Notes on the unitary dual of real split groups

July 20, 2005

Contents

1 The unitary dual of a real split semi-simple Lie group 4
1.1 The Unitarity Problem 4
1.1.1 Irreducible admissible representations 5
1.1.2 Irreducible Hermitian admissible representations 6
1.1.3 Unitary irreducible admissible representations 6
1.2 The signature of the Hermitian operator B 6
1.2.1 The Gindikin-Karpelevic decomposition of $R_{\mu}(\omega, \nu)$ 8
2 The spherical unitary dual 9
2.1 Spherical representations 9
2.1.1 The operator $R_{\mu}(\omega, \nu)$ 9
2.1.2 When μ is petite. 10
2.2 Relevant K-types 11
3 Non-spherical representations 13
3.1 What goes wrong? 13
3.2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ 15
$3.3 \quad K$-types of level two 17
3.4 A very special case 18
3.5 Generalization 20
A Good and Bad Roots 21
A. 1 Preliminary remarks 21
A. 2 The action of W on \hat{M} 23
A. 3 The stabilizer of δ in W 24
A. 4 The set of good co-roots 25
A. 5 The Weyl group of the good co-roots 27
A. 6 The R-group R_{δ} 27
B Examples of R-groups... 29
B. 1 The example of $S L(n, \mathbb{R})$ 29
B. 2 The example of $S P(2 n, \mathbb{R})$ 32
C The Dynkin diagram R-group 37
C. 1 Preliminary definition (the simply laced case) 37
C. 2 General definition 40
C. 3 The relation between $R_{D D}$ and R_{δ} 41
D Minimal Principal Series for Split Groups 42
D. 1 Minimal Principal Series 42
D. 2 Langlands quotient 44
D. 3 Reducibility 45
E The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ 47
E. 1 Preliminary remarks 47
E. 2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ for α simple 50
E.2.1 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ for α simple and good 56
E.2.2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ for α simple and bad 57
E. 3 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ on petite K-types 60
E.3.1 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ on K-types of level at most two 63
E.3.2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ on fine K-types 63
F Non-spherical representations of $S P(4)$ 65
F. 1 Preliminary remarks 65
F. 2 Number of Langlands quotients of $X_{P}\left(\delta \otimes a \epsilon_{1}\right)$ 69
F. 3 Intertwining operators for $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$ 71
F. 4 The Langlands quotients of $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$ 75

Chapter 1

The unitary dual of a real split semi-simple Lie group

1.1 The Unitarity Problem

Let G be the set of real points of a linear connected reductive group. We denote by:

- \mathfrak{g} : the Lie algebra of G
- $\mathfrak{g}_{\mathbb{C}}$: the complexification of \mathfrak{g}
- θ : a Cartan involution
- $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$: the corresponding Cartan decomposition of \mathfrak{g}
- K : the maximal compact subgroup of G with Lie algebra \mathfrak{k}.

A representation (π, \mathcal{H}) of G on a Hilbert space is called unitary if \mathcal{H} admits a G-invariant positive definite inner product.

PROBLEM: Classify all irreducible unitary representations of G, up to unitary equivalence.

By results of Harish-Chandra, this is equivalent to classifying all the unitary admissible representations of G, up to infinitesimal equivalence. We split this problem in three parts:

1. Describe all the irreducible admissible representations of G, up to infinitesimal equivalence
2. Understand which irreducible admissible representations of G are Hermitian, i.e. have a non-degenerate invariant Hermitian form
3. Understand which Hermitian irreducible admissible representations are unitary, i.e. decide whether the non-degenerate invariant Hermitian form is positive definite.

1.1.1 Irreducible admissible representations

We need to introduce more notations:

- $P=M A N$: a parabolic subgroup of G
- a: the Lie algebra of A
- $\mathfrak{a}_{\mathbb{C}}$: its complexification
- $\left(\delta, V_{\delta}\right)$: an irreducible tempered unitary representation of M
- $\nu \in \mathfrak{a}_{\mathbb{C}}^{*}$: a linear functional with real part in the open positive Weyl chamber
- $X_{P}(\delta \otimes \nu)$: the principal series with parameters (P, δ, ν)
- $\bar{X}_{P}(\delta \otimes \nu)$: the unique Langlands quotient of $X_{P}(\delta \otimes \nu)$.

A brief recall: The principal series $X_{P}(\delta \otimes \nu)$ is obtained by inducing the representation $\delta \otimes \nu$ from P to G. It is defined as the representation of G by left translation on the space of functions:

$$
\begin{gathered}
\mathcal{H}_{\delta \otimes \nu}^{P}=\left\{F: G \rightarrow V^{\delta}: \operatorname{Res}_{K}(F) \in L^{2}\left(K, V^{\delta}\right)\right. \text { and } \\
\left.F(g m a n)=e^{-(\nu+\rho) \log (a)} \delta(m)^{-1} F(g), \forall \operatorname{man} \in P=M A N, \forall g \in G\right\} .
\end{gathered}
$$

When $\Re(\nu)$ is strictly dominant, the principal series $X_{P}(\delta \otimes \nu)$ has a unique irreducible quotient, that we denote by $\bar{X}_{P}(\delta \otimes \nu)$. It is the quotient of $X_{P}(\delta \otimes \nu)$ by the Kernel of the intertwining operator

$$
A(\bar{P}, P, \delta, \nu): X_{P}(\delta, \nu) \rightarrow X_{\bar{P}}(\delta, \nu)
$$

(\bar{P} is the opposite parabolic). More details are given in chapter D.

Classification

The classification of the irreducible admissible representations of G was given by Langlands in the early 1970s:

- Every irreducible admissible representation of G is infinitesimally equivalent to a Langlands quotient $\bar{X}_{P}(\delta \otimes \nu)$.
- Two Langlands quotients $\bar{X}_{P}(\delta \otimes \nu)$ and $\bar{X}_{P^{\prime}}\left(\delta^{\prime} \otimes \nu^{\prime}\right)$ are infinitesimally equivalent if and only if there exists an element ω of K such that

$$
\omega P \omega^{-1}=P^{\prime} \quad \omega \cdot \delta \cong \delta^{\prime}, \quad \omega \cdot \nu=\nu^{\prime}
$$

1.1.2 Irreducible Hermitian admissible representations

Every irreducible Hermitian admissible representation of G is infinitesimally equivalent to a Hermitian Langlands quotient.
In 1976, Knapp and Zuckerman have proved that $\bar{X}_{P}(\delta \otimes \nu)$ admits a nondegenerate invariant Hermitian form if and only if there exists $\omega \in K$ satisfying

$$
\omega P \omega^{-1}=\bar{P} \quad \omega \cdot \delta \simeq \delta \quad \omega \cdot \nu=-\bar{\nu}
$$

This condition follows from the facts that

- $\bar{X}_{P}(\delta \otimes \nu)$ is Hermitian if and only if it is infinitesimally equivalent to its Hermitian dual
- the Hermitian dual of $\bar{X}_{P}(\delta \otimes \nu)$ is $\bar{X}_{\bar{P}}(\delta \otimes-\bar{\nu})$.

1.1.3 Unitary irreducible admissible representations

Every unitary irreducible admissible representation of G is infinitesimally equivalent to a unitary Langlands quotient.
Knapp and Zuckerman have proved that every non-degenerate invariant Hermitian form on $\bar{X}_{P}(\delta \otimes \nu)$ is a real multiple of the form induced by the Hermitian operator

$$
B=\delta(\omega) \circ R(\omega) \circ A(\bar{P}: P: \delta: \nu)
$$

from $X_{P}(\delta \otimes \nu)$ to $X_{P}(\delta \otimes-\bar{\nu})$. So $\bar{X}_{P}(\delta \otimes \nu)$ is unitary if and only if the form induced by B is positive semidefinite.

Remark 1. The unitarity problem is reduced to the analytic problem of computing the signature of the Hermitian operator B.

1.2 The signature of the Hermitian operator B

We assume the existence of an element ω of K satisfying ${ }^{1}$

$$
\omega P \omega^{-1}=\bar{P} \quad \omega \cdot \delta \simeq \delta \quad \omega \cdot \nu=-\bar{\nu}
$$

and we discuss the signature of the Hermitian operator

$$
B: X_{P}(\delta \otimes \nu) \rightarrow X_{P}(\delta \otimes-\bar{\nu})
$$

This is a very hard problem. The first reduction consists of computing the signature separately on each K-type appearing in the principal series.

[^0]
Reduction to a K-type by K-type calculation...

For every K-type (μ, E_{μ}), consider the Hermitian operator

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{K}\left(E_{\mu}, X_{P}(\delta \otimes \nu)\right) \rightarrow \operatorname{Hom}_{K}\left(E_{\mu}, X_{P}(\delta \otimes-\bar{\nu})\right)
$$

defined by applying B to the range. By Frobenius reciprocity:

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{M \cap K}\left(\left.E_{\mu}\right|_{M \cap K}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M \cap K}\left(\left.E_{\mu}\right|_{M \cap K}, V^{\delta}\right)
$$

If P is a minimal parabolic subgroup, then $M \cap K=M$, so we can write

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)
$$

Remark 2. In order to solve the unitarity problem, we need to construct the operator $R_{\mu}(\omega, \nu)$ for every K-type μ appearing in the principal series.
This is still a complicated issue. Therefore, we make some additional assumptions:

- G is split ${ }^{2}$, in particular $S L(n, \mathbb{R}), S p(2 n, \mathbb{R}), S O(n, n), F_{4}, E_{6}, E_{7}, E_{8}$
- $P=M A N$ is a minimal parabolic subgroup of G
- ν is a real character of A.

Then, a rank-one reduction is possible.

A rank-one reduction...

If P is a minimal parabolic, we can regard ω as an element of $W:=N_{K}(\mathfrak{a}) / M$. The operator $R_{\mu}(\omega, \nu)$ decomposes into a product of factors according to the decomposition of ω into a product of simple reflections (as in Gindikin-Karpelevic). These factors are induced from the corresponding intertwining operators on the root- $S L(2, \mathbb{R})$'s.

Root SL(2)'s

For each $\alpha \in \Delta(\mathfrak{g}, \mathfrak{a})$, choose a map $\psi_{\alpha}: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{g}$ which commutes with θ, and satisfies

$$
\psi_{\alpha}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=E_{\alpha}, \quad \psi_{\alpha}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=E_{-\alpha}
$$

where $E_{ \pm \alpha}$ are the root vectors, and $\theta\left(E_{\alpha}\right)=-E_{-\alpha}$. Then ψ_{α} determines a map

$$
\Psi_{\alpha}: S L(2, \mathbb{R}) \rightarrow G
$$

with image G^{α}, a connected group with Lie algebra isomorphic to $\mathfrak{s l}(2, \mathbb{R})$. Denote by

$$
\sigma_{\alpha}:=\Psi_{\alpha}\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right), \quad m_{\alpha}:=\sigma_{\alpha}^{2}
$$

[^1]and let $Z_{\alpha}:=E_{\alpha}-E_{-\alpha} \in \mathfrak{k}$.
The element Z_{α} generates a Lie algebra \mathfrak{k}^{α} isomorphic to $\mathfrak{s o}(2)$. The group $K^{\alpha}=\exp \left(\mathfrak{k}^{\alpha}\right)$ is isomorphic to $S O(2)$. We will refer to K^{α} as the $S O(2)$ subgroup attached to α.

