Signatures of Invariant Hermitian Forms on Highest Weight Modules Wai Ling Yee University of Alberta wlyee@math.ualberta.ca www.math.ualberta.ca/~wlyee October 21st, 2005

Motivation

Unitary Dual Problem: Classify the unitary irreps of a group

- abelian group: Pontrjagin
- compact, connected Lie group: Weyl, 1920s
- locally compact group–eg. reductive Lie group: open except for some special cases
- study a broader family of representations: those which admit an invariant Hermitian form
- real reductive Lie group: equivalent to classifying the irreducible Harish-Chandra modules (admissible, finitely-generated (g, K)-modules) which admit a positive-definite invariant Hermitian form
- Zuckerman 1978: construct all admissible $(\mathfrak{g},K)\text{-modules}$ by cohomological induction

- G real reductive Lie group
- K a maximal compact subgroup of G
- $\mathfrak{g}_0, \mathfrak{k}_0$ corresponding Lie algebras and $\mathfrak{g}, \mathfrak{k}$ their complexifications
- $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ parabolic subalgebra
- θ Cartan involution corresponding to K
- begin with an $(l, L \cap K)$ -module V where L is a Levi subgroup of G and l its complexified Lie algebra
- Step 1: extend to a rep of $q = l \oplus u$ by allowing u to act trivially, then apply induction functor

$$\operatorname{ind}_{(\mathfrak{q},L\cap K)}^{(\mathfrak{g},L\cap K)}(V) = U(\mathfrak{g}) \otimes_{U(\mathfrak{q})} V$$

• Step 2: apply a Zuckerman functor $\Gamma^j = j^{\text{th}}$ derived functor of the left exact covariant functor Γ which takes the K-finite part of a representation

- $\operatorname{ind}_{(\mathfrak{q},L\cap K)}^{(\mathfrak{g},L\cap K)}(V)$ is a **generalized Verma module**, hence our interest in highest weight modules
- Strategy: relate the signature of invariant Hermitian form on V to signature of cohomologically induced module Γ^{j} ind $_{(\mathfrak{q},L\cap K)}^{(\mathfrak{g},L\cap K)}(V)$
- 1984, Vogan: Suppose \mathfrak{q} is θ -stable. For an irreducible, unitarizable $(\mathfrak{l}, L \cap K)$ -module V with infinitesimal character $\lambda \in \mathfrak{h}^*$, if

$$\operatorname{Re}(\alpha, \lambda - \rho(\mathfrak{u})) \ge 0 \qquad \forall \alpha \in \Delta(\mathfrak{u}, \mathfrak{h})$$

then $\Gamma^m(\operatorname{Hom}_{\mathfrak{q}}(U(\mathfrak{g}), V \otimes \wedge^{\operatorname{top}}\mathfrak{u}))$ is also unitarizable, where $m = \dim \mathfrak{u} \cap \mathfrak{k}.$ (Fact: $\operatorname{pro}_{\mathfrak{q}}^{\mathfrak{g}}(V^h) := \operatorname{Hom}_{\mathfrak{q}}(U(\mathfrak{g}), V^h) \simeq (\operatorname{ind}_{\overline{\mathfrak{q}}}^{\mathfrak{g}}V)^h.)$

• 1984, Wallach: more elementary proof of same result by computing the signature of the Shapovalov form on generalized Verma modules (invariant Hermitian form on the module obtained in Step 1 of cohomological induction)

- Potentially useful for unitary dual problem: signature of Shapovalov form on a generalized Verma module, when it exists, with no restrictions on value of infinitesimal character
- Today: irreducible Verma modules, irreducible highest weight modules of regular infinitesimal character

Invariant Hermitian Forms

- **Definition:** Invariant Hermitian form $\langle \cdot, \cdot \rangle$ on V: For all $v, w \in V$
 - rep of $G: \langle gv, w \rangle = \langle v, g^{-1}w \rangle$ for all $g \in G$
 - \mathfrak{g} -module: $\langle Xv, w \rangle + \langle v, \overline{X}w \rangle = 0$ for every $X \in \mathfrak{g}$, where \overline{X} denotes the complex conjugate of X with respect to the real form \mathfrak{g}_0
 - sesquilinear

When does a Verma module admit an invariant Hermitian form?

