Signatures of Invariant

 Hermitian Forms on Highest Weight ModulesWai Ling Yee
University of Alberta wlyee@math.ualberta.ca www.math.ualberta.ca/ \sim wlyee October $21^{\text {st }}, 2005$

Motivation

Unitary Dual Problem: Classify the unitary irreps of a group

- abelian group: Pontrjagin
- compact, connected Lie group: Weyl, 1920s
- locally compact group-eg. reductive Lie group: open except for some special cases
- study a broader family of representations: those which admit an invariant Hermitian form
- real reductive Lie group: equivalent to classifying the irreducible Harish-Chandra modules (admissible, finitely-generated (\mathfrak{g}, K)-modules) which admit a positive-definite invariant Hermitian form
- Zuckerman 1978: construct all admissible (\mathfrak{g}, K)-modules by cohomological induction
- G - real reductive Lie group
- K - a maximal compact subgroup of G
- $\mathfrak{g}_{0}, \mathfrak{k}_{0}$ corresponding Lie algebras and $\mathfrak{g}, \mathfrak{k}$ their complexifications
- $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{u}$ parabolic subalgebra
- θ - Cartan involution corresponding to K
- begin with an $(\mathfrak{l}, L \cap K)$-module V where L is a Levi subgroup of G and \mathfrak{l} its complexified Lie algebra
- Step 1: extend to a rep of $\mathfrak{q}=\mathfrak{l} \oplus \mathfrak{u}$ by allowing \mathfrak{u} to act trivially, then apply induction functor

$$
\operatorname{ind}_{(\mathfrak{q}, L \cap K)}^{(\underline{g}, L \cap K)}(V)=U(\mathfrak{g}) \otimes_{U(\mathfrak{q})} V
$$

- Step 2: apply a Zuckerman functor $\Gamma^{j}=j^{\text {th }}$ derived functor of the left exact covariant functor Γ which takes the K-finite part of a representation
- $\operatorname{ind}_{(\underset{q}{q}, L \cap K)}^{(\mathfrak{g}, L \cap K)}(V)$ is a generalized Verma module, hence our interest in highest weight modules
- Strategy: relate the signature of invariant Hermitian form on V to signature of cohomologically induced module $\Gamma^{j \operatorname{ind}_{(q)}^{(q) L \cap K)}}(V)$
- 1984, Vogan: Suppose \mathfrak{q} is θ-stable. For an irreducible, unitarizable ($\mathfrak{l}, L \cap K$)-module V with infinitesimal character $\lambda \in \mathfrak{h}^{*}$, if

$$
\operatorname{Re}(\alpha, \lambda-\rho(\mathfrak{u})) \geq 0 \quad \forall \alpha \in \Delta(\mathfrak{u}, \mathfrak{h})
$$

then $\Gamma^{m}\left(\operatorname{Hom}_{\mathfrak{q}}\left(U(\mathfrak{g}), V \otimes \wedge^{\text {top }} \mathfrak{u}\right)\right)$ is also unitarizable, where $m=\operatorname{dimu} \cap \mathfrak{k}$.
$\left(\right.$ Fact: $\left.\operatorname{pro}_{\mathfrak{q}}^{\mathfrak{g}}\left(V^{h}\right):=\operatorname{Hom}_{\mathfrak{q}}\left(U(\mathfrak{g}), V^{h}\right) \simeq\left(\operatorname{ind}_{\tilde{\mathfrak{q}}}^{\mathfrak{g}} V\right)^{h}.\right)$

- 1984, Wallach: more elementary proof of same result by computing the signature of the Shapovalov form on generalized Verma modules (invariant Hermitian form on the module obtained in Step 1 of cohomological induction)
- Potentially useful for unitary dual problem: signature of Shapovalov form on a generalized Verma module, when it exists, with no restrictions on value of infinitesimal character
- Today: irreducible Verma modules, irreducible highest weight modules of regular infinitesimal character

Invariant Hermitian Forms

Definition: Invariant Hermitian form $\langle\cdot, \cdot\rangle$ on V :
For all $v, w \in V$

- rep of $G:\langle g v, w\rangle=\left\langle v, g^{-1} w\right\rangle$ for all $g \in G$
- \mathfrak{g}-module: $\langle X v, w\rangle+\langle v, \bar{X} w\rangle=0$ for every $X \in \mathfrak{g}$, where \bar{X} denotes the complex conjugate of X with respect to the real form \mathfrak{g}_{0}
- sesquilinear

When does a Verma module admit an invariant Hermitian form?

