res

W 0
δg

=W

W 0
δ

HomM (δg, Θ)︸ ︷︷ ︸
known, by step 3

.

We can use this isomorphism to compute the repr. of W 0
δ on the

isotypic component of δ in the composition factors of µδg ⊗Θ.

♠ This gets very tricky, especially for F4 (too much ambiguity. . . )
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