An irreducible representation (π, V) admits a Theorem: non-degenerate invariant Hermitian form if and only if it is isomorphic to a subrepresentation of its Hermitian dual (π^h, V^h) . Let $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}$ be a Borel subalgebra of \mathfrak{g} and $\Delta^+(\mathfrak{g}, \mathfrak{h})$ the corresponding system of positive roots. $M(\lambda) = \operatorname{ind}_{\mathfrak{b}}^{\mathfrak{g}}(\mathbb{C}_{\lambda}) \text{ so } M(\lambda)^{h} = \operatorname{pro}_{\overline{\mathfrak{b}}}^{\mathfrak{g}}(\mathbb{C}_{\lambda}^{h}) = \operatorname{Hom}_{\overline{\mathfrak{b}}}(U(\mathfrak{g}), \mathbb{C}_{-\overline{\lambda}})$ We see that $M(\lambda)$ embeds into $M(\lambda)^h$ if $\overline{\lambda} = -\lambda$ and $\overline{\Delta^+(\mathfrak{g},\mathfrak{h})} = -\Delta^+(\mathfrak{g},\mathfrak{h}).$ When does this happen? For $\mu \in \mathfrak{h}^*$, define: $(\theta \mu)(H) = \mu(\theta^{-1}H)$ $(\bar{\mu})(H) = \overline{\mu(\bar{H})}$ $heta \mathfrak{g}_lpha = \mathfrak{g}_{ heta lpha}$ $ar{\mathfrak{g}}_lpha = \mathfrak{g}_{ar{lpha}}$ Then: If \mathfrak{h} is θ -stable and maximally compact, λ is imaginary, Theorem: and $\theta \Delta^+(\mathfrak{g}, \mathfrak{h}) = \Delta^+(\mathfrak{g}, \mathfrak{h})$, then $M(\lambda)$ admits a non-degenerate invariant Hermitian form.

- by \mathfrak{h} -invariance, the $\lambda \mu$ weight space is orthogonal to the $\lambda \nu$ weight space if $\nu \neq -\bar{\mu}$
- each weight space is finite dimensional, so it makes sense to talk about signatures and the determininants

Constructing the form:

For $X \in \mathfrak{g}$, let $X^* = -\overline{X}$ and extend $X \mapsto X^*$ to an involutive anti-automorphism of $U(\mathfrak{g})$ by $1^* = 1$ and $(xy)^* = y^*x^*$.

We have the decomposition $U(\mathfrak{g}) = U(\mathfrak{h}) \oplus (U(\mathfrak{g})\mathfrak{n} + \mathfrak{n}^{op}U(\mathfrak{g})).$ Let p be the projection of $U(\mathfrak{g})$ onto $U(\mathfrak{h})$ under this direct sum.

- For $x, y \in U(\mathfrak{g})$, by invariance, $\langle xv_{\lambda}, yv_{\lambda} \rangle_{\lambda} = \langle y^*xv_{\lambda}, v_{\lambda} \rangle_{\lambda}$.
- $((U(\mathfrak{g})\mathfrak{n} + \mathfrak{n}^{op}U(\mathfrak{g}))v_{\lambda}, v_{\lambda}) = \{0\}.$

•
$$\langle xv_{\lambda}, yv_{\lambda} \rangle_{\lambda} = \langle p(y^*x)v_{\lambda}, v_{\lambda} \rangle_{\lambda} = \lambda(p(y^*x)) \langle v_{\lambda}, v_{\lambda} \rangle_{\lambda}$$

• See that an invariant Hermitian form on a Verma module is unique up to a real scalar. When $\langle v_{\lambda}, v_{\lambda} \rangle_{\lambda} = 1$: Shapovalov form

Theorem: (Shapovalov determinant formula) The determinant of the Shapovalov form on the $\lambda - \mu$ weight space is

$$\prod_{\alpha \in \Delta^{+}(\mathfrak{g},\mathfrak{h})} \prod_{n=1}^{\infty} \left(\left(\lambda + \rho, \alpha^{\vee} \right) - n \right)^{P(\mu - n\alpha)}$$

up to multiplication by a scalar, where P denotes Kostant's partition function. (Assumption: \mathfrak{h} is compact.)