1.2.1 The Gindikin-Karpelevic decomposition of $R_{\mu}(\omega, \nu)$

We describe the main steps:

1. Take a minimal decomposition of ω as a product of simple reflections ${ }^{3}$

$$
\omega=s_{\alpha_{r}} \cdots s_{\alpha_{2}} s_{\alpha_{1}}
$$

2. Decompose the operator $A(\bar{P}, P, \delta, \nu)$ accordingly:

$$
A(\bar{P}, P, \delta, \nu)=A\left(s_{\alpha_{r}}\right) A\left(s_{\alpha_{r-1}}\right) \cdots A\left(s_{\alpha_{1}}\right)
$$

For all $j=1 \ldots r$ we have set:

$$
A\left(s_{\alpha_{j}}\right)=A\left(P^{j}, P^{j-1}, \delta^{j-1}, \nu^{j-1}\right): X_{P^{j-1}}\left(\delta^{j-1}, \nu^{j-1}\right) \rightarrow X_{P^{j}}\left(\delta^{j}, \nu^{j}\right)
$$

with ${ }^{4}$

$$
\begin{aligned}
P^{j-1}=\left(s_{\alpha_{j-1}}\right. & \left.\cdots s_{\alpha_{2}} s_{\alpha_{1}}\right) P\left(s_{\alpha_{j-1}} \cdots s_{\alpha_{2}} s_{\alpha_{1}}\right)^{-1} \\
\delta^{j-1} & =\left(s_{\alpha_{j-1}} \cdots s_{\alpha_{2}} s_{\alpha_{1}}\right) \cdot \delta \\
\nu^{j-1} & =\left(s_{\alpha_{j-1}} \cdots s_{\alpha_{2}} s_{\alpha_{1}}\right) \cdot \nu .
\end{aligned}
$$

3. When s_{α} is a simple reflection, interpret the Hermitian operator $A_{P}\left(s_{\alpha}\right)$ as an intertwining operator for the rank-one subgroup $M G^{\alpha}$, and compute the corresponding operator $R_{\mu}\left(s_{\alpha}\right)$. Then

$$
R_{\mu}(\omega, \nu)=R\left(s_{\alpha_{r}}\right) R\left(s_{\alpha_{r-1}}\right) \cdots R\left(s_{\alpha_{1}}\right)
$$

4. Using the results already known for $S L(2, \mathbb{R})$, compute the various operators $R\left(s_{\alpha}\right) .{ }^{5}$
Remark 3. $R_{\mu}(\omega, \nu)$ can be decomposed as a product of operators corresponding to simple reflections s_{α}, and for these operators an explicit formula exists. This formula depends on the decomposition of E_{μ} in irreducible K^{α}-types. Because the decomposition changes with α, it is very hard to keep track of the different decompositions when you multiply the various rank-one operators to obtain $R_{\mu}(\omega, \nu)$.

To solve the unitarity problem we need a formula to compute $R\left(s_{\alpha}\right)$ which is independent of the decomposition of E_{μ} in K^{α}-types. When the K-type is petite such a formula exists.
Definition. A K-type is called petite, if $\mu\left(i Z_{\alpha}\right)=0, \pm 1, \pm 2, \pm 3$.

[^2]
Chapter 2

The spherical unitary dual

2.1 Spherical representations

We assume that

- G is split
- $P=M A N$ is a minimal parabolic subgroup of G
- δ is the trivial representation of M
- ν is a strictly dominant real character of A
and we discuss the unitarity of the Langlands quotient $\bar{X}_{P}(\delta \otimes \nu)$.

For every K-type μ, we have an intertwining operator

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)
$$

Because δ is trivial, we can regard $R_{\mu}(\omega, \nu)$ as an operator on $\left(E_{\mu}^{*}\right)^{M}$. There is a natural representation of the Weyl group on this space, defined by

$$
\begin{equation*}
([\sigma] \cdot T)(v)=T\left(\mu\left(\sigma^{-1}\right) \cdot v\right), \tag{2.1}
\end{equation*}
$$

and when μ is petite, the operator $R_{\mu}(\omega, \nu)$ depends only on this W-representation.

2.1.1 The operator $R_{\mu}(\omega, \nu)$

Decompose $R_{\mu}(\omega, \nu)$ in operators corresponding to simple reflections, as in (1.2.1). We need to describe the action of each factor ${ }^{1}$
$R_{\mu}\left(s_{\alpha}, \gamma\right): \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)=\left(E_{\mu}^{*}\right)^{M} \rightarrow \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{s_{\alpha} \cdot \delta=\delta}\right)=\left(E_{\mu}^{*}\right)^{M}$.

[^3]For this purpose, consider the decomposition of μ in isotypic components of characters of the $S O(2)$-subgroup K^{α} attached to α :

$$
\left.\mu\right|_{M}=\bigoplus_{j \in \mathbb{Z}} \phi_{j}
$$

and write

$$
\left(E_{\mu}^{*}\right)^{M}=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)
$$

for the decomposition of $\left(E_{\mu}^{*}\right)^{M}$ in $M K^{\alpha}$-invariant subspaces.
The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ preserves this decomposition ${ }^{2}$, and acts on each $M K^{\alpha}{ }_{-}$ invariant subspace by a scalar:

We have normalized the operator so that it takes the value 1 on a fine K type. ${ }^{3} S L(2)$-calculations show that:

$$
d_{2 n}=\frac{\Pi_{j=1}^{n}\left((2 j-1)-\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}{\Pi_{j=1}^{n}\left((2 j-1)+\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}
$$

for every $n \geq 1$.
Remark 4. It is clear from the picture that the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ depends on the decomposition of $\left(E_{\mu}^{*}\right)^{M}$ in $M K^{\alpha}$-invariant subspaces.

2.1.2 When μ is petite...

If μ is a petite K-type, the space $\left(E_{\mu}^{*}\right)^{M}$ reduces to

$$
\begin{equation*}
\left(E_{\mu}^{*}\right)^{M}=\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right) \oplus \operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{+2}, V^{\delta}\right) \tag{2.2}
\end{equation*}
$$

We also notice that

$$
\begin{aligned}
\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right) & \equiv \text { the }(+1) \text {-eigenspace of } s_{\alpha} \\
\operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{+2}, V^{\delta}\right) & \equiv \text { the }(-1) \text {-eigenspace of } s_{\alpha}
\end{aligned}
$$

in the representation of W on $\left(E_{\mu}^{*}\right)^{M}$ defined in (2.1). So we get:

[^4]\[

\frac{1}{D} R_{\mu}\left(s_{\alpha}, \gamma\right)=\left\{$$
\begin{array}{cl}
+1 & \text { on the }(+1) \text {-eigenspace of } s_{\alpha} \\
\frac{1-\langle\nu, \check{\alpha}\rangle}{1+\langle\nu, \tilde{\alpha}\rangle} & \text { on the }(-1) \text {-eigenspace of } s_{\alpha}
\end{array}
$$\right.
\]

Remark 5. When μ is petite, each operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ can be entirely defined in terms of the representation of the Weyl group on the space of M-fixed vectors. This makes things much simpler, because there is no need to know the decomposition of μ in irreducible representations of $K^{\alpha} \simeq S O(2)$.

2.2 Relevant K-types

When μ is a petite K-type, the formula for the operator $R_{\mu}(\omega, \nu)$ coincides with the formula for the similar operator for a split p-adic group.
To be more precise, results of Barbasch-Moy reduce the problem of the determination of the Iwahori spherical dual of split p-adic group to the problem of determining the unitary dual of finite dimensional representations of the corresponding affine graded Hecke algebra. In this case, for each representation $\tau \in \widehat{W}$, there is an operator $R_{\tau}(\omega, \gamma)$ with the same formula as the one for the real case. A spherical representation $\bar{X}(\nu)$ is unitary if and only if R_{τ} is positive definite for all τ.
Work of Barbasch for the classical groups, Ciubotaru for F_{4}, and BarbaschCiubotaru for E_{6}, E_{7}, and E_{8}, determine a set of W-representations, called relevant with the property that a spherical module $\bar{X}(\nu)$ is unitary, if and only if $R_{\tau}(\omega, \nu)$ is positive semidefinite for τ in the relevant set.

PROBLEM: ${ }^{4}$ Find a set of petite K-types so that the $\left(E_{\mu}^{*}\right)^{M}$ realize all the relevant W-representations. Call these "the relevant K-types".

[^5]If we can solve this problem, then we get powerful necessary conditions for unitarity in the real case: $\bar{X}($ triv. $\otimes \nu)$ is unitary only if $R_{\mu}(\omega, \nu)$ is positive semidefinite for μ in the relevant set.

Conjecturally the spherical unitary dual for a split reductive group should be independent of whether the field is real or p-adic. The conjecture is true for the classical groups, so for classical groups, $\bar{X}($ triv. $\otimes \nu)$ is unitary if and only if $R_{\mu}(\omega, \nu)$ is positive semidefinite for μ in the relevant set.

Next, we list the relevant W-types. For a list of the corresponding relevant K-types, see Barbasch's paper "Relevant and Petite K-types".

Classical groups

For type $\mathbf{A}_{\mathbf{n}-\mathbf{1}}$, we have $G=S L(n), K=S O(n)$ and $W=S_{n}$.
The Weyl group representations are parameterized by partitions of n. The relevant W-types correspond to partitions in at most two parts:

$$
(n-k, k) .
$$

For types $\mathbf{B}_{\mathbf{n}}$, and $\mathbf{C}_{\mathbf{n}}$, the Weyl group W consists of permutations and sign changes of of the coordinates of \mathbb{R}^{n}, and the relevant W-types are

$$
(n-k, k) \times(0), \quad(n-k) \times(k) .
$$

Similarly for $\mathbf{D}_{\mathbf{n}}$.

Exceptional Groups

The relevant W representations are

$$
\begin{aligned}
& F_{4} \quad 1_{1}, 2_{3}, 8_{1}, 4_{2}, 9_{1} \\
& E_{6} \quad 1_{p}, 6_{p}, 20_{p}, 30_{p}, 15_{q} \\
& E_{7} 1_{a}, 7_{a}^{\prime}, 27_{a}, 56_{a}^{\prime}, 21_{b}^{\prime}, 35_{b}, 105_{b} \\
& E_{8} \\
& 1_{x}, 8_{z}, 35_{x}, 50_{x}, 84_{x}, 112_{z}, 400_{z}, 300_{x}, 210_{x} .
\end{aligned}
$$

The notation is as in Kondo's and Frame's work.

Chapter 3

Non-spherical
 representations

3.1 What goes wrong?

We assume that

- G is split
- $P=M A N$ is a minimal parabolic subgroup of G
- ν is a strictly dominant real character of A
and we discuss the unitarity of the Langlands quotient $\bar{X}_{P}(\delta \otimes \nu)$, when δ is a non-trivial representation of M.

If we try to apply the same machinery used in the spherical case, we meet two obstacles:

1. The Hermitian operator $R_{\mu}(\omega, \nu)$ acts on the space $\operatorname{Hom}_{M}\left(\left.E\right|_{\mu}, V^{\delta}\right)$, and when δ is non-trivial this space does not carry a representation of the Weyl group. Hence, we can no longer describe the intertwining operators on petite K-types in terms of representations of W.
2. In the classical case, the factorization of $R_{\mu}(\omega, \nu)$ as a product of operators corresponding to simple reflections is "easy" to carry out, at least for petite K-types, because there exists a very explicit formula for each factor:

- Every $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is an endomorphism of $\operatorname{Hom}_{M}\left(\left.E\right|_{\mu}, V^{\delta}\right)$
- $R_{\mu}\left(s_{\alpha}, \gamma\right)$ preserves the decomposition of $\operatorname{Hom}_{M}\left(\left.E\right|_{\mu}, V^{\delta}\right)$ in $M K^{\alpha}{ }_{-}$ invariant subspaces ${ }^{1}$

$$
\operatorname{Hom}_{M}\left(\left.E\right|_{\mu}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{n}+\phi_{-n}, V^{\delta}\right)
$$

[^6]- $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts on each $\operatorname{Hom}_{M}\left(\phi_{n}+\phi_{-n}, V^{\delta}\right)$ by a scalar.