Theorem: An irreducible representation (π, V) admits a
non-degenerate invariant Hermitian form if and only if it is isomorphic to a subrepresentation of its Hermitian dual $\left(\pi^{h}, V^{h}\right)$.

Let $\mathfrak{b}=\mathfrak{h}+\mathfrak{n}$ be a Borel subalgebra of \mathfrak{g} and $\Delta^{+}(\mathfrak{g}, \mathfrak{h})$ the corresponding system of positive roots.
$M(\lambda)=\operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}\left(\mathbb{C}_{\lambda}\right)$ so $M(\lambda)^{h}=\operatorname{pro}_{\overline{\mathfrak{b}}}^{\mathfrak{g}}\left(\mathbb{C}_{\lambda}^{h}\right)=\operatorname{Hom}_{\overline{\mathfrak{b}}}\left(U(\mathfrak{g}), \mathbb{C}_{-\bar{\lambda}}\right)$
We see that $M(\lambda)$ embeds into $M(\lambda)^{h}$ if $\bar{\lambda}=-\lambda$ and $\overline{\Delta^{+}(\mathfrak{g}, \mathfrak{h})}=-\Delta^{+}(\mathfrak{g}, \mathfrak{h})$. When does this happen?

For $\mu \in \mathfrak{h}^{*}$, define: $\quad(\theta \mu)(H)=\mu\left(\theta^{-1} H\right) \quad(\bar{\mu})(H)=\overline{\mu(\bar{H})}$
Then: $\quad \theta \mathfrak{g}_{\alpha}=\mathfrak{g}_{\theta \alpha} \quad \overline{\mathfrak{g}}_{\alpha}=\mathfrak{g}_{\bar{\alpha}}$
Theorem: If \mathfrak{h} is θ-stable and maximally compact, λ is imaginary, and $\theta \Delta^{+}(\mathfrak{g}, \mathfrak{h})=\Delta^{+}(\mathfrak{g}, \mathfrak{h})$, then $M(\lambda)$ admits a non-degenerate invariant Hermitian form.

- by \mathfrak{h}-invariance, the $\lambda-\mu$ weight space is orthogonal to the $\lambda-\nu$ weight space if $\nu \neq-\bar{\mu}$
- each weight space is finite dimensional, so it makes sense to talk about signatures and the determininants
Constructing the form:
For $X \in \mathfrak{g}$, let $X^{*}=-\bar{X}$ and extend $X \mapsto X^{*}$ to an involutive anti-automorphism of $U(\mathfrak{g})$ by $1^{*}=1$ and $(x y)^{*}=y^{*} x^{*}$.
We have the decomposition $U(\mathfrak{g})=U(\mathfrak{h}) \oplus\left(U(\mathfrak{g}) \mathfrak{n}+\mathfrak{n}^{o p} U(\mathfrak{g})\right)$.
Let p be the projection of $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ under this direct sum.
- For $x, y \in U(\mathfrak{g})$, by invariance, $\left\langle x v_{\lambda}, y v_{\lambda}\right\rangle_{\lambda}=\left\langle y^{*} x v_{\lambda}, v_{\lambda}\right\rangle_{\lambda}$.
- $\left(\left(U(\mathfrak{g}) \mathfrak{n}+\mathfrak{n}^{o p} U(\mathfrak{g})\right) v_{\lambda}, v_{\lambda}\right)=\{0\}$.
- $\left\langle x v_{\lambda}, y v_{\lambda}\right\rangle_{\lambda}=\left\langle p\left(y^{*} x\right) v_{\lambda}, v_{\lambda}\right\rangle_{\lambda}=\lambda\left(p\left(y^{*} x\right)\right)\left\langle v_{\lambda}, v_{\lambda}\right\rangle_{\lambda}$
- See that an invariant Hermitian form on a Verma module is unique up to a real scalar. When $\left\langle v_{\lambda}, v_{\lambda}\right\rangle_{\lambda}=1$: Shapovalov form

Theorem: (Shapovalov determinant formula) The determinant of the Shapovalov form on the $\lambda-\mu$ weight space is

$$
\prod_{\alpha \in \Delta^{+}(\mathfrak{g}, \mathfrak{h})} \prod_{n=1}^{\infty}\left(\left(\lambda+\rho, \alpha^{\vee}\right)-n\right)^{P(\mu-n \alpha)}
$$

up to multiplication by a scalar, where P denotes Kostant's partition function. (Assumption: \mathfrak{h} is compact.)