- radical of Shapovalov form = unique maximal submodule of $M(\lambda)$
- form non-degenerate precisely for the irreducible Verma modules
- according to Shapovalov determinant formula, $M(\lambda)$ is reducible on the affine hyperplanes $H_{\alpha,n} := \{\lambda + \rho \mid (\lambda + \rho, \alpha^{\vee}) = n\}$ where α is a positive root and n is a positive integer
- in any connected set of purely imaginary λ avoiding these reducibility hyperplanes, as the Shapovalov form never becomes degenerate, the signature corresponding to fixed μ remains constant

Definition: The largest of such regions, which we name theWallach region, is the intersection of the negative open half spaces

$$\left(\bigcap_{\alpha\in\Pi}H^{-}_{\alpha,1}\right)\bigcap H^{-}_{\widetilde{\alpha},1}$$

with $i\mathfrak{h}_0^*$, where $\widetilde{\alpha}^{\vee}$ = the highest coroot, Π = simple roots corresponding to Δ^+ , and $H_{\beta,n}^- = \{\lambda + \rho | (\lambda + \rho, \beta^{\vee}) < n\}.$

Definition: If the signature of the Shapovalov form on $M(\lambda)_{\lambda-\mu}$ is $(p(\mu), q(\mu))$, the **signature character** of $\langle \cdot, \cdot \rangle_{\lambda}$ is

$$ch_s M(\lambda) = \sum_{\mu \in \Lambda_r^+} \left(p(\mu) - q(\mu) \right) e^{\lambda - \mu}$$

Pick λ, ξ so that $\lambda + t\xi$ stays in the Wallach region for $t \ge 0$. An asymptotic argument (degree of t on the diagonal > degree off the diagonal) leads to:

Theorem: (Wallach) The signature character of $M(\lambda)$ for $\lambda + \rho$ in the Wallach region is

$$ch_s M(\lambda) = \frac{e^{\lambda}}{\prod_{\alpha \in \Delta^+(\mathfrak{p}, \mathfrak{t})} \left(1 - e^{-\alpha}\right) \prod_{\alpha \in \Delta^+(\mathfrak{k}, \mathfrak{t})} \left(1 + e^{-\alpha}\right)}.$$

Goal: be able to find the signature *everywhere*.

Idea: determine how the signature changes as you cross a reducibility hyperplane. Combine this with induction.

- take λ s.t. $\lambda + \rho$ lies in exactly one reducibility hyperplane $H_{\alpha,n}$
- for reg ξ and non-zero t in a nbd of 0, $\langle \cdot, \cdot \rangle_{\lambda+t\xi}$ is non-degenerate
- $\langle \cdot, \cdot \rangle_{\lambda}$ has radical isom to the irreducible Verma module $M(\lambda n\alpha)$
- therefore signature must change by plus or minus the signature of $\langle \cdot, \cdot \rangle_{\lambda n\alpha}$ across $H_{\alpha,n}$

This can be made rigorous by using the **Jantzen filtration**.

• the $H_{\alpha,n}$'s where α is a root, n an integer, partition \mathfrak{h}^* into **alcoves**

Definition: For an alcove A, \exists constants c^A_μ for $\mu \in \Lambda^+_r$ such that

$$R^{A}(\lambda) := \sum_{\mu \in \Lambda_{r}^{+}} c_{\mu}^{A} e^{\lambda - \mu}$$

is the signature character of $\langle \cdot, \cdot \rangle_{\lambda}$ when $\lambda + \rho$ lies in the alcove A. Our description of how signatures change as you cross a reducibility hyerplane may be expressed:

Lemma 1: If A, A' are adjacent alcoves separated by $H_{\alpha,n}$,

then
$$R^{A}(\lambda) = R^{A'}(\lambda) + 2\varepsilon(A, A')R^{A-n\alpha}(\lambda - n\alpha)$$

where $\varepsilon(A, A')$ is zero if $H_{\alpha,n}$ is not a reducibility hyperplane and plus or minus one otherwise.