The very starting starting point of this construction fails in the nonspherical case: sometimes, when δ is non-trivial, $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is not an endomorphism of $\operatorname{Hom}_{M}\left(\left.E\right|_{\mu}, V^{\delta}\right) .^{2}$

Overcoming the first obstacle...
In order to overcome the first obstacle, we introduce two important subgroups of W : the stabilizer of δ, W^{δ}, and the Weyl group of the good co-roots, W_{δ}^{0}.

There is a natural action of the Weyl group $W=\frac{N_{K}(\mathfrak{a})}{Z_{K}(\mathfrak{a})}=\frac{M^{\prime}}{M}$ on \hat{M}, given by:

$$
([\sigma] \cdot \delta)(m) \equiv \delta\left(\sigma^{-1} m \sigma\right)
$$

for all $\sigma \in M^{\prime}, \delta \in \hat{M}$ and $m \in M$.
Fix an irreducible representation δ of M. The stabilizer of δ in W is the set of all Weyl group elements that stabilize the equivalence class of δ :

$$
S t_{W}(\delta) \equiv W^{\delta} \equiv\{w \in W: w \cdot \delta \simeq \delta\} .^{3}
$$

Next, we define W_{δ}^{0}. For every root $\beta, m_{\beta}=\sigma_{\beta}^{2}$ is a central element of M of order two, so $\delta\left(m_{\beta}\right)$ is equal to plus or minus the identity. A root β in $\Delta(\mathfrak{g}, \mathfrak{a})$ is called a good root for δ if $\delta\left(m_{\beta}\right)=+I d$. The set of good co-roots

$$
{ }^{\vee} \Delta_{\delta}=\left\{\beta \in{ }^{\vee} \Delta: \delta\left(m_{\beta}\right)=+I d\right\}
$$

forms a root system. We define W_{δ}^{0} to be the Weyl group of ${ }^{\vee} \Delta_{\delta}$. It is a normal subgroup of W^{δ}, and the quotient

$$
R_{\delta}=\frac{W^{\delta}}{W_{\delta}^{0}}
$$

is called "the R-group of δ ". When G is split, R_{δ} is either $\{1\}$, or \mathbb{Z}_{2} or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
More details on W^{δ} and W_{δ}^{0} can be found in chapter A. Chapter B contains many examples, and chapter C describes R_{δ} as a subgroup of the Dynkin diagram R-group.

The role played by the Weyl group of the good co-roots in the study of nonspherical representations is analogous to the one played by the Weyl group in the study of spherical representations. Indeed, the group W_{δ}^{0} acts on the space $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$

$$
\begin{equation*}
\widetilde{\Psi^{\mu}}[\sigma] \cdot T=T \circ \mu\left(\sigma^{-1}\right) \tag{3.1}
\end{equation*}
$$

[^7]and sometimes the construction of the operator $R_{\mu}(\omega, \nu)$ depends only on this representation.
For spherical representations, this happens exactly when the K-type μ is petite (of level at most 3). For non-spherical representations there are stricter conditions. If the decomposition of ω into simple reflections (of W) involves only elements in the stabilizer of δ, then it is enough to assume that μ is petite of level at most 2 , and that ω lies in W_{δ}^{0}. ${ }^{4}$

3.2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$

The operator

$$
R_{\mu}\left(s_{\alpha}, \gamma\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right)
$$

is an endomorphism of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ if and only if s_{α} stabilizes δ. To describe its action on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$, we need to know whether the root α is good or bad for δ.

When α is a good root, the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ behaves just like in the spherical case: it is an endomorphism of

$$
\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)
$$

and acts on each of these $M K^{\alpha}$-invariant subspaces by a scalar:

We have set:

$$
D=\frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda+1}{2}\right) \Gamma\left(\frac{\lambda+1}{2}\right)},
$$

$d_{0}=1$ and

$$
d_{2 n}=\frac{\prod_{j=1}^{n}\left((2 j-1)-\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}{\prod_{j=1}^{n}\left((2 j-1)+\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}
$$

[^8]for all $n \geq 1$.

When α is a bad root, the reflection s_{α} does not necessarily stabilize δ. Hence the domain and codomain of the operator

$$
R_{\mu}\left(s_{\alpha}, \gamma\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right)
$$

may be different.
The decomposition of both $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ and $\operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right)$ in $M K^{\alpha}$ invariant subspaces involves only odd characters. The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ preserves this decomposition, and carries

$$
\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{s_{\alpha} \cdot \delta}\right)
$$

for every $n \geq 0$. If T belongs to $\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)$, its image via $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is the mapping

$$
\begin{equation*}
\phi_{2 n+1}+\phi_{-2 n-1} \rightarrow V^{s_{\alpha} \cdot \delta},\left(v_{+}+v_{-}\right) \mapsto D^{\prime} d_{2 n+1} T\left(v_{+}-v_{-}\right) \tag{3.2}
\end{equation*}
$$

The operator

$$
\Psi_{\alpha}: \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right), S \mapsto S \circ \mu\left(\sigma_{\alpha}^{-1}\right)
$$

has a similar effect: if T in $\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)$, then

$$
\Psi_{\alpha} T\left(v_{+}+v_{-}\right)=-i(-1)^{n} T\left(v_{+}-v_{-}\right)
$$

So we can write
$\left.R_{\mu}\left(s_{\alpha}, \gamma\right)\right|_{\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)}=i(-1)^{n} D^{\prime} d_{2 n+1} \Psi_{\alpha}=(-1)^{n}\left(i D^{\prime}\right) d_{2 n+1} \mu\left(\sigma_{\alpha}^{-1}\right)$.

We have set:

$$
i D^{\prime}=i \frac{-i \pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\lambda}{2}+1\right)},
$$

$d_{1}=1$, and

$$
d_{2 n+1}=\frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)}
$$

for all $n \geq 1$.

3.3 K-types of level two

Suppose that the decomposition of ω into simple reflections involves only elements in the stabilizer of δ, and assume that μ is a petite K-types of level at most two. Then the intertwining operator

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)
$$

depends only on the representation ${ }^{5} \widetilde{\Psi^{\mu}}$ of W^{δ} on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. Each factor $R_{\mu}\left(s_{\alpha}, \gamma\right)$ of the intertwining operator can be constructed in terms of $\widetilde{\Psi^{\mu}}$, and this construction is independent of the decomposition of μ in isotypic components of K^{α}-types. We now give the details.

The restriction of μ to the K^{α} only includes the characters $0, \pm 1, \pm 2$. Hence $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)= \begin{cases}\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right)+\operatorname{Hom}_{M}\left(\phi_{2}+\phi_{-2}, V^{\delta}\right) & \text { if } \alpha \text { is good for } \delta \\ \operatorname{Hom}_{M}\left(\phi_{-1}+\phi_{1}, V^{\delta}\right) & \text { if } \alpha \text { is bad for } \delta .\end{cases}$
Let's first look at the case in which α is a good root. Because

$$
\begin{aligned}
\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right) & \equiv \text { the }(+1) \text {-eigenspace of } \widetilde{\Psi^{\mu}}\left(s_{\alpha}\right) \\
\operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{+2}, V^{\delta}\right) & \equiv \text { the }(-1) \text {-eigenspace of } \widetilde{\Psi^{\mu}}\left(s_{\alpha}\right)
\end{aligned}
$$

we obtain the following picture:

Just like in the spherical case, we can write:

$$
R_{\mu}\left(s_{\alpha}, \gamma\right)=\left\{\begin{array}{cc}
D & \text { on the }(+1) \text {-eigenspace of } \widetilde{\Psi}^{\mu}\left(s_{\alpha}\right) \\
D \frac{1-\langle\gamma, \vee \alpha\rangle}{1+\langle\gamma, \vee \alpha\rangle} & \text { on the }(-1) \text {-eigenspace of } \widetilde{\Psi}^{\mu}\left(s_{\alpha}\right) .
\end{array}\right.
$$

[^9]Now assume that α is bad. It is clear from the picture

that the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ simply acts as a multiple of $\widetilde{\Psi}^{\mu}\left(s_{\alpha}\right)$:

$$
R_{\mu}\left(s_{\alpha}, \gamma\right)=\left(-i D^{\prime}\right) \widetilde{\Psi}^{\mu}\left(s_{\alpha}\right)
$$

3.4 A very special case

Suppose that the decomposition of ω into simple reflections involves only good roots. This is a very special case, it happens for instance when δ is a genuine representation of M and G is the double cover of E_{6} or $E_{8} .{ }^{6}$
If μ is a petite K-type ${ }^{7}$, we can define the intertwining operator $R_{\mu}(\omega, \nu)$ in terms of the representation $\widetilde{\Psi^{\mu}}$ of W^{δ} on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. Actually, since only good roots are involved, we only need to know the restriction of $\widetilde{\Psi^{\mu}}$ to the the Weyl group of the good co-roots, W_{δ}^{0}.

Because the set of group co-roots forms a root system, there is a real split group attached to it, say $\check{G} .{ }^{8}$ Let \check{K} be the corresponding maximal compact subgroup and let Θ be the representation of \check{K} with the property that W_{δ}^{0} acts on the space of \check{M}-fixed vectors in Θ exactly by $\Psi^{\mu}=\left.\widetilde{\Psi^{\mu}}\right|_{W_{\delta}^{0}}$:

$$
\begin{gathered}
\hline \text { repr. of } W_{\delta}^{0} \text { on } \\
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)
\end{gathered}=\Psi^{\mu}=\begin{gathered}
\text { repr. of } W_{\delta}^{0} \text { on } \\
\operatorname{Hom}_{\check{M}}\left(E_{\Theta}, V^{\text {trivial }}\right)
\end{gathered}
$$

The intertwining operators $R_{\mu}(\omega, \nu)$ for G, and $R_{\Theta}(\omega, \nu)$ for \check{G} have the same Gindikin-Karpelevic decomposition. All the factors agree, because they only depend on ψ^{μ}, so the full intertwining operators also coincide.

[^10]Now consider the p-adic split group attached to ${ }^{\vee} \Delta_{\delta}$, and call it \check{H}. For spherical principal series, the intertwining operator on petite K-types is independent on the field, so the operator $R_{\Theta}(\omega, \nu)$ for \check{G} coincides with the p-adic operator $R_{\Psi^{\mu}}$ for $\check{\mathbb{H}}$. It follows that the operator $R_{\mu}(\omega, \nu)$ for G also coincides with $R_{\Psi^{\mu}}$.

The unitarity of a spherical principal series of $\check{\mathbb{H}}$ can be detected by looking at the signature of the operator R_{τ}, for every relevant representation τ of $W(\breve{\mathbb{H}})=W_{\delta}^{0}$. If we try to match relevant W_{δ}^{0}-representations with petite K-types of G containing δ, two possibilities can occur:

1. For every relevant W_{δ}^{0}-type τ there is a petite K-types of G such that $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\tau$, as W_{δ}^{0}-representation
2. There is a relevant W_{δ}^{0}-type $\bar{\tau}$ that never appears.

Let us discuss the two options separately.
If the matching is complete, we can write:

Equivalently,

If the matching is not complete, then it could happen that the non-spherical principal series $X(\delta \otimes \nu)$ for G is unitary, even if the spherical principal series $X($ triv. $\otimes \nu)$ for \mathbb{H} is not unitary. Indeed, the unitarity of $X($ triv. $\otimes \nu)$ might be ruled out exactly by the W_{δ}^{0}-type that we are unable to match.