- radical of Shapovalov form $=$ unique maximal submodule of $M(\lambda)$
- form non-degenerate precisely for the irreducible Verma modules
- according to Shapovalov determinant formula, $M(\lambda)$ is reducible on the affine hyperplanes $H_{\alpha, n}:=\left\{\lambda+\rho \mid\left(\lambda+\rho, \alpha^{\vee}\right)=n\right\}$ where α is a positive root and n is a positive integer
- in any connected set of purely imaginary λ avoiding these reducibility hyperplanes, as the Shapovalov form never becomes degenerate, the signature corresponding to fixed μ remains constant

Definition: The largest of such regions, which we name the Wallach region, is the intersection of the negative open half spaces

$$
\left(\bigcap_{\alpha \in \Pi} H_{\alpha, 1}^{-}\right) \bigcap H_{\widetilde{\alpha}, 1}^{-}
$$

with $i \mathfrak{h}_{0}^{*}$, where $\widetilde{\alpha}^{\vee}=$ the highest coroot, $\Pi=$ simple roots corresponding to Δ^{+}, and $H_{\beta, n}^{-}=\left\{\lambda+\rho \mid\left(\lambda+\rho, \beta^{\vee}\right)<n\right\}$.
Definition: If the signature of the Shapovalov form on $M(\lambda)_{\lambda-\mu}$ is $(p(\mu), q(\mu))$, the signature character of $\langle\cdot, \cdot\rangle_{\lambda}$ is

$$
c h_{s} M(\lambda)=\sum_{\mu \in \Lambda_{r}^{+}}(p(\mu)-q(\mu)) e^{\lambda-\mu}
$$

Pick λ, ξ so that $\lambda+t \xi$ stays in the Wallach region for $t \geq 0$. An asymptotic argument (degree of t on the diagonal $>$ degree off the diagonal) leads to:

Theorem: (Wallach) The signature character of $M(\lambda)$ for $\lambda+\rho$ in the Wallach region is

$$
\operatorname{ch}_{s} M(\lambda)=\frac{e^{\lambda}}{\prod_{\alpha \in \Delta^{+}(\mathfrak{p}, \mathfrak{t})}\left(1-e^{-\alpha}\right) \prod_{\alpha \in \Delta^{+}(\mathfrak{k}, \mathfrak{t})}\left(1+e^{-\alpha}\right)} .
$$

Goal: be able to find the signature everywhere.
Idea: determine how the signature changes as you cross a reducibility hyperplane. Combine this with induction.

- take λ s.t. $\lambda+\rho$ lies in exactly one reducibility hyperplane $H_{\alpha, n}$
- for reg ξ and non-zero t in a nbd of $0,\langle\cdot, \cdot\rangle_{\lambda+t \xi}$ is non-degenerate
- $\langle\cdot, \cdot\rangle_{\lambda}$ has radical isom to the irreducible Verma module $M(\lambda-n \alpha)$
- therefore signature must change by plus or minus the signature of $\langle\cdot, \cdot\rangle_{\lambda-n \alpha}$ across $H_{\alpha, n}$

This can be made rigorous by using the Jantzen filtration.

- the $H_{\alpha, n}$'s where α is a root, n an integer, partition \mathfrak{h}^{*} into alcoves

Definition: For an alcove A, \exists constants c_{μ}^{A} for $\mu \in \Lambda_{r}^{+}$such that

$$
R^{A}(\lambda):=\sum_{\mu \in \Lambda_{r}^{+}} c_{\mu}^{A} e^{\lambda-\mu}
$$

is the signature character of $\langle\cdot, \cdot\rangle_{\lambda}$ when $\lambda+\rho$ lies in the alcove A.
Our description of how signatures change as you cross a reducibility hyerplane may be expressed:

Lemma 1: If A, A^{\prime} are adjacent alcoves separated by $H_{\alpha, n}$,
then $\quad R^{A}(\lambda)=R^{A^{\prime}}(\lambda)+2 \varepsilon\left(A, A^{\prime}\right) R^{A-n \alpha}(\lambda-n \alpha)$
where $\varepsilon\left(A, A^{\prime}\right)$ is zero if $H_{\alpha, n}$ is not a reducibility hyperplane and plus or minus one otherwise.