• use $R(\lambda)$ to denote common signature character for alcoves in Wallach region

We use the affine Weyl group, whose action on \mathfrak{h}^* partitions \mathfrak{h}^* into precisely the alcoves with walls $H_{\alpha,n}$ as described above.

Definition The **fundamental alcove** is

$$A_0 = \{\lambda + \rho \,|\, (\lambda + \rho, \alpha^{\vee}) < 0 \quad \forall \alpha \in \Pi, \quad (\lambda + \rho, \widetilde{\alpha}^{\vee}) > -1\}.$$

- reflections through walls of A_0 generate the affine Weyl group, W_a : reflections $s_{\alpha,0}$ for each simple root α and $s_{\tilde{\alpha},-1}$ generate W_a
- omit $s_{\tilde{\alpha},-1} \to$, generate the Weyl group W as a subgroup of W_a
- these generators compatible with reflection through walls of the fundamental Weyl chamber \mathfrak{C}_0 , which we choose to contain A_0 :

$$\mathfrak{C}_0 = \bigcap_{\alpha \in \Pi} H^-_{\alpha,0}.$$

Definition We will define two maps $\overline{\cdot}$ and $\widetilde{\cdot}$ from the affine Weyl group to the Weyl group as follows:

- $\overline{\cdot}$ comes from structure of W_a as semidirect product of translation by the root lattice and the Weyl group: $\overline{w} = s$ if w = ts with t = translation by an element of $\Lambda_r, s \in W$
- We let \widetilde{w} be such that wA_0 lies in the Weyl chamber $\widetilde{w}\mathfrak{C}_0$.
- $\overline{\cdot}$ is a group homomorphism
- \bullet $\widetilde{\cdot}$ is not a group homomorphism
- $\overline{s_{\alpha,n}} = s_{\alpha}$, and $s_{\alpha,0}s_{\alpha,n}\mu = \mu n\alpha$

Observe that we can rewrite Lemma 1 as

$$R^{wA_0}(\lambda) = R^{w'A_0}(\lambda) + 2\varepsilon(wA_0, w'A_0)R^{s_{\alpha,0}s_{\alpha,n}wA_0}(s_{\alpha,0}s_{\alpha,n}\lambda)$$

$$= R^{w'A_0}(\lambda) + 2\varepsilon(wA_0, w'A_0)R^{\overline{s_{\alpha,n}}w'A_0}(\overline{s_{\alpha,n}}s_{\alpha,n}\lambda). \quad (1)$$

For w in the affine Weyl group, let $wA_0 = C_0 \xrightarrow{r_1} C_1 \xrightarrow{r_2} \cdots \xrightarrow{r_\ell} C_\ell = \widetilde{w}A_0$ be a (not necessarily reduced) path from wA_0 to $\widetilde{w}A_0$. Applying (1), ℓ times, we obtain

$$R^{wA_{0}}(\lambda) = R^{\widetilde{w}A_{0}}(\lambda) + \sum_{j=1}^{\ell} \varepsilon(C_{j-1}, C_{j}) 2R^{\overline{r_{j}}C_{j}}(\overline{r_{j}}r_{j}\lambda)$$
$$= R(\lambda) + 2\sum_{j=1}^{\ell} \varepsilon(C_{j-1}, C_{j}) R^{\overline{r_{j}}C_{j}}(\overline{r_{j}}r_{j}\lambda).$$

Observe that a path from $\overline{r_j}C_j$ to $\overline{r_j}C_\ell$ is

$$\overline{r_j}C_j \xrightarrow{\overline{r_j}r_{j+1}\overline{r_j}} \overline{r_j}C_{j+1} \xrightarrow{\overline{r_j}r_{j+2}\overline{r_j}} \cdots \xrightarrow{\overline{r_j}r_{\ell}\overline{r_j}} \overline{r_j}C_{\ell}$$

Applying induction on path length, we arrive at the following:

Theorem 2: For
$$w$$
 in the affine Weyl group, let
 $wA_0 = C_0 \xrightarrow{r_1} C_1 \xrightarrow{r_2} \cdots \xrightarrow{r_\ell} C_\ell = \widetilde{w}A_0$ be a (not necessarily reduced)
path from wA_0 to $\widetilde{w}A_0$.
 $R^{wA_0}(\lambda)$ equals
 $\sum_{S=\{i_1<\cdots< i_k\}\subset\{1,\ldots,\ell\}} \varepsilon(S)2^{|S|}R^{\overline{r_{i_1}}\cdots\overline{r_{i_k}}\widetilde{w}A_0}\left(\overline{r_{i_1}r_{i_2}}\cdots\overline{r_{i_k}}r_{i_k}r_{i_{k-1}}\cdots r_{i_1}\lambda\right)$
 $=\sum_{S=\{i_1<\cdots< i_k\}\subset\{1,\ldots,\ell\}} \varepsilon(S)2^{|S|}R\left(\overline{r_{i_1}r_{i_2}}\cdots\overline{r_{i_k}}r_{i_k}r_{i_{k-1}}\cdots r_{i_1}\lambda\right)$
where $\varepsilon(\emptyset) = 1$ and
 $\varepsilon(S) = \varepsilon(C_{i_1-1}, C_{i_1})\varepsilon(\overline{r_{i_1}}C_{i_2-1}, \overline{r_{i_1}}C_{i_2})\cdots\varepsilon(\overline{r_{i_1}}\cdots\overline{r_{i_{k-1}}}C_{i_k-1}, \overline{r_{i_1}}\cdots\overline{r_{i_{k-1}}}C_{i_k}).$
Calculating ε : difficult.

Calculating ε

The strategy for computing ε is as follows:

- We show that for a fixed hyperplane $H_{\alpha,n}$, the value of ε for crossing from $H_{\alpha,n}^+$ to $H_{\alpha,n}^-$ depends only on the Weyl chamber to which the point of crossing belongs.
- We consider rank 2 root systems of types A_2 and B_2 , generated by simple roots α_1 and α_2 , and calculate the values for ε by calculating changes that occur at the Weyl chamber walls. Our proofs do not depend on simplicity of the α_i .
- For an arbitrary positive root γ in a generic irreducible root system which is not type G₂, we develop a formula for ε inductively by replacing the α_i from the previous step with appropriate roots. Key in the induction is the independence of our rank 2 arguments from the simplicity of the α_i.

Let's begin with something simple: calculate ε for α simple.

- **Lemma 2:** Let δ_{α} be -1 if α is noncompact, and 1 if it is compact. If α is simple and n is positive and if $H_{\alpha,n}$ separates wA_0 and $w'A_0$ with $wA_0 \subset H^+_{\alpha,n}$ and $w'A_0 \subset H^-_{\alpha,n}$, then $\varepsilon(wA_0, w'A_0) = \delta^n_{\alpha}$.
- **Proof:** Choose $X_{\alpha} \in \mathfrak{g}_{\alpha}$, $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$, and $H_{\alpha} = [X_{\alpha}, Y_{\alpha}]$, a standard triple so that $\mu(H_{\alpha}) = (\mu, \alpha^{\vee}) \forall \mu \in \mathfrak{h}^*$. We may arrange so that

$$-\bar{Y}_{\alpha} = \delta_{\alpha} X_{\alpha}.$$

The $\lambda - n\alpha$ weight space of $M(\lambda)$ is one-dimensional and spanned by the vector $Y^n_{\alpha}v_{\lambda}$. We know that

$$\langle Y_{\alpha}^{n} v_{\lambda}, Y_{\alpha}^{n} v_{\lambda} \rangle_{\lambda} = \delta_{\alpha}^{n} \langle v_{\lambda}, X_{\alpha}^{n} Y_{\alpha}^{n} v_{\lambda} \rangle_{\lambda}$$

= $\delta_{\alpha}^{n} n! \langle v_{\lambda}, H_{\alpha} (H_{\alpha} - 1) \cdots (H_{\alpha} - (n - 1)) v_{\lambda} \rangle_{\lambda}$

from \mathfrak{sl}_2 theory. We conclude that

$$\varepsilon(wA_0, w'A_0) = \delta^n_\alpha$$

Dependence on Weyl Chambers

Proposition 1: Suppose α is a positive root and $n \in \mathbb{Z}^+$ and suppose $H_{\alpha,n}$ separates adjacent alcoves wA_0 and $w'A_0$, with $wA_0 \subset H_{\alpha,n}^+$ and $w'A_0 \subset H_{\alpha,n}^-$. The value of $\varepsilon(w, w')$ depends only on $H_{\alpha,n}$ and on $\widetilde{w}(=\widetilde{w}')$.