Remark 6. When G is a classical group, the previous considerations apply also if we replace \check{H} by \breve{G}.

3.5 Generalization...

It would be nice to generalize the arguments of the previous section to the case in which $W_{\delta}^{0} \neq W$.

Suppose that μ is a petite K-type and that ω lies in the Weyl group of the good co-roots. If W_{δ}^{0} is not the entire Weyl group, it is very likely that the decomposition of ω in simple reflections in W is different from the minimal decomposition of ω as an element of W_{δ}^{0}.
Therefore, even if $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\tau$ as W_{δ}^{0}-representations, we cannot expect the operator $R_{\mu}(\omega, \nu)$ for G to coincide with the p-adic operator $R_{\tau}(\nu)$ for $\check{\mathbb{H}} .^{9}$

In order to generalize the argument described in the previous section, we need the following conditions to be satisfied:

1. For each relevant W_{δ}^{0}-type τ, there is a petite K-type μ such that the representation of W_{δ}^{0} on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ equals τ.
2. For each pair (μ, τ) as above, the intertwining operators $R_{\mu}(\omega, \nu)$ for G and $R_{\tau}(\nu)$ for \mathbb{H} coincide. This means that if

$$
\omega=s_{\beta_{1}} s_{\beta_{2}} \cdots s_{\beta_{r}}
$$

is the minimal decomposition of ω as an element of W_{δ}^{0}, and

$$
\omega=\underbrace{s_{\alpha_{1}^{1}} s_{\alpha_{2}^{1}} \cdots s_{\alpha_{n_{1}}^{1}}}_{s_{\beta_{1}}} \underbrace{s_{\alpha_{1}^{2}} s_{\alpha_{2}^{2}} \cdots s_{\alpha_{n_{2}}^{2}}}_{s_{\beta_{2}}} \cdot \underbrace{s_{\alpha_{1}^{r}} s_{\alpha_{2}^{r}} \cdots s_{\alpha_{n_{r}}^{r}}}_{s_{\beta_{r}}}
$$

is the minimal decomposition of ω as an element of W, then you want the "piece" of $R_{\mu}(\omega, \nu)$ corresponding to $s_{\alpha_{1}^{j}} s_{\alpha_{2}^{j}} \cdots s_{\alpha_{n_{j}}^{j}}$ to match with "the piece" of $R_{\tau}(\nu)$ corresponding to $\beta_{j} .{ }^{10}$

[^11]
Appendix A

Good and Bad Roots

A. 1 Preliminary remarks

Because G is split, every restricted root β is reduced and every root space \mathfrak{g}_{β} is one-dimensional.
Choose a non-zero element E_{β} of \mathfrak{g}_{β} that satisfies the normalizing condition ${ }^{1}$

$$
B\left(E_{\beta}, \theta\left(E_{\beta}\right)\right)=-\frac{2}{\|\beta\|^{2}}
$$

with B the Killing form. Then E_{β} spans \mathfrak{g}_{β}, and $\theta\left(E_{\beta}\right)$ spans $\mathfrak{g}_{-\beta}$.
Denote by H_{β} the unique element of \mathfrak{a} corresponding to β via the pairing

$$
\mathfrak{a} \longleftrightarrow \mathfrak{a}^{\star}, H \longleftrightarrow B(H, \cdot)
$$

so that $B\left(H, H_{\beta}\right)=\beta(H)$ for all H in \mathfrak{a}. The Lie algebra

$$
\mathbb{R} H_{\beta} \oplus \mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta}=\operatorname{Span}_{\mathbb{R}}\left(H_{\beta}, E_{\beta}, \theta\left(E_{\beta}\right)\right)
$$

is isomorphic to $\mathfrak{s l}(2, \mathbb{R})$. An explicit isomorphism is given by:

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \longrightarrow-\frac{2}{\|\beta\|^{2}} H_{\beta} \\
& \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \longrightarrow \quad E_{\beta} \\
& \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \longrightarrow \quad-\theta\left(E_{\beta}\right) .
\end{aligned}
$$

[^12]The element $Z_{\beta}=E_{\beta}+\theta\left(E_{\beta}\right)$ is fixed by θ (hence it belongs to $\mathfrak{k}=\operatorname{Lie}(K)$) and it generates a subalgebra isomorphic to $\mathfrak{s o}(2)$. Set: ${ }^{2}$

$$
\begin{aligned}
\sigma_{\beta} & =\exp \left(\frac{\pi}{2} Z_{\beta}\right) \\
m_{\beta} & =\sigma_{\beta}^{2}=\exp \left(\pi Z_{\beta}\right) .
\end{aligned}
$$

Then

- σ_{β} belongs to the normalizer of \mathfrak{a} in $K\left(=N_{K}(\mathfrak{a})=M^{\prime}\right)$ and it acts on \mathfrak{a}^{\star} as the root reflection through β
- m_{β} belongs to the centralizer of \mathfrak{a} in $K\left(=Z_{K}(\mathfrak{a})=M\right)$ and has order two.

Lemma 1. Let $\beta(m)= \pm 1$ denote the scalar by which an element m of M acts on the root vector E_{β}. Then
(a) $\beta(m)=(-\beta)(m)$
(b) $\operatorname{Ad}(m) Z_{\beta}=\beta(m) Z_{\beta}$
(c) $m \sigma_{\beta} m^{-1}=\sigma_{\beta}^{\beta(m)}$
(d) $\sigma_{\beta} m \sigma_{\beta}^{-1}=\left\{\begin{array}{cl}m & \text { if } \beta(m)=+1 \\ m_{\beta} m & \text { if } \beta(m)=-1 .\end{array}\right.$

Proof. We first show that M acts on the vector E_{β} by a scalar. Since the root space \mathfrak{g}_{β} is one-dimensional, it is enough to show that $\operatorname{Ad}(m) E_{\beta}$ belongs to \mathfrak{g}_{β}, for all m in M. This is easy, because

$$
\left[H, \operatorname{Ad}(m) E_{\beta}\right]=\operatorname{Ad}(m)\left[\operatorname{Ad}\left(m^{-1}\right) H, E_{\beta}\right]=\operatorname{Ad}(m)\left[H, E_{\beta}\right]=\beta(H) \operatorname{Ad}(m) E_{\beta}
$$

for all H in \mathfrak{a}.
For m in M, define $\beta(m)$ by the equation $\operatorname{Ad}(m) E_{\beta}=\beta(m) E_{\beta}$. Because $\operatorname{Ad}(m)$ commutes with the Cartan involution ${ }^{3}$, we get

$$
\operatorname{Ad}(m) E_{-\beta}=\operatorname{Ad}(m)\left(-\theta\left(E_{\beta}\right)\right)=-\theta\left(\operatorname{Ad}(m) E_{\beta}\right)=\beta(m) E_{-\beta}
$$

proving that $(-\beta)(m)=\beta(m)$, for all m.
Next, we show that the function $m \mapsto \beta(m)$ only takes the values ± 1 on M, i.e. $\beta(m)^{2} \equiv 1$. Let m be any element of M, then

$$
B\left(E_{\beta}, \theta\left(E_{\beta}\right)\right)=B\left(\operatorname{Ad}(m) E_{\beta}, \operatorname{Ad}(m)\left(\theta\left(E_{\beta}\right)\right)\right)=\beta(m)^{2} B\left(E_{\beta}, \theta\left(E_{\beta}\right)\right)
$$

[^13]The scalar $B\left(E_{\beta}, \theta\left(E_{\beta}\right)\right)=-\frac{2}{\|\beta\|^{2}}$ is non-zero, so the claim follows. Part (b) is trivial:

$$
\operatorname{Ad}(m) Z_{\beta}=\operatorname{Ad}(m)\left(E_{\beta}-E_{-\beta}\right)=\beta(m) E_{\beta}-(-\beta)(m) E_{-\beta}=\beta(m) Z_{\beta}
$$

By exponentiating, we find:

$$
m \exp \left(t Z_{\beta}\right) m^{-1}=\exp \left(t \operatorname{Ad}(m) Z_{\beta}\right)=\exp \left(t \beta(m) Z_{\beta}\right)=\exp \left(t Z_{\beta}\right)^{\beta(m)}
$$

In particular, for $t=\frac{\pi}{2}$, we get:

$$
m \sigma_{\beta} m^{-1}=\sigma_{\beta}^{\beta(m)}
$$

which is the claim in part (c). Finally,

$$
\sigma_{\beta} m \sigma_{\beta}^{-1}=\sigma_{\beta}\left(m \sigma_{\beta} m^{-1}\right)^{-1} m=\sigma_{\beta} \sigma_{\beta}^{-\beta(m)} m=\left\{\begin{aligned}
m & \text { if } \beta(m)=+1 \\
m_{\beta} m & \text { if } \beta(m)=-1
\end{aligned}\right.
$$

The proof of the lemma is now complete.
Along the lines we have shown that $\beta(m)= \pm 1$ for every m in M. When $m=m_{\alpha}=\exp \left(\pi Z_{\alpha}\right)$ for some root α, we can be more specific: ${ }^{4}$

$$
\begin{equation*}
\beta\left(m_{\alpha}\right)=(-1)^{\frac{2}{\|\alpha\|^{2}}\langle\alpha, \beta\rangle}=(-1)^{\left\langle^{\vee} \alpha, \beta\right\rangle} . \tag{A.1}
\end{equation*}
$$

A. 2 The action of W on \hat{M}

In this section we define an action of the Weyl group

$$
W=W(G, A)=\frac{N_{K}(\mathfrak{a})}{Z_{K}(\mathfrak{a})}=\frac{M^{\prime}}{M}
$$

on the set of equivalence classes of irreducible representations of M. The first step is to define an action of $M^{\prime}=N_{K}(\mathfrak{a})$ on \hat{M}.
For $\sigma \in M^{\prime}, \delta \in \hat{M}$ and $m \in M$, set:

$$
\begin{equation*}
(\sigma \cdot \delta)(m) \equiv \delta\left(\sigma^{-1} m \sigma\right) \tag{A.2}
\end{equation*}
$$

It is easy to check that

- $\sigma \cdot \delta$ is a well defined representation of M
- $\sigma \cdot \delta$ is irreducible, because δ is such
- $\left(\sigma_{1} \sigma_{2}\right) \cdot \delta=\sigma_{1} \cdot\left(\sigma_{2} \cdot \delta\right) \quad$ for all σ_{1}, σ_{2} in M^{\prime}, and $1 \cdot \delta=\delta$

[^14]- $\sigma \cdot \delta \simeq \sigma \cdot \delta^{\prime}$ if $\delta \simeq \delta^{\prime}$.

Therefore equation (A.2) gives a well defined action of M^{\prime} on \hat{M}. Next we observe that the group M acts trivially: if m_{1} belongs to M then

$$
\begin{equation*}
\left(m_{1} \cdot \delta\right)(m)=\delta\left(m_{1}^{-1} m m_{1}\right)=\delta\left(m_{1}\right)^{-1} \delta(m) \delta\left(m_{1}\right) \tag{A.3}
\end{equation*}
$$

for all m in M, so $\left(m_{1} \cdot \delta\right)$ is equivalent to $\delta .{ }^{5}$
It follows that the action of M^{\prime} on \hat{M} descends to an action of $W=M^{\prime} / M$ on the same space. If w belongs to W and σ is any representative of w in M^{\prime}, then

$$
\begin{equation*}
(w \cdot \delta)(m) \equiv \delta\left(\sigma^{-1} m \sigma\right) \tag{A.4}
\end{equation*}
$$

One final remark. If G is semisimple (hence connected), the Weyl group $W=$ $W(G, A)=M^{\prime} / M$ coincides with the Weyl group of the restricted root system $\Delta(\mathfrak{g}, \mathfrak{a})$. We should therefore clarify what we mean by a representative of an element τ of $W(\Delta(\mathfrak{g}, \mathfrak{a}))$ inside M^{\prime}.
If $\tau: \mathfrak{a}^{\star} \rightarrow \mathfrak{a}^{\star}$ belongs to $W(\Delta(\mathfrak{g}, \mathfrak{a}))$ and σ belongs to M^{\prime}, we say that σ represents τ if the restriction to \mathfrak{a} of the adjoint map

$$
\operatorname{Ad}(\sigma): \mathfrak{a} \rightarrow \mathfrak{a}
$$

coincides with the dual map to τ. Namely

$$
(\tau \cdot T)(H)=T\left(A d\left(\sigma^{-1}\right) H\right)
$$

for all H in \mathfrak{a} and T in \mathfrak{a}^{\star}.