- use $R(\lambda)$ to denote common signature character for alcoves in Wallach region

We use the affine Weyl group, whose action on \mathfrak{h}^{*} partitions \mathfrak{h}^{*} into precisely the alcoves with walls $H_{\alpha, n}$ as described above.
Definition The fundamental alcove is

$$
A_{0}=\left\{\lambda+\rho \mid\left(\lambda+\rho, \alpha^{\vee}\right)<0 \quad \forall \alpha \in \Pi, \quad\left(\lambda+\rho, \widetilde{\alpha}^{\vee}\right)>-1\right\} .
$$

- reflections through walls of A_{0} generate the affine Weyl group, W_{a} : reflections $s_{\alpha, 0}$ for each simple root α and $s_{\widetilde{\alpha},-1}$ generate W_{a}
- omit $s_{\widetilde{\alpha},-1} \rightarrow$, generate the Weyl group W as a subgroup of W_{a}
- these generators compatible with reflection through walls of the fundamental Weyl chamber \mathfrak{C}_{0}, which we choose to contain A_{0} :

$$
\mathfrak{C}_{0}=\bigcap_{\alpha \in \Pi} H_{\alpha, 0}^{-} .
$$

Definition We will define two maps ${ }^{〔}$ and \simeq from the affine Weyl group to the Weyl group as follows:

- - comes from structure of W_{a} as semidirect product of translation by the root lattice and the Weyl group: $\bar{w}=s$ if $w=t s$ with $t=$ translation by an element of $\Lambda_{r}, s \in W$
- We let \widetilde{w} be such that $w A_{0}$ lies in the Weyl chamber $\widetilde{w} \mathfrak{C}_{0}$.
- - is a group homomorphism
- . is not a group homomorphism
- $\overline{s_{\alpha, n}}=s_{\alpha}$, and $s_{\alpha, 0} s_{\alpha, n} \mu=\mu-n \alpha$

Observe that we can rewrite Lemma 1 as

$$
\begin{aligned}
R^{w A_{0}}(\lambda) & =R^{w^{\prime} A_{0}}(\lambda)+2 \varepsilon\left(w A_{0}, w^{\prime} A_{0}\right) R^{s_{\alpha, 0} s_{\alpha, n} w A_{0}}\left(s_{\alpha, 0} s_{\alpha, n} \lambda\right) \\
& =R^{w^{\prime} A_{0}}(\lambda)+2 \varepsilon\left(w A_{0}, w^{\prime} A_{0}\right) R^{\overline{s_{\alpha, n}} w^{\prime} A_{0}}\left(\overline{s_{\alpha, n}} s_{\alpha, n} \lambda\right)
\end{aligned}
$$

For w in the affine Weyl group, let $w A_{0}=C_{0} \xrightarrow{r_{1}} C_{1} \xrightarrow{r_{2}} \cdots \xrightarrow{r_{\ell}} C_{\ell}=\widetilde{w} A_{0}$ be a (not necessarily reduced) path from $w A_{0}$ to $\widetilde{w} A_{0}$. Applying (1), ℓ times, we obtain

$$
\begin{aligned}
R^{w A_{0}}(\lambda) & =R^{\widetilde{w} A_{0}}(\lambda)+\sum_{j=1}^{\ell} \varepsilon\left(C_{j-1}, C_{j}\right) 2 R^{\overline{r_{j}} C_{j}}\left(\overline{r_{j}} r_{j} \lambda\right) \\
& =R(\lambda)+2 \sum_{j=1}^{\ell} \varepsilon\left(C_{j-1}, C_{j}\right) R^{\overline{r_{j}} C_{j}}\left(\overline{r_{j}} r_{j} \lambda\right)
\end{aligned}
$$

Observe that a path from $\overline{r_{j}} C_{j}$ to $\overline{r_{j}} C_{\ell}$ is

$$
\overline{r_{j}} C_{j} \xrightarrow{\overline{r_{j}} r_{j+1} \overline{r_{\bar{j}}}} \overline{r_{j}} C_{j+1} \xrightarrow{\overline{r_{j}} r_{j+2} \overline{r_{j}}} \cdots \xrightarrow{\overline{r_{j}} r_{\ell} \overline{r_{j}}} \overline{r_{j}} C_{\ell}
$$

Applying induction on path length, we arrive at the following:
Theorem 2: For w in the affine Weyl group, let $w A_{0}=C_{0} \xrightarrow{r_{1}} C_{1} \xrightarrow{r_{2}} \ldots \xrightarrow{r_{\ell}} C_{\ell}=\widetilde{w} A_{0}$ be a (not necessarily reduced) path from $w A_{0}$ to $\widetilde{w} A_{0}$.
$R^{w A_{0}}(\lambda)$ equals