We begin by refining Theorem 2: if we take an arbitrary $C_\ell,$ the formula becomes

$$R^{wA_0}(\lambda) = \sum_{I = \{i_1 < \dots < i_k\} \subset \{1, \dots, \ell\}} \varepsilon(I) 2^{|I|} R^{\overline{r_{i_1}} \cdots \overline{r_{i_k}} C_\ell} \left(\overline{r_{i_1}} \cdots \overline{r_{i_k}} r_{i_k} \cdots r_{i_1} \lambda\right).$$

If we choose in particular $C_{\ell} = C_0$, we have

$$R^{C_0}(\lambda) = \sum_{\substack{I = \{i_1 < \dots < i_k\} \\ \subset \{1,\dots,\ell\}}} \varepsilon(I) 2^{|I|} R^{\overline{r_{i_1}} \cdots \overline{r_{i_k}} C_0} \left(\overline{r_{i_1}} \cdots \overline{r_{i_k}} r_{i_k} \cdots r_{i_1} \lambda\right).$$
(2)

Lemma 3: Let $C = \{C_i\}_{i=0,...,\ell-1}$ be a set of alcoves that lie in the interior of some Weyl chamber and suppose the reflections $\{r_j\}_{j=1,\cdots,k}$ preserve C. If $w, v \in W_a$ are generated by the r_j then

$$\overline{w}^{-1}w = \overline{v}^{-1}v \iff w = v.$$

Proof: \Rightarrow : By simple transitivity of the action of W_a on the alcoves, $\overline{w}^{-1}w = \overline{v}^{-1}v \iff \overline{w}^{-1}wC = \overline{v}^{-1}vC$ for any alcove C. Choose in particular $C = C_i$. The alcoves $\overline{w}^{-1}wC_i$ and $\overline{v}^{-1}vC_i$ belong to the same Weyl chamber as they are the same alcove. As the r_j 's preserve C which lies in the interior of some Weyl chamber, wC_i and vC_i belong to the same Weyl chamber. Thus $\overline{w}^{-1} = \overline{v}^{-1}$, whence w = v. The other direction is trivial.

Note: C in the figure satisfies the conditions of Lemma 3.

To prove the proposition for the figure, we need to show that $\varepsilon(C_i, C_{i+1}) + \varepsilon(C_{i+3}, C_{i+4}) = 0, \ (C_6 = C_0).$ For $I = \{i_1 < \dots < i_k\}$, we define $w_I = r_{i_k} r_{i_{k-1}} \cdots r_1$. We rewrite (2) as $\sum 2^{|I|} \varepsilon(I) R^{\overline{w_I}^{-1} C_0} (\overline{w_I}^{-1} w_I \lambda) = 0$ (3)

$$\sum_{\emptyset \neq I \subset \{1,...,\ell\}} 2^{|I|} \varepsilon(I) R^{\overline{w_I}^{-1} C_0} \left(\overline{w_I}^{-1} w_I \lambda \right) = 0 \tag{3}$$

Using Lemma 3 and the partial ordering on Λ , we obtain

$$\sum_{\substack{\emptyset \neq I \subset \{1, \dots, \ell\}\\\overline{w_I}^{-1}w_I = \mu}} 2^{|I|} \varepsilon(I) = 0 \tag{4}$$

for every $\mu \in \Lambda$.