A. 3 The stabilizer of δ in W

Fix an irreducible representation δ of M. The stabilizer of δ in W consists of all the elements of the Weyl group that stabilize the equivalence class of δ (with respect to the action of W on \hat{M} defined above):

$$
S t_{W}(\delta) \equiv W^{\delta} \equiv\{w \in W: w \cdot \delta \simeq \delta\}
$$

When M is abelian, every irreducible representation of M is one-dimensional and we can say that

$$
w \in W^{\delta} \Leftrightarrow w \cdot \delta=\delta
$$

It's easy to check that W^{δ} is a subgroup of W, and its index equals the cardinality of the W-orbit of the equivalence class of δ.
How do we check whether a Weyl group element w belongs the stabilizer of δ ? Let us consider the case in which w is a root reflection.
If $w=s_{\beta}=\left[\sigma_{\beta}\right]$ then

$$
(w \cdot \delta)(m)=\delta\left(\sigma_{\beta}^{-1} m \sigma_{\beta}\right)=\delta\left(\sigma_{\beta}^{-1}\left(m \sigma_{\beta} m^{-1}\right) m\right)=\delta\left(\sigma_{\beta}^{-1} \sigma_{\beta}^{\beta(m)} m\right)=
$$

[^15]\[

=\left\{$$
\begin{array}{cc}
\delta(m) & \text { if } \beta(m)=+1 \\
\delta\left(m_{\beta}\right) \delta(m) & \text { if } \beta(m)=-1
\end{array}
$$\right.
\]

This shows, in particular, that W^{δ} contains s_{β} for every β such that $\delta\left(m_{\beta}\right)=$ 1. These reflections generate a very special subgroup of W^{δ}, that will discuss shortly.

Remark. For every root β, the map $\delta\left(m_{\beta}\right)$ is either plus or minus the identity.
Proof. Because m_{β} has order two, $\delta\left(m_{\beta}\right)^{2}$ is equal to the identity. So, in order to conclude that $\delta\left(m_{\beta}\right)= \pm I d$, it is enough to prove that $\delta\left(m_{\beta}\right)$ is a scalar. This result will follow by Shur's lemma ${ }^{6}$ once we show that $\delta\left(m_{\beta}\right)$ is a selfintertwining operator for δ. By lemma (1),

$$
m_{\beta} m m_{\beta}^{-1}=\sigma_{\beta}\left(\sigma_{\beta} m \sigma_{\beta}^{-1}\right) \sigma_{\beta}^{-1}=\sigma_{\beta} m \sigma_{\beta}^{-1}=m
$$

for all m in M such that $\beta(m)=+1$. Similarly, if $\beta(m)=-1$, then

$$
\begin{gathered}
m_{\beta} m m_{\beta}^{-1}=\sigma_{\beta}\left(\sigma_{\beta} m \sigma_{\beta}^{-1}\right) \sigma_{\beta}^{-1}=\sigma_{\beta}\left(m_{\beta} m\right) \sigma_{\beta}^{-1}= \\
=m_{\beta}\left(\sigma_{\beta} m \sigma_{\beta}^{-1}\right)=m_{\beta}\left(m_{\beta} m\right)=m
\end{gathered}
$$

This shows that every m_{β} is central in M, so $\delta\left(m_{\beta}\right)$ is central in $\delta(M)$.

A. 4 The set of good co-roots

Let δ be an irreducible representation of M. A $\operatorname{root} \beta$ in $\Delta(\mathfrak{g}, \mathfrak{a})$ is called a good root for δ if $\delta\left(m_{\beta}\right)=+I d$.

Definition. The set

$$
{ }^{\vee} \Delta_{\delta}=\left\{\beta \in{ }^{\vee} \Delta: \delta\left(m_{\beta}\right)=+I d\right\}
$$

is called the set of good co-roots.
It follows from previous considerations that the stabilizer of δ contains the reflections through good roots.
The main properties of ${ }^{\vee} \Delta_{\delta}$ are described in the following lemma.
Lemma 2. Let δ be an irreducible representation of M. Then
(a) ${ }^{\vee} \Delta_{\delta}$ is a root system
(b) If the sum of two good co-roots is a co-root, then it is a good co-root.
(c) If the sum of two bad co-roots is a co-root, then it is a good co-root.

[^16]Proof. Because ${ }^{\vee} \Delta_{\delta}$ is included in ${ }^{\vee} \Delta$, we only need to prove that it is closed under reflection. Let ${ }^{\vee} \alpha$ and ${ }^{\vee} \beta$ be good co-roots, i.e. assume that

$$
\delta\left(m_{\alpha}\right)=\delta\left(m_{\beta}\right)=+I d .
$$

We can write:

$$
\delta\left(m_{s_{\beta}(\alpha)}\right)=\delta\left(\sigma_{\beta} m_{\alpha} \sigma_{\beta}^{-1}\right)=\left(s_{\beta}^{-1} \cdot \delta\right)\left(m_{\alpha}\right) .
$$

By assumption, β is a good root, so s_{β} (together with its inverse) stabilizes the equivalence class of δ. This gives: ${ }^{7}$.

$$
\left(s_{\beta}^{-1} \cdot \delta\right)\left(m_{\alpha}\right)=T \circ \delta\left(m_{\alpha}\right) \circ T^{-1}=T \circ(+I d) \circ T^{-1}=+I d .
$$

Hence $s_{\beta}(\alpha)$ is a good root, and $s_{\vee}\left({ }^{\vee} \alpha\right)={ }^{\vee} s_{\beta}(\alpha)$ is a good co-root.
Parts (b) and (c) of the lemma follow from the fact that if ${ }^{\vee} \alpha,{ }^{\vee} \beta$ and ${ }^{\vee} \gamma$ are co-roots and

$$
\begin{equation*}
{ }^{\vee} \gamma={ }^{\vee} \alpha+{ }^{\vee} \beta \tag{A.5}
\end{equation*}
$$

then $m_{\gamma}=m_{\alpha} \cdot m_{\beta}$, and of course

$$
\delta\left(m_{\gamma}\right)=\delta\left(m_{\alpha}\right) \cdot \delta\left(m_{\beta}\right)
$$

For brevity reasons, we only sketch the proof of this fact. Without loss of generality, we can assume that $\|\alpha\| \leq\|\beta\|$. Because the restricted roots for a split group form a reduced root system, there are severe limits to the possible angles between pairs of roots. Taking (A.5) into account, we see that only two possibilities can occur:
(i) $\left\langle{ }^{\vee} \alpha, \beta\right\rangle=-1$
(ii) $\left\langle{ }^{\vee} \beta, \gamma\right\rangle=+1$.

Condition (i) implies that $s_{\beta}(\alpha)=\gamma$ and that ${ }^{8}$

$$
\beta\left(m_{\alpha}\right)=(-1)^{\langle\vee \alpha, \beta\rangle}=(-1)^{-1}=-1
$$

Then, by lemma 1 ,

$$
m_{\gamma}=m_{s_{\beta}(\alpha)}=\sigma_{\beta} m_{\alpha} \sigma_{\beta}^{-1}=m_{\beta} m_{\alpha}=m_{\alpha} m_{\beta}
$$

After re-naming the roots, we can use this result to show that

$$
m_{\alpha}=m_{-\beta} m_{\gamma}
$$

if case (ii) holds. Then, because $m_{-\beta}=m_{\beta}$ and $m_{\beta}^{2}=1$, we also get:

$$
m_{\gamma}=m_{\beta} m_{\alpha}=m_{\alpha} m_{\beta}
$$

[^17]
A. 5 The Weyl group of the good co-roots

Let δ be an irreducible representation of M, and let ${ }^{\vee} \Delta_{\delta}$ be the root system of good co-roots. Define W_{δ}^{0} to be the Weyl group of ${ }^{\vee} \Delta_{\delta}$.
It is a subgroup of

$$
W\left({ }^{\vee} \Delta(\mathfrak{g}, \mathfrak{a})\right)=W(\Delta(\mathfrak{g}, \mathfrak{a}))=W
$$

but not necessarily Levi. For instance, for $E 8$ the Weyl group of the good coroots can be of type $E 8, D 8$ or $E 7 \times A 1$.
It is also a subgroup of W^{δ}, because reflections through good roots stabilize the equivalence class of δ. We can say more:

Remark. W_{δ}^{0} is a normal subgroup of W^{δ}.
Proof. It is enough to prove that

$$
w s_{\alpha} w^{-1}=s_{w(\alpha)} \in W_{\delta}^{0}
$$

for all w in W^{δ} and α in Δ_{δ}. This follows easily from the fact that $w(\alpha)$ is a good root:
$\delta\left(m_{w(\alpha)}\right)=\delta\left(\sigma m_{\alpha} \sigma^{-1}\right)=\left(w^{-1} \cdot \delta\right)\left(m_{\alpha}\right)=T \circ \delta\left(m_{\alpha}\right) \circ T^{-1}=T \circ(+I d) \circ T^{-1}=+I d$.
We have denoted by σ a representative for w in $M^{\prime}=N_{K}(\mathfrak{a})$, and by T an intertwining operator between δ and $w^{-1} \cdot \delta$.

A. 6 The R-group R_{δ}

Let δ be an irreducible representation of M. The Weyl group of the good coroots W_{δ}^{0} is a normal subgroup of the stabilizer of δ, so the quotient

$$
R_{\delta}=\frac{W^{\delta}}{W_{\delta}^{0}}
$$

is well defined. We call this quotient "the R-group of δ ".
Lemma 3. Let δ be an irreducible representation of M and let R_{δ} be the R group of δ. Then
(a) R_{δ} is a finite group
(b) Every element of R_{δ} has order two
(c) R_{δ} is an abelian group.

We will only sketch the proof of this lemma, for brevity reasons.

Proof. Part (c) is an immediate consequence of (b); parts (a) and (b) follow from the fact that R_{δ} is isomorphic to the group

$$
\begin{equation*}
R_{\delta}^{c}=\left\{w \in W^{\delta}: w\left({ }^{\vee} \Delta_{\delta}^{+}\right)={ }^{\vee} \Delta_{\delta}^{+}\right\} \tag{A.6}
\end{equation*}
$$

We can regard R_{δ}^{c} as the stabilizer of ρ_{δ} (the semi-sum of the positive good coroots) inside W. Hence, by Chevalley's lemma, R_{δ}^{c} is generated by reflections through simple co-roots orthogonal to ρ_{δ}.
The set of all the co-roots orthogonal to ρ_{δ} forms a root-system, that we denote by Δ_{S}. It can be shown that Δ_{S} consists of bad strongly orthogonal ${ }^{9}$ simple roots, together with their negatives. Reflections through simply orthogonal roots commute, so the Weyl group of Δ_{S} is abelian, and every element has order two. By construction, R_{δ}^{c} is included in $W\left(\Delta_{S}\right)$ so it has the same properties.