$$
\begin{array}{r}
\sum_{S=\left\{i_{1}<\cdots<i_{k}\right\} \subset\{1, \ldots, \ell\}} \varepsilon(S) 2^{|S|} R^{\overline{r_{i_{1}}} \cdots \overline{r_{i_{k}}} \widetilde{w} A_{0}}\left(\overline{r_{i_{1}} r_{i_{2}}} \cdots \overline{r_{i_{k}}} r_{i_{k}} r_{i_{k-1}} \cdots r_{i_{1}} \lambda\right) \\
=\sum_{S=\left\{i_{1}<\cdots<i_{k}\right\} \subset\{1, \ldots, \ell\}} \varepsilon(S) 2^{|S|} R\left(\overline{r_{i_{1}} r_{i_{2}}} \cdots \overline{r_{i_{k}}} r_{i_{k}} r_{i_{k-1}} \cdots r_{i_{1}} \lambda\right)
\end{array}
$$

where $\varepsilon(\emptyset)=1$ and
$\varepsilon(S)=\varepsilon\left(C_{i_{1}-1}, C_{i_{1}}\right) \varepsilon\left(\overline{r_{i_{1}}} C_{i_{2}-1}, \overline{r_{i_{1}}} C_{i_{2}}\right) \cdots \varepsilon\left(\overline{r_{i_{1}}} \cdots \overline{r_{i_{k-1}}} C_{i_{k}-1}, \overline{r_{i_{1}}} \cdots \overline{r_{i_{k-1}}} C_{i_{k}}\right)$.

Calculating ε : difficult.

Calculating ε

The strategy for computing ε is as follows:

- We show that for a fixed hyperplane $H_{\alpha, n}$, the value of ε for crossing from $H_{\alpha, n}^{+}$to $H_{\alpha, n}^{-}$depends only on the Weyl chamber to which the point of crossing belongs.
- We consider rank 2 root systems of types A_{2} and B_{2}, generated by simple roots α_{1} and α_{2}, and calculate the values for ε by calculating changes that occur at the Weyl chamber walls. Our proofs do not depend on simplicity of the α_{i}.
- For an arbitrary positive root γ in a generic irreducible root system which is not type G_{2}, we develop a formula for ε inductively by replacing the α_{i} from the previous step with appropriate roots. Key in the induction is the independence of our rank 2 arguments from the simplicity of the α_{i}.

Let's begin with something simple: calculate ε for α simple.
Lemma 2: Let δ_{α} be -1 if α is noncompact, and 1 if it is compact.
If α is simple and n is positive and if $H_{\alpha, n}$ separates $w A_{0}$ and $w^{\prime} A_{0}$ with $w A_{0} \subset H_{\alpha, n}^{+}$and $w^{\prime} A_{0} \subset H_{\alpha, n}^{-}$, then $\varepsilon\left(w A_{0}, w^{\prime} A_{0}\right)=\delta_{\alpha}^{n}$.
Proof: Choose $X_{\alpha} \in \mathfrak{g}_{\alpha}, Y_{\alpha} \in \mathfrak{g}_{-\alpha}$, and $H_{\alpha}=\left[X_{\alpha}, Y_{\alpha}\right]$, a standard triple so that $\mu\left(H_{\alpha}\right)=\left(\mu, \alpha^{\vee}\right) \forall \mu \in \mathfrak{h}^{*}$. We may arrange so that

$$
-\bar{Y}_{\alpha}=\delta_{\alpha} X_{\alpha}
$$

The $\lambda-n \alpha$ weight space of $M(\lambda)$ is one-dimensional and spanned by the vector $Y_{\alpha}^{n} v_{\lambda}$. We know that

$$
\begin{aligned}
\left\langle Y_{\alpha}^{n} v_{\lambda}, Y_{\alpha}^{n} v_{\lambda}\right\rangle_{\lambda} & =\delta_{\alpha}^{n}\left\langle v_{\lambda}, X_{\alpha}^{n} Y_{\alpha}^{n} v_{\lambda}\right\rangle_{\lambda} \\
& =\delta_{\alpha}^{n} n!\left\langle v_{\lambda}, H_{\alpha}\left(H_{\alpha}-1\right) \cdots\left(H_{\alpha}-(n-1)\right) v_{\lambda}\right\rangle_{\lambda}
\end{aligned}
$$

from $\mathfrak{s l}_{2}$ theory. We conclude that

$$
\varepsilon\left(w A_{0}, w^{\prime} A_{0}\right)=\delta_{\alpha}^{n}
$$

Dependence on Weyl Chambers

Proposition 1: \quad Suppose α is a positive root and $n \in \mathbb{Z}^{+}$and suppose $H_{\alpha, n}$ separates adjacent alcoves $w A_{0}$ and $w^{\prime} A_{0}$, with $w A_{0} \subset H_{\alpha, n}^{+}$and $w^{\prime} A_{0} \subset H_{\alpha, n}^{-}$. The value of $\varepsilon\left(w, w^{\prime}\right)$ depends only on $H_{\alpha, n}$ and on $\widetilde{w}\left(=\widetilde{w}^{\prime}\right)$.