Suppose $\mu = m\alpha_1$. The subsets I of length less than 3 for which $\overline{w_I}^{-1}w_I = \mu$ are $I = \{1\}, \{4\}$. By considering equation (4) modulo 8, we obtain $\varepsilon(C_0, C_1) + \varepsilon(C_3, C_4) = 0$ which gives the desired result for $H_{\alpha_1,m}$. The same proof can be used for the other hyperplanes and also for type B_2 .

Calculating ε for Type A_2

- know how to calculate ε for hyperplanes corresponding to simple roots, so we know how to calculate ε in the Weyl chambers adjacent to the fundamental Weyl chamber
- again, changes along a closed path should sum to zero
- so previous diagram, where C overlaps with two Weyl chambers, allows you to relate values of ε in one chamber to values in an adjacent chamber

Weyl chamber walls in \mathcal{C}	Equations
$H_{\alpha_1,0}$	$\varepsilon(C_2, C_3) + \varepsilon(C_5, C_6) = 0$
	$\varepsilon(C_1, C_2) + \varepsilon(C_4, C_5) + 2\varepsilon(C_2, C_3)\varepsilon(\overline{r_3}C_4, \overline{r_3}C_5) = 0$
$H_{\alpha_2,0}$	$\varepsilon(C_0, C_1) + \varepsilon(C_3, C_4) = 0$
	$\varepsilon(C_1, C_2) + \varepsilon(C_4, C_5) + 2\varepsilon(C_0, C_1)\varepsilon(\overline{r_1}C_1, \overline{r_1}C_2) = 0$
$H_{\alpha_1+\alpha_2,0}$	$\varepsilon(C_0, C_1) + \varepsilon(C_3, C_4) = 0$
	$\varepsilon(C_2, C_3) + \varepsilon(C_5, C_0) = 0$
$m\alpha_1 + \alpha_2, 0$	$\varepsilon(C_0, C_1) + \varepsilon(C_3, C_4) = 0$ $\varepsilon(C_2, C_3) + \varepsilon(C_5, C_0) = 0$

Final Formula for ε

Notation: $\varepsilon(H_{\gamma,N},s) = \varepsilon(A,A')$ where $A \subset H^+_{\gamma,N}$, $A' \subset H^-_{\gamma,N}$, A and A' are adjacent, and $A \subset s\mathfrak{C}_0$.

Using induction on height:

Theorem 3: Let γ be a positive root, and let $\gamma = s_{i_1} \cdots s_{i_{k-1}} \alpha_{i_k}$ be such that $\operatorname{ht}(s_{i_j} \cdots s_{i_{k-1}} \alpha_{i_k})$ decreases as j increases. Let $w_{\gamma} = s_{i_1} \cdots s_{i_k}$. If γ hyperplanes are positive on $s\mathfrak{C}_{\mathfrak{o}}$, then

$$\varepsilon(H_{\gamma,N},s) = (-1)^{N \#\{\text{noncompact } \alpha_{i_j}:|\alpha_{i_j}| \ge |\gamma|\}} \times (-1)^{\#\{\beta \in \Delta(w_{\gamma}^{-1}):|\beta| = |\gamma|, \beta \neq \gamma, \text{ and } \beta, s_{\beta}\gamma \in \Delta(s^{-1})\}} \times (-1)^{\#\{\beta \in \Delta(w_{\gamma}^{-1}):|\beta| \neq |\gamma| \text{ and } \beta, -s_{\beta}s_{\gamma}\beta \in \Delta(s^{-1})\}}.$$

Extending results so that we know how to compute signature characters for non-compact Cartan subalgebras: use formulas for singular vectors.

Irreducible Highest Weight Modules

• the Shapovalov form on $M(\lambda)$ descends to an invariant Hermitian form on the irreducible highest weight module $L(\lambda)$