Lemma 4. Let δ be an irreducible representation of M. The stabilizer of δ is the semidirect product of the Weyl group of the good co-roots and the group R_{δ}^{c} defined in (A.6):

$$
W^{\delta}=W_{\delta}^{0} \rtimes R_{\delta}^{c} .
$$

In this decomposition W_{δ}^{0} is normal, and the quotient $W^{\delta} / W_{\delta}^{0}$ is isomorphic to R_{δ}^{c}, hence to R-group R_{δ}.

Lemma 5. If G is connected, semi-simple and has a complexification, then M is a finite abelian group and is generated by the $m_{\alpha} s$. It follows that

$$
\begin{aligned}
& W^{\delta}=\left\{w \in W: w\left({ }^{\vee} \Delta_{\delta}\right)={ }^{\vee} \Delta_{\delta}\right\} \\
& R_{\delta}^{c}=\left\{w \in W: w\left({ }^{\vee} \Delta_{\delta}^{+}\right)={ }^{\vee} \Delta_{\delta}^{+}\right\}
\end{aligned}
$$

for every irreducible representation δ of M.

[^18]
Appendix B

Examples of R-groups...

B. 1 The example of $S L(n, \mathbb{R})$

The data for $S L(n, \mathbb{R})$
We briefly recall the data for the group $S L(n, \mathbb{R})$ and fix the notations that we will be using throughout the section.

- $G=S L(n, \mathbb{R})$
- $K=S O(n)$
- $\mathfrak{g}_{0}=\mathfrak{s l}(n, \mathbb{R})=\mathfrak{a}_{0} \oplus_{\alpha \in \Delta}\left(\mathfrak{g}_{0}\right)_{\alpha}$, with
$\mathfrak{a}_{0}=\{$ diagonal matrices with trace 0$\}$

$$
\begin{aligned}
& \Delta=\left\{\epsilon_{i}-\epsilon_{j}: i, j=1 \ldots n, i \neq j\right\} \\
& \Delta^{+}=\left\{\epsilon_{i}-\epsilon_{j}: i, j=1 \ldots n, i<j\right\}
\end{aligned}
$$

where for each $l=1 \ldots n$, we have denoted by ϵ_{l} the linear functional

$$
\epsilon_{l}: \mathfrak{a}_{0} \rightarrow \mathbb{R}, \operatorname{diag}\left(h_{1}, h_{2}, \ldots, h_{n}\right) \mapsto h_{l}
$$

- $A=\{$ diagonal matrices, with positive entries and det. 1$\}$
- $M=\left\{\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right): c_{j}= \pm 1, \Pi_{j=1}^{n} c_{j}=+1\right\} \simeq \mathbb{Z}_{2}^{n-1}$
- $\widehat{M}=\left\{\delta_{S}: S \subset\{1, \ldots, n\}\right.$ s.t. $\left.|S|<\left[\frac{n}{2}\right]\right\}$, with

$$
\delta_{S}: \operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right) \mapsto \Pi_{j \in S} c_{j} .
$$

For all subsets S of $\{1, \ldots, n\}, \delta_{S}$ is a well defined representation of M. We notice that ${ }^{1} \Pi_{j \in S} c_{j}=\Pi_{j \in\left(S^{C}\right)} c_{j}$, so δ_{S} is equivalent to $\delta_{S^{C}}$, and we obtain a total of $2^{n-1}=|M|$ inequivalent representations.

- The Weyl group W acts as the group of all permutations of the set $\left\{\epsilon_{1}, \epsilon_{2} \ldots \epsilon_{n}\right\}$, so W is isomorphic to the symmetric group \mathcal{S}_{n}.

[^19]
The good roots for δ_{S}

When S is the empty set, δ_{S} is the trivial representation of M and all the roots are good.
Assume that $S=\left\{j_{1}, j_{2}, \ldots, j_{p}\right\} \subset\{1, \ldots, n\}$, with $1<p \leq\left[\frac{n}{2}\right]$. To identify the good roots for δ_{S}, we need to construct the element m_{α} for every positive restricted root α, and to evaluate δ_{S} at m_{α}.
Set $\alpha=\epsilon_{i}-\epsilon_{j}$, with $i<j$. Then

$$
H_{\alpha}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

with $d_{i}=-d_{j}=1$ and $d_{l}=0$ otherwise. Therefore

$$
m_{\alpha}=\exp \left(\frac{2 \pi i}{\|\alpha\|^{2}} H_{\alpha}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{n}^{-1}\right)
$$

with $\lambda_{i}=\lambda_{j}=-1$ and $\lambda_{l}=+1$ otherwise. We notice that

$$
\delta_{S}\left(m_{\epsilon_{i}-\epsilon_{j}}\right)=\left\{\begin{array}{l}
+1, \text { if either }\{i, j\} \subseteq S \text { or }\{i, j\} \subseteq S^{C} \\
-1, \text { otherwise }
\end{array}\right.
$$

So $\epsilon_{i}-\epsilon_{j}$ is a good root if and only if both indices i and j lie in S, or none of them does. We obtain:

$$
\Delta_{\delta_{S}}=\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)\right\}_{i<j, i, j \in S} \sqcup\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)\right\}_{i<j, i, j \in S^{C}}
$$

and

$$
{ }^{\vee} \Delta_{\delta_{S}}=\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)\right\}_{i<j, i, j \in S} \sqcup\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)\right\}_{i<j, i, j \in S^{C}} .
$$

Remark. It is a root system of type $A_{p-1} \times A_{q-1}$, with $p=\# S$ and $q=\# S^{C}$.
The Weyl group of the good co-roots for δ_{S}
If $p=\# S \geqq 1$, then ${ }^{\vee} \Delta_{\delta_{S}}=A_{p-1} \times A_{q-1}$ and

$$
W_{\delta_{S}}^{0}=W\left(A_{p-1}\right) \times W\left(A_{q-1}\right) \simeq \mathcal{S}_{p} \times \mathcal{S}_{q}
$$

We notice that $W_{\delta_{S}}^{0}$ acts on the set $\left\{\epsilon_{1}, \epsilon_{2} \ldots \epsilon_{n}\right\}$ by

- permuting the $\epsilon_{i} \mathrm{~s}$, with i in S
- permuting the $\epsilon_{j} \mathrm{~s}$, with j in S^{C}.

It is a subgroup of W of order $p!q!$ and index $\left[W: W_{\delta_{S}}^{0}\right]=\frac{n!}{p!q!}=\binom{n}{p}$.
If S is the empty set, then $\Delta_{\delta_{S}}=\Delta$ and of course $W_{\delta_{S}}^{0}=W$ (it has order n ! and index 1).

The stabilizer of the δ_{S}

Because $G=S L(n)$ is connected, semisimple and has a complexification, we can identify $W^{\delta_{S}}$ with the set of of Weyl group elements preserving the good roots for $\delta_{S} .{ }^{2}$

If S is the empty set, then every root is good and $W^{\delta_{S}}=W$. If S is not empty, then we must look for Weyl group elements that stabilize the set:

$$
\Delta_{\delta_{S}}=\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)\right\}_{i<j, i, j \in S} \sqcup\left\{ \pm\left(\epsilon_{i}-\epsilon_{j}\right)\right\}_{i<j, i, j \in S^{C}} .
$$

It is not hard to see that

- $\Delta_{\delta_{S}}$ is stable under any permutation of the set $\left\{\epsilon_{i}: i \in S\right\}$, as well as any permutation of the set $\left\{\epsilon_{j}: j \in S^{C}\right\}$
- If $p \neq \frac{n}{2}$, there are no other Weyl group elements that preserve $\Delta_{\delta_{S}}$
- If $p=\frac{n}{2}$ (and n is of course even), then there are other Weyl group elements that preserve $\Delta_{\delta_{S}}$, namely all the permutations of the form:

$$
\pi=\left(i_{1} j_{1}\right)\left(i_{2} j_{2}\right) \cdots\left(i_{\frac{n}{2}} j_{\frac{n}{2}}\right)
$$

with $i_{1}, i_{2}, \ldots i_{\frac{n}{2}}$ in S and $j_{1}, j_{2}, \ldots j_{\frac{n}{2}}$ in S^{C}.
WLOG we can assume that $n=2 m$, and that $S=\{1,2, \ldots, m\}$. Then any permutation π as above can be decomposed as a product $\sigma_{2} \tilde{\pi} \sigma_{1}$, with:

$$
\begin{aligned}
& \text { - } \sigma_{1} \in \mathcal{S}_{\{1, \ldots, m\}} \\
& \text { - } \tilde{\pi}=(1 m+1)(2 m+2) \cdots(m n) \\
& \text { - } \sigma_{2} \in \mathcal{S}_{\{m+1, \ldots, n\}}
\end{aligned}
$$

It follows that $\tilde{\pi}$ is a generator for the R-group, of order two.

Here is a synopsis of the results: if $0<p \neq \frac{n}{2}$, then

$$
W^{\delta_{S}}=W\left(A_{p-1}\right) \times W\left(A_{q-1}\right)=W_{\delta_{S}^{0}}
$$

[^20]If $p=\frac{n}{2}$ (and n is even), then

$$
W^{\delta_{S}}=\left(W\left(A_{p-1}\right) \times W\left(A_{q-1}\right)\right) \ltimes \mathbb{Z}_{2}=W_{\delta_{S}^{0}} \ltimes \mathbb{Z}_{2}
$$

Remark. $W_{\delta_{S}}^{0}$ is a (normal) subgroup of $W^{\delta_{S}}$ of index 1 if $p \neq \frac{n}{2}$, and index 2 if $p=\frac{n}{2}$ (and n is even).

The R-group

By definition, the R-group $R_{\delta_{S}}$ is the quotient $W^{\delta_{S}} / W_{\delta_{S}}^{0}$. It follows from the previous considerations that:

- If S is the empty set, then $W_{\delta_{S}}^{0}=W^{\delta_{S}}=W$ and the R-group $R_{\delta_{S}}$ is trivial.
- If $0<\# S \neq \frac{n}{2}$, then $W_{\delta_{S}}^{0}=W^{\delta_{S}}=W\left(A_{p-1}\right) \times W\left(A_{q-1}\right)$ and again the R-group $R_{\delta_{S}}$ is trivial. We have set $p=\# S$ and $q=n-p$.
- If $\# S=\frac{n}{2}$, then $R_{\delta_{S}}$ has order two and is isomorphic to \mathbb{Z}_{2}. We can pick the permutation $\tilde{\pi}$ as a generator.