We begin by refining Theorem 2: if we take an arbitrary C_{ℓ}, the formula becomes

$$
R^{w A_{0}}(\lambda)=\sum_{I=\left\{i_{1}<\cdots<i_{k}\right\} \subset\{1, \ldots, \ell\}} \varepsilon(I) 2^{|I|} R^{\overline{r_{i_{1}}} \cdots \overline{r_{i_{k}}} C_{\ell}}\left(\overline{r_{i_{1}}} \cdots \overline{r_{i_{k}}} r_{i_{k}} \cdots r_{i_{1}} \lambda\right) .
$$

If we choose in particular $C_{\ell}=C_{0}$, we have

$$
\begin{equation*}
R^{C_{0}}(\lambda)=\sum_{\substack{I=\left\{i_{1}<\cdots<i_{k}\right\} \\ C\{1, \ldots, \ell\}}} \varepsilon(I) 2^{|I|} R^{\overline{{r_{1}}_{1}} \cdots \overline{r_{i_{k}}} C_{0}}\left(\overline{r_{i_{1}}} \cdots \overline{r_{i_{k}}} r_{i_{k}} \cdots r_{i_{1}} \lambda\right) \tag{2}
\end{equation*}
$$

We begin by proving the proposition in the special case where $w A_{0}=C_{i}$ and $w^{\prime} A_{0}=C_{i+1}$ as described in the following figure:

Figure 1: Type A_{2}

Lemma 3: Let $\mathcal{C}=\left\{C_{i}\right\}_{i=0, \ldots, \ell-1}$ be a set of alcoves that lie in the interior of some Weyl chamber and suppose the reflections $\left\{r_{j}\right\}_{j=1, \cdots, k}$ preserve \mathcal{C}. If $w, v \in W_{a}$ are generated by the r_{j} then

$$
\bar{w}^{-1} w=\bar{v}^{-1} v \Longleftrightarrow w=v
$$

Proof: $\quad \Rightarrow$: By simple transitivity of the action of W_{a} on the alcoves, $\bar{w}^{-1} w=\bar{v}^{-1} v \Longleftrightarrow \bar{w}^{-1} w C=\bar{v}^{-1} v C$ for any alcove C. Choose in particular $C=C_{i}$. The alcoves $\bar{w}^{-1} w C_{i}$ and $\bar{v}^{-1} v C_{i}$ belong to the same Weyl chamber as they are the same alcove. As the r_{j} 's preserve \mathcal{C} which lies in the interior of some Weyl chamber, $w C_{i}$ and $v C_{i}$ belong to the same Weyl chamber. Thus $\bar{w}^{-1}=\bar{v}^{-1}$, whence $w=v$. The other direction is trivial.

Note: \mathcal{C} in the figure satisfies the conditions of Lemma 3.

To prove the proposition for the figure, we need to show that $\varepsilon\left(C_{i}, C_{i+1}\right)+\varepsilon\left(C_{i+3}, C_{i+4}\right)=0,\left(C_{6}=C_{0}\right)$.
For $I=\left\{i_{1}<\cdots<i_{k}\right\}$, we define $w_{I}=r_{i_{k}} r_{i_{k-1}} \cdots r_{1}$. We rewrite (2) as

$$
\begin{equation*}
\sum_{\emptyset \neq I \subset\{1, \ldots, \ell\}} 2^{|I|} \varepsilon(I) R^{\bar{w}_{I}^{-1} C_{0}}\left({\overline{w_{I}}}^{-1} w_{I} \lambda\right)=0 \tag{3}
\end{equation*}
$$

Using Lemma 3 and the partial ordering on Λ, we obtain

$$
\begin{equation*}
\sum_{\substack{\emptyset \neq I \subset\{1, \ldots, \ell\} \\ w_{I}-1 \\ w_{I}=\mu}} 2^{|I|} \varepsilon(I)=0 \tag{4}
\end{equation*}
$$

for every $\mu \in \Lambda$.
Suppose $\mu=m \alpha_{1}$. The subsets I of length less than 3 for which
${\overline{w_{I}}}^{-1} w_{I}=\mu$ are $I=\{1\},\{4\}$. By considering equation (4) modulo 8 , we obtain $\varepsilon\left(C_{0}, C_{1}\right)+\varepsilon\left(C_{3}, C_{4}\right)=0$ which gives the desired result for $H_{\alpha_{1}, m}$. The same proof can be used for the other hyperplanes and also for type B_{2}.