Let λ be antidominant, regular, and $x \in W_{\lambda}$. The Jantzen filtration of $M(x \cdot \lambda)$ $(x \cdot \lambda = x(\lambda + \rho) - \rho)$ is

$$M(x \cdot \lambda) = M(x \cdot \lambda)^0 \supset M(x \cdot \lambda)^1 \supset \dots \supset M(x \cdot \lambda)^N = \{0\}$$

where, for fixed δ regular,

$$M(x \cdot \lambda)^{j} = \begin{cases} \text{vectors } av_{x \cdot \lambda} \in M(x \cdot \lambda) \\ \text{vectors } av_{x \cdot \lambda} \in M(x \cdot \lambda) \end{cases} \quad \begin{cases} \langle av_{x \cdot \lambda + \delta t}, bv_{x \cdot \lambda + \delta t} \rangle_{x \cdot \lambda + \delta t} \\ \text{vanishes at least to order} \\ j \text{ at } t = 0 \forall b \in U(n^{op}) \end{cases}$$

ple

Kazhdan-Lusztig lacksquaretell polynomials you: $[M(x \cdot \lambda)_j : L(y \cdot \lambda)] = \text{co-}$ efficient of $q^{(\ell(x)-\ell(y)-j)/2}$ in $P_{w_\lambda x, w_\lambda y}(q)$

• Jantzen filtration does not depend on choice of δ

• $M(x \cdot \lambda)_j = M(x \cdot | \bullet \text{ get a non-degenerate invariant Her-}$ $\lambda)^j/M(x\cdot\lambda)^{j+1}$ is semisim- mitian form $\langle\cdot,\cdot\rangle_j$ on $M(x\cdot\lambda)_j$

> • define analogous polynomials keeping track of signatures: form on each copy of $L(y \cdot \lambda)$ in j^{th} level of filtration has signature \pm signature of the Shapovalov form on $L(y \cdot \lambda)$

• form on j^{th} level, however, does; $ch_s M(x \cdot \lambda + \delta t)$ equals: $\sum_{j} ch_s \langle \cdot, \cdot \rangle_j$ for small t > 0 $\sum_{j \text{ even}} ch_s \langle \cdot, \cdot \rangle_j - \sum_{j \text{ odd}} ch_s \langle \cdot, \cdot \rangle_j$ for small t < 0

More precisely, the signature of the form depends on the (integral) Weyl chamber containing δ : if $\delta \in w \mathfrak{C}_0$, there are integers $a_{y,j}^{x \cdot \lambda, w}$ such that

$$ch_s \langle \cdot, \cdot \rangle_j = \sum_{y \le w} a_{y,j}^{x\lambda,w} ch_s L(y \cdot j)$$
$$R^{wA_0 + x\lambda}(x\lambda) = \sum_j \sum_{y \le w} a_{y,j}^{x\lambda,w} ch_s L(y \cdot j)$$

Proposition: Letting $a_y^{x\lambda,w} = \sum_j a_{y,j}^{x\lambda,w}$,

$$ch_{s}L(x\lambda) = \sum_{y_{1} < \dots < y_{j} = x} (-1)^{j-1} \left(\prod_{i=2}^{i=j} a_{y_{i}\lambda,w}^{y_{i}\lambda,w}\right) R^{y_{1}\lambda + wA_{0}}(y_{1}\lambda).$$

The usual Kazhdan-Lusztig polynomials may be computed via the inductive formulas:

$$q^{c}P_{w_{\lambda}xs,w_{\lambda}y} + q^{1-c}P_{w_{\lambda}x,w_{\lambda}y} = \sum_{\substack{z \in W_{\lambda} | zs > z}} \mu(w_{\lambda}z,w_{\lambda}y)q^{\frac{\ell(z)-\ell(y)+1}{2}} + P_{w_{\lambda}x,w_{\lambda}z} + P_{w_{\lambda}x,w_{\lambda}ys}$$

Signed versions: inductive formulas similar. Have to include some signs which depend on x, λ , w, $s = s_{\alpha}$.

We would like to extend this work to generalized Verma modules for the purpose of studying invariant Hermitian forms on Harish-Chandra modules. Open problems which need to be solved for this purpose:

- reducibility of generalized Verma modules
 - computing the determinant of the Shapovalov form in some special cases: Khomenko-Mazorchuk
 - sufficient conditions for certain principal series representations: Speh-Vogan
- determining the composition series of a generalized Verma module (i.e. what are the irreducible factors, and what are their multiplicities)
 - composition series for generalized principal series representations \Rightarrow determine reducibility of representation induced from a parabolic subgroup