B. 2 The example of $S P(2 n, \mathbb{R})$

The data for $S P(2 n, \mathbb{R})$

- $G=S P(2 n, \mathbb{R})$
- $K=\left\{\left(\begin{array}{cc}A & -C \\ C & A\end{array}\right) \in S L(2 n, \mathbb{R}): A A^{T}+C C^{T}=I, A C^{T}-C A^{T}=O, \operatorname{det}(k)=1\right\}$

We notice that K is isomorphic to $U(n)$ via the mapping

$$
\left(\begin{array}{cc}
A & -C \\
C & A
\end{array}\right) \mapsto A+i C
$$

- $\mathfrak{g}_{0}=\mathfrak{s p}(2 n, \mathbb{R})=\mathfrak{a}_{0} \oplus_{\alpha \in \Delta}\left(\mathfrak{g}_{0}\right)_{\alpha}$, with

$$
\begin{aligned}
& \mathfrak{a}_{0}=\left\{\left(\begin{array}{cc}
H & O \\
O & -H
\end{array}\right): H \text { diagonal matrix }\right\} \\
& \Delta=\left\{ \pm \epsilon_{i} \pm \epsilon_{j}: i, j=1 \ldots n, i<j\right\} \sqcup\left\{ \pm 2 \epsilon_{l}: l=1 \ldots n\right\} \\
& \Delta^{+}=\left\{\epsilon_{i} \pm \epsilon_{j}: i, j=1 \ldots n, i<j\right\} \sqcup\left\{2 \epsilon_{l}: l=1 \ldots n\right\}
\end{aligned}
$$

where for each $l=1 \ldots n$, we have denoted by ϵ_{l} the linear functional

$$
\epsilon_{l}: \mathfrak{a}_{0} \rightarrow \mathbb{R}, \operatorname{diag}\left(h_{1}, h_{2}, \ldots, h_{n},-h_{1},-h_{2}, \ldots,-h_{n}\right) \mapsto h_{l}
$$

- $A=\left\{\left(\begin{array}{cc}D & O \\ O & D^{-1}\end{array}\right): D\right.$ diagonal matrix, with positive entries $\}$
- $M=\left\{\left(\begin{array}{cc}\Lambda & O \\ O & \Lambda\end{array}\right): \Lambda\right.$ diagonal matrix, with entries $\left.\pm 1\right\} \simeq \mathbb{Z}_{2}^{n}$
- $\widehat{M}=\left\{\delta_{S}: S \subset\{1, \ldots, n\}\right.$, with

$$
\delta_{S}: \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \mapsto \Pi_{j \in S} \lambda_{j} .
$$

For all subsets S of $\{1, \ldots, n\}, \delta_{S}$ is a well defined representation of M. Because there are no equivalences, we obtain a total of $2^{n}=|M|$ (inequivalent) representations.

- The Weyl group W acts as the group of all permutations and sign changes of the set $\left\{\epsilon_{1}, \epsilon_{2} \ldots \epsilon_{n}\right\}$, so W is isomorphic to the semidirect product of \mathbb{Z}_{2}^{n} and \mathcal{S}_{n} (with \mathcal{S}_{n} acting on \mathbb{Z}_{2}^{n}).

The good roots for $\delta_{S}: \Delta_{\delta_{S}}$
When S is the empty set, δ_{S} is the trivial representation of M and all the roots are good. So it is enough to consider the case $S=\left\{j_{1}, j_{2}, \ldots, j_{p}\right\} \subset\{1, \ldots, n\}$, with $p>1$.
To identify the good roots for δ_{S}, we need to construct the element m_{α} for every positive restricted root α, and to evaluate δ_{S} at $m_{\alpha} .{ }^{4}$

- If $\alpha=\epsilon_{i}+\epsilon_{j}$, then

$$
H_{\alpha}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n},-d_{1},-d_{2}, \ldots,-d_{n}\right)
$$

with $d_{i}=d_{j}=1 / 2$ and $d_{l}=0$ otherwise. Therefore

$$
m_{\alpha}=\exp \left(\frac{2 \pi i}{\|\alpha\|^{2}} H_{\alpha}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{n}^{-1}\right)
$$

with $\lambda_{i}=\lambda_{j}=-1$ and $\lambda_{l}=+1$ otherwise. We notice that

$$
\delta_{S}\left(m_{\epsilon_{i}+\epsilon_{j}}\right)=\left\{\begin{array}{l}
+1, \text { if either }\{i, j\} \subseteq S \text { or }\{i, j\} \subseteq S^{C} \\
-1, \text { otherwise } .
\end{array}\right.
$$

So $\epsilon_{i}+\epsilon_{j}$ is a good root if and only if both indices i and j lie in S, or none of them does.

[^21]- If $\alpha=\epsilon_{i}-\epsilon_{j}$, then

$$
H_{\alpha}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n},-d_{1},-d_{2}, \ldots,-d_{n}\right)
$$

with $d_{i}=-d_{j}=1 / 2$ and $d_{l}=0$ otherwise, and again

$$
m_{\alpha}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{n}^{-1}\right)
$$

with $\lambda_{i}=\lambda_{j}=-1$ and $\lambda_{l}=+1$ otherwise. Because $m_{\epsilon_{i}-\epsilon_{j}}=m_{\epsilon_{i}+\epsilon_{j}}$, we deduce that $\epsilon_{i}-\epsilon_{j}$ is a good root if and only if $\epsilon_{i}+\epsilon_{j}$ is a good root.

- Finally, if $\alpha=2 \epsilon_{k}$, then

$$
H_{\alpha}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n},-d_{1},-d_{2}, \ldots,-d_{n}\right)
$$

with $d_{k}=1$ and $d_{l}=0$ otherwise. Therefore

$$
m_{\alpha}=\exp \left(\frac{2 \pi i}{\|\alpha\|^{2}} H_{\alpha}\right)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}, \lambda_{1}^{-1}, \lambda_{2}^{-1}, \ldots, \lambda_{n}^{-1}\right)
$$

with $\lambda_{k}=-1$ and $\lambda_{l}=+1$ otherwise. We notice that

$$
\delta_{S}\left(m_{2 \epsilon_{k}}\right)=\left\{\begin{array}{l}
+1, \text { if } k \in S^{C} \\
-1, \text { if } k \in S
\end{array}\right.
$$

Therefore $2 \epsilon_{k}$ is a good root if and only if k is not in S.

We conclude that for every not-empty $S \subset\{1, \ldots, n\}$, the set of good roots

$$
\Delta_{\delta_{S}}=\left(\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\}_{i \neq j, i, j \in S^{C}} \sqcup\left\{ \pm 2 \epsilon_{k}\right\}_{k \in S^{C}}\right) \sqcup\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\}_{i \neq j, i, j \in S} .
$$

is of type $C_{q} \times D_{p}$. The set of good co-roots

$$
{ }^{\vee} \Delta_{\delta_{S}}=\left(\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\}_{i \neq j, i, j \in S^{C}} \sqcup\left\{ \pm \epsilon_{k}\right\}_{k \in S^{C}}\right) \sqcup\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\}_{i \neq j, i, j \in S}
$$

is a root system of type $B_{q} \times D_{p}$. Here $p=\# S$ and $q=\# S^{C}=n-p$.
If S is the empty set, then ${ }^{\vee} \Delta_{\delta_{S}}={ }^{\vee} \Delta\left(\right.$ of type $\left.B_{n}\right)$.
The Weyl group of the good co-roots for $\delta_{S}: W_{\delta_{s}}^{0}$
If $p=\# S \geqq 1$, then ${ }^{\vee} \Delta_{\delta_{S}}=B_{q} \times D_{p}$ and $W_{\delta_{S}}^{0}=W\left(B_{q}\right) \times W\left(D_{p}\right)=W\left(C_{q}\right) \times W\left(D_{p}\right)$.
It has order

$$
\left|W_{\delta_{S}}^{0}\right|=\left|W\left(C_{q}\right)\right| \cdot\left|W\left(D_{p}\right)\right|=\left(2^{q} q!\right)\left(2^{p-1} p!\right)=2^{n-1} q!p!
$$

and index

$$
\left[W: W_{\delta_{S}}^{0}\right]=\frac{2^{n} n!}{2^{n-1} q!p!}=2\binom{n}{p} .
$$

$W_{\delta s}^{0}$ acts on the set $\left\{\epsilon_{1}, \epsilon_{2} \ldots \epsilon_{n}\right\}$ by

- permuting the $\epsilon_{i} \mathrm{~s}$, with i in S
- permuting the $\epsilon_{j} \mathrm{~s}$, with j in S^{C}
- changing sign to an even number of $\epsilon_{i} \mathrm{~s}$, with i in S
- changing sign to an arbitrary number of $\epsilon_{j} \mathrm{~s}$, with j in S^{C}.

If S is the empty set, then ${ }^{\vee} \Delta_{\delta_{S}}={ }^{\vee} \Delta$ and of course $W_{\delta_{S}}^{0}=W$ (it has order $2^{n} n$! and index 1).

The stabilizer of the δ_{S} : $W^{\delta_{S}}$
Because $G=S p(2 n)$ is connected, semisimple and has a complexification, we can identify $W^{\delta_{S}}$ with the set of of Weyl group elements preserving the good roots for δ_{S}.

If S is the empty set, then every root is good and $W^{\delta_{S}}=W$. The case $S \neq \emptyset$ is more interesting, indeed we must look for Weyl group elements that stabilize the set:

$$
\Delta_{\delta_{S}}=\left(\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\}_{i \neq j, i, j \in S^{C}} \sqcup\left\{ \pm 2 \epsilon_{k}\right\}_{k \in S^{C}}\right) \sqcup\left\{ \pm \epsilon_{i} \pm \epsilon_{j}\right\}_{i \neq j, i, j \in S}
$$

It is not hard to see that

- $\Delta_{\delta_{S}}$ is stable under the following operations
- all permutations and sign changes of the set $\left\{\epsilon_{i}: i \in S\right\}$
- all permutations and sign changes of the set $\left\{\epsilon_{j}: j \in S^{C}\right\}$.
- There are no other Weyl group elements that preserve the set $\Delta_{\delta_{S}}$.

Therefore:

$$
W_{\delta_{S}}=W\left(C_{q}\right) \times W\left(C_{p}\right)
$$

This group has order

$$
\left|W^{\delta_{S}}\right|=\left|W\left(C_{q}\right)\right| \cdot\left|W\left(C_{p}\right)\right|=\left(2^{q} q!\right)\left(2^{p} p!\right)=2^{n} q!p!
$$

and index

$$
\left[W: W^{\delta_{S}}\right]=\frac{2^{n} n!}{2^{n} q!p!}=\binom{n}{p}
$$

Remark. $W_{\delta_{S}}^{0}$ is a (normal) subgroup of $W^{\delta_{S}}$ of index 2.

The R-group

By definition, the R-group $R_{\delta_{S}}$ is the quotient $W^{\delta_{S}} / W_{\delta_{S}^{0}}$. It follows from the previous considerations that:

- If S is the empty set, then $W_{\delta_{S}}^{0}=W^{\delta_{S}}=W$ and the R-group $R_{\delta_{S}}$ is trivial.
- If S is not empty, then $R_{\delta_{S}}$ has order two, and is isomorphic to \mathbb{Z}_{2}. We can choose as generator any sign change $\epsilon_{i} \mapsto-\epsilon_{i}$, with i in S.

Appendix C

The Dynkin diagram R-group

The main reference for this chapter is Dana Pascovici's paper, "The Dynkin diagram R-group" . ${ }^{1}$

Let $D D$ be a connected Dynkin diagram. We denote by Δ the corresponding irreducible root system, and by Π a choice of simple roots for Δ. The set Π is in one-one correspondence with the set of vertices of the Dynkin diagram. In this correspondence, disjoint vertices correspond to simply orthogonal simple roots. ${ }^{2}$
To every connected Dynkin diagram $D D$ we attach a finite abelian group $R_{D D}$, that can be easily computed by looking at $D D$. We call this group "the R-group of the Dynkin diagram $D D^{\prime \prime}$. It plays a role in our discussion on the R_{δ} - groups, because for a simple split real group and a minimal principal series the R-group R_{δ} is always a subgroup of $R_{D D}$. This implies that the order of R_{δ} can only be at most four.

C. 1 Preliminary definition (the simply laced case)

The definition of $R_{D D}$ is particularly easy when the Dynkin diagram $D D$ is simply laced, so we start with this case.

An element of $R_{D D}$ is a set S of mutually disjoint vertices of $D D$, s.t. any vertex $x \notin S$ is connected to an even number of elements of $S . R_{D D}$ is made into a group with the operation of symmetric difference of sets.