Generalization: $\mathcal{C}=\left\{\right.$ alcoves containing μ_{0} in their closures $\}$. Conditions of Lemma 3 satisfied, argue as before.

Calculating ε for Type A_{2}

- know how to calculate ε for hyperplanes corresponding to simple roots, so we know how to calculate ε in the Weyl chambers adjacent to the fundamental Weyl chamber
- again, changes along a closed path should sum to zero
- so previous diagram, where \mathcal{C} overlaps with two Weyl chambers, allows you to relate values of ε in one chamber to values in an adjacent chamber

Weyl chamber walls in \mathcal{C}	Equations
$H_{\alpha_{1}, 0}$	$\varepsilon\left(C_{2}, C_{3}\right)+\varepsilon\left(C_{5}, C_{6}\right)=0$
	$\varepsilon\left(C_{1}, C_{2}\right)+\varepsilon\left(C_{4}, C_{5}\right)+2 \varepsilon\left(C_{2}, C_{3}\right) \varepsilon\left(\overline{r_{3}} C_{4}, \overline{r_{3}} C_{5}\right)=0$
$H_{\alpha_{2}, 0}$	$\varepsilon\left(C_{0}, C_{1}\right)+\varepsilon\left(C_{3}, C_{4}\right)=0$
	$\varepsilon\left(C_{1}, C_{2}\right)+\varepsilon\left(C_{4}, C_{5}\right)+2 \varepsilon\left(C_{0}, C_{1}\right) \varepsilon\left(\overline{r_{1}} C_{1}, \overline{r_{1}} C_{2}\right)=0$
$H_{\alpha_{1}+\alpha_{2}, 0}$	$\varepsilon\left(C_{0}, C_{1}\right)+\varepsilon\left(C_{3}, C_{4}\right)=0$
	$\varepsilon\left(C_{2}, C_{3}\right)+\varepsilon\left(C_{5}, C_{0}\right)=0$

Final Formula for ε

Notation: $\varepsilon\left(H_{\gamma, N}, s\right)=\varepsilon\left(A, A^{\prime}\right)$ where $A \subset H_{\gamma, N}^{+}, A^{\prime} \subset H_{\gamma, N}^{-}, A$ and A^{\prime} are adjacent, and $A \subset s \mathfrak{C}_{0}$.

Using induction on height:
Theorem 3: Let γ be a positive root, and let $\gamma=s_{i_{1}} \cdots s_{i_{k-1}} \alpha_{i_{k}}$ be such that ht $\left(s_{i_{j}} \cdots s_{i_{k-1}} \alpha_{i_{k}}\right)$ decreasesas j increases. Let $w_{\gamma}=s_{i_{1}} \cdots s_{i_{k}}$. If γ hyperplanes are positive on $s \mathfrak{C}_{\mathrm{o}}$, then

$$
\begin{aligned}
\varepsilon\left(H_{\gamma, N}, s\right)= & (-1)^{N \#\left\{\text { noncompact } \alpha_{i_{j}}:\left|\alpha_{i_{j}}\right| \geq|\gamma|\right\}} \\
& \times(-1)^{\#\left\{\beta \in \Delta\left(w_{\gamma}^{-1}\right):|\beta|=|\gamma|, \beta \neq \gamma, \text { and } \beta, s_{\beta} \gamma \in \Delta\left(s^{-1}\right)\right\}} \\
& \times(-1)^{\#\left\{\beta \in \Delta\left(w_{\gamma}^{-1}\right):|\beta| \neq|\gamma| \text { and } \beta,-s_{\beta} s_{\gamma} \beta \in \Delta\left(s^{-1}\right)\right\}} .
\end{aligned}
$$

Extending results so that we know how to compute signature characters for non-compact Cartan subalgebras: use formulas for singular vectors.

Irreducible Highest Weight Modules

- the Shapovalov form on $M(\lambda)$ descends to an invariant

Hermitian form on the irreducible highest weight module $L(\lambda)$
Let λ be antidominant, regular, and $x \in W_{\lambda}$. The Jantzen filtration of $M(x \cdot \lambda)(x \cdot \lambda=x(\lambda+\rho)-\rho)$ is

$$
M(x \cdot \lambda)=M(x \cdot \lambda)^{0} \supset M(x \cdot \lambda)^{1} \supset \cdots \supset M(x \cdot \lambda)^{N}=\{0\}
$$

where, for fixed δ regular,
$M(x \cdot \lambda)^{j}=\left\{\begin{array}{l|l}\text { vectors } a v_{x \cdot \lambda} \in M(x \cdot \lambda) & \begin{array}{l}\left\langle a v_{x \cdot \lambda+\delta t}, b v_{x \cdot \lambda+\delta t}\right\rangle_{x \cdot \lambda+\delta t} \\ \text { vanishes at least to order } \\ j \text { at } t=0 \forall b \in U\left(n^{o p}\right)\end{array}\end{array}\right\}$
$\bullet M(x \cdot \lambda)_{j}=M(x \cdot \mid \bullet$ get a non-degenerate invariant Her$\lambda)^{j} / M(x \cdot \lambda)^{j+1}$ is semisim- \quad mitian form $\langle\cdot, \cdot\rangle_{j}$ on $M(x \cdot \lambda)_{j}$ ple

- Kazhdan-Lusztig
polynomials tell you: $\left[M(x \cdot \lambda)_{j}: L(y \cdot \lambda)\right]=$ coefficient of $q^{(\ell(x)-\ell(y)-j) / 2}$ in $P_{w_{\lambda} x, w_{\lambda} y}(q)$
- Jantzen filtration does not depend on choice of δ
- define analogous polynomials keeping track of signatures: form on each copy of $L(y \cdot \lambda)$ in $j^{\text {th }}$ level of filtration has signature \pm signature of the Shapovalov form on $L(y \cdot \lambda)$
- form on $j^{\text {th }}$ level, however, does; $\operatorname{ch}_{s} M(x \cdot \lambda+\delta t)$ equals: $\sum_{j} c h_{s}\langle\cdot, \cdot\rangle_{j}$ for small $t>0$ $\sum_{j \text { even }} c h_{s}\langle\cdot, \cdot\rangle_{j}-\sum_{j \text { odd }} c h_{s}\langle\cdot, \cdot\rangle_{j}$ for small $t<0$

More precisely, the signature of the form depends on the (integral) Weyl chamber containing δ : if $\delta \in w \mathfrak{C}_{0}$, there are integers $a_{y, j}^{x \cdot \lambda, w}$ such that

$$
\begin{aligned}
c h_{s}\langle\cdot, \cdot\rangle_{j} & =\sum_{y \leq w} a_{y, j}^{x \lambda, w} c h_{s} L(y \cdot j) \\
R^{w A_{0}+x \lambda}(x \lambda) & =\sum_{j} \sum_{y \leq w} a_{y, j}^{x \lambda, w} c h_{s} L(y \cdot j)
\end{aligned}
$$

Proposition: Letting $a_{y}^{x \lambda, w}=\sum_{j} a_{y, j}^{x \lambda, w}$,

$$
\operatorname{ch}_{s} L(x \lambda)=\sum_{y_{1}<\cdots<y_{j}=x}(-1)^{j-1}\left(\prod_{i=2}^{i=j} a_{y_{i-1}}^{y_{i} \lambda, w}\right) R^{y_{1} \lambda+w A_{0}}\left(y_{1} \lambda\right)
$$

The usual Kazhdan-Lusztig polynomials may be computed via the inductive formulas:
a) $P_{w_{\lambda} x, w_{\lambda} y}=P_{w_{\lambda} x s, w_{\lambda} y}$ if $y s>y$ and $x, x s \geq y, s$ simple
a') $P_{w_{\lambda} x, w_{\lambda} y}=P_{w_{\lambda} s x, w_{\lambda} y}$ if $s y>y$ and $x, s x \geq y, s$ simple
b) If $y>y s$ then

$$
\begin{gathered}
\sum_{z \in W_{\lambda} \mid z s>z} \mu\left(w_{\lambda} z, w_{\lambda} y\right) q^{\frac{\ell(z)-\ell(y)+1}{2}} \\
P_{w_{\lambda} x, w_{\lambda} z} \\
+P_{w_{\lambda} x, w_{\lambda} y s}
\end{gathered}
$$

Signed versions: inductive formulas simlar. Have to include some signs which depend on $x, \lambda, w, s=s_{\alpha}$.

We would like to extend this work to generalized Verma modules for the purpose of studying invariant Hermitian forms on Harish-Chandra modules. Open problems which need to be solved for this purpose:

- reducibility of generalized Verma modules
- computing the determinant of the Shapovalov form in some special cases: Khomenko-Mazorchuk
- sufficient conditions for certain principal series representations: Speh-Vogan
- determining the composition series of a generalized Verma module (i.e. what are the irreducible factors, and what are their multiplicities)
- composition series for generalized principal series representations \Rightarrow determine reducibility of representation induced from a parabolic subgroup