[^22]Let us make some examples.
The Dynkin diagram of $\bullet \bullet$ is trivial. Indeed we notice that
$S=\oslash \quad \bullet$ is not in $R_{D D}$, because the second vertex is an element of S^{C} which is connected to one element of S.
$S=\bullet$ is not in $R_{D D}$, for similar reasons.
$S=\bigcirc$ is not in $R_{D D}$, because the two vertices are not disjoint.
Therefore, the only element of $R_{D D}$ is the empty set: $S=\bullet \bullet$.

A similar argument shows that the Dynkin diagram of $\bullet \bullet \bullet$ is isomorphic to \mathbb{Z}_{2}, the non trivial element of $R_{D D}$ being

We now list the R-group of every connected simply laced Dynkin diagram. If the group is non trivial, we give the non trivial elements. ${ }^{3}$

If $l=2 n$ is even, the Dynkin diagram of A_{l} is trivial:

If $l=2 n+1$ is odd, the Dynkin diagram of A_{l} is isomorphic to \mathbb{Z}_{2}. The non trivial element is:

If $l=2 n+1$ is odd, the Dynkin diagram of D_{l} is isomorphic to \mathbb{Z}_{2}. The non trivial element is:

If $l=2 n$ is even, the Dynkin diagram of D_{l} is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. The non trivial element are:

The Dynkin diagram of E_{6} is trivial:

The Dynkin diagram of E_{7} is isomorphic to \mathbb{Z}_{2}. The non trivial element is:

The Dynkin diagram of E_{8} is trivial:

C. 2 General definition

We now give the general definition of Dynkin diagram R-group, which is valid also in the not-simply laced case. The first step is to associate to any Dynkin diagram $D D$ a labelled directed graph $\Gamma_{D D}$:

The vertices of $\Gamma_{D D}$ are the same as the vertices of $D D$ (hence they are in one-one correspondence with the set of simple roots).
Two vertices α and β of $\Gamma_{D D}$ are connected by an arrow (pointing from α to β) labelled with the integer $n_{\alpha, \beta}=\frac{2\langle\alpha, \beta\rangle}{\langle\alpha, \alpha\rangle}$.

In the simply laced case, the labelled directed graph $\Gamma_{D D}$ is just the Dynkin diagram $D D$, with all the edges labelled with one. In the non-simply laced cases, $\Gamma_{D D}$ is given by:

Next, we define the Dynkin diagram R-group $R_{D D}$:
An element of $R_{D D}$ is a set of mutually disjoint vertices of $\Gamma_{D D}$, s.t. for any vertex $\gamma \notin S$ the sum of the labels on arrows going out of γ and into elements of S is even, i.e. $\sum_{\alpha \in S} n_{\gamma, \alpha} \equiv 0 \bmod 2$.
$R_{D D}$ is made into a group with the operation of symmetric difference of sets.
It is easy to check that the R-group is trivial for $D D$ of type G_{2} and F_{4}. For $D D$ of type C_{n}, the R-group is isomorphic to \mathbb{Z}_{2}, and is generated by

Finally, we discuss the case in which $D D$ is of type B_{n}.
The R-group of B_{n} is always of order two, but the non-trivial element depends on the parity of n. More precisely, we can take

as a generator the R-group of $B_{2 m+1}$, and

as a generator for the R-group of $B_{2 m}$.

C. 3 The relation between $R_{D D}$ and R_{δ}

Let G be a simple split real group, and let $D D$ be its Dynkin diagram. Let $P=M A N$ be the Langlands decomposition of a minimal parabolic subgroup of G. For any representation δ of M, we consider the R-group R_{δ} associated to δ.

Theorem 1. R_{δ} is always a subgroup of the Dynkin diagram $R_{D D}$. In particular, R_{δ} equals $R_{D D}$ when δ is maximally bad.

We recall that a representation of M is called "maximally bad" if all the simple roots are bad. For instance, the representation $\delta_{\{1,3,5,7\}}=\delta_{\{2,4,6,8\}}$ of $M \subset S L(8)$ is maximally bad. So is the representation $\delta_{\{1,3,5\}}$ of $M \subset S P(10)$. If the group G is connected, then M has at most one maximally bad representation (because M is generated by the $m_{\alpha} \mathrm{s}$, for α simple). Sometimes M has no maximally bad representations at all. ${ }^{4}$

In the previous section we have shown that the R-group Dynkin diagram is trivial for $D D$ of type $A_{2 n}, E_{6}, E_{8}, F_{4}, G_{2}$. In any other case, $R_{D D}$ is a finite abelian group of order two or four. As an immediate consequence, we obtain:

Corollary. For $S L_{2 n+1}, E_{6}, E_{8}, F_{4}$, and G_{2}, R_{δ} is always trivial. ${ }^{5}$
For types $A_{2 n+1}, B_{n}, C_{n}, D_{2 n+1}$ and $E 7, R_{\delta}$ has cardinality at most two.
For type $D_{2 n}, R_{\delta}$ is a subgroup of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

[^23]
Appendix D

Minimal Principal Series for Split Groups

Let G be a real split semisimple Lie group.

D. 1 Minimal Principal Series

Fix a Cartan involution θ and let $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ be the corresponding Cartan decomposition of $\mathfrak{g}=\operatorname{Lie}(G)$. Choose a maximal abelian subspace \mathfrak{a} of \mathfrak{p}, and set:

- $M=Z_{K}(\mathfrak{a})$ the centralizer of \mathfrak{a} in K
- $A=\exp _{G}(\mathfrak{a})$ the vector subgroup of G with Lie algebra \mathfrak{a}
- $\Delta=\Delta(\mathfrak{g}, \mathfrak{a})$ the set of restricted roots.

Notice that M is finite when G is split, and is abelian when G is linear. By construction, $M A=Z_{G}(\mathfrak{a})$ is the Levi factor of a minimal parabolic subgroup of G. Suppose that $\left(\delta, \mathbb{C}_{\delta}\right)$ is an irreducible (tempered unitary) representation of M, and that ν is a character of A. Choose a minimal parabolic subgroup $P=M A N$ so that $\Re(\nu)$ is weakly dominant for the roots of A in $N .{ }^{1}$ You can of course regard $\delta \otimes \nu$ as a representation of P, with N acting trivially. The induced representation

$$
X_{P}(\delta, \nu)=\operatorname{Ind}_{P}^{G}(\delta \otimes \nu)
$$

is called a minimal principal series for G.
$X_{P}(\delta, \nu)$ is the representation of G by left translation on the space of functions

$$
\mathcal{H}_{\delta \otimes \nu}^{P}=\left\{F: G \rightarrow \mathbb{C}_{\delta}: \operatorname{Res}_{K}(F) \in L^{2}\left(K, \mathbb{C}_{\delta}\right)\right. \text { and }
$$

[^24]$$
\left.F(g m a n)=e^{-(\nu+\rho) \log (a)} \delta(m)^{-1} F(g), \forall \operatorname{man} \in P=M A N, \forall g \in G\right\} .
$$

Remark. The choice of P is unique only when $\operatorname{Re}(\nu)$ is non singular (i.e. $\Re(\nu)$ is strictly dominant for the roots of A in $N)$. The induced representation $\operatorname{Ind}_{P}^{G}(\delta \otimes \nu)$ is independent of this choice.

Proof. The fist step is to identify all the minimal parabolic subgroups of G with Levi factor $M A$ for which $\Re(\nu)$ is weakly dominant.
Partition the restricted roots according to their inner product with $\Re(\nu): \Delta=$ $\Delta_{L} \sqcup \Delta_{U}^{+} \sqcup \Delta_{U}^{-}$, with

$$
\begin{aligned}
\Delta_{L} & =\{\alpha \in \Delta:\langle\Re(\nu), \alpha\rangle=0\} \\
\Delta_{U}^{+} & =\{\alpha \in \Delta:\langle\Re(\nu), \alpha\rangle>0\} \\
\Delta_{U}^{-} & =\{\alpha \in \Delta:\langle\Re(\nu), \alpha\rangle<0\}
\end{aligned}
$$

The set Δ_{L} is a root system, and every positive system Δ^{+}(in Δ) making $\Re(\nu)$ weakly dominant is of the form

$$
\Delta^{+}=\Delta_{L}^{+} \sqcup \Delta_{U}^{+}
$$

for some choice of a positive system $\Delta_{L}^{+}\left(\right.$in $\left.\Delta_{L}\right)$.
Denote by L the centralizer of $\Re(\nu)$ in G. Then L contains $M A$ and has Lie algebra

$$
\mathfrak{l}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Delta_{L}} \mathfrak{g}_{\alpha}
$$

($\mathfrak{m}=\{0\}$ in the split case).
Any choice of Δ_{L}^{+}determines a minimal parabolic subgroup of L containing $M A$, say $P_{L}=M A N_{L}$, and the map

$$
P_{L}=M A N_{L} \longleftrightarrow P=P_{L} U=M A\left(N_{L} U\right)
$$

gives a one-one correspondence between the set of arbitrary minimal parabolics in L containing $M A$ and the set of minimal parabolics in G making $\Re(\nu)$ weakly dominant.
Let us continue with the proof of the claim. By induction by stages,

$$
\operatorname{Ind}_{P}^{G}(\delta \otimes \nu)=\operatorname{Ind}_{Q}^{G}\left(\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)\right)
$$

where $Q=L U$ is the (non-minimal) parabolic subgroup of G defined by $\Re(\nu) .{ }^{2}$ Then, because Q is canonically attached to ν, in order to prove that the minimal principal series $X_{P}(\delta, \nu)$ is independent of the choice of P, we only have to show

[^25]that $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ is independent of P_{L}. This is easier to do, because $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ is unitarily induced. ${ }^{3}$
An explicit computation shows that the character of the unitary representation $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ is independent of the choice of P_{L}, then the result follows from the fact that two unitary representations with the same character are isomorphic.

D. 2 Langlands quotient

For simplicity, assume ν to be real.
Let $M A$ be the Levi factor of a minimal parabolic subgroup of G, let δ be an irreducible tempered unitary representation of M and let ν be a character of A. Choose any minimal parabolic subgroup $P=M A N$ making ν weakly dominant, and let $\bar{P}=M A \bar{N}$ be the opposite parabolic. The representation $\delta \otimes \nu$ of $M A$ can be regarded as a representation of both P and \bar{P}. Let us denote by

$$
X_{q u o}(\delta, \nu)=\operatorname{Ind}_{P}^{G}(\delta \otimes \nu)
$$

and

$$
X_{s u b}(\delta, \nu)=\operatorname{Ind}_{\bar{P}}^{G}(\delta \otimes \nu)
$$

the corresponding induced representations of G.
When ν is strictly dominant, there is an intertwining operator

$$
A=A(\bar{P}: P: \delta: \nu): X_{q u o}(\delta, \nu) \longrightarrow X_{s u b}(\delta, \nu)
$$

defined by the convergent integral:

$$
\begin{equation*}
[A(\bar{P}: P: \delta: \nu) F](x)=\int_{\bar{N}} F(x \bar{n}) d \bar{n} . \tag{D.1}
\end{equation*}
$$

When ν is weakly dominant, the integral in (D.1) does not necessarily converge. To obtain a convergent integral we need to integrate on the smaller subgroup

$$
\bar{U}=\exp \left(\bigoplus_{\alpha \in \Delta_{U}^{-}} \mathfrak{g}_{\alpha}\right) \subseteq \bar{N}
$$

The integral

$$
\begin{equation*}
[A(\bar{P}: P: \delta: \nu) F](x)=\int_{\bar{U}} F(x \bar{n}) d \bar{n} \tag{D.2}
\end{equation*}
$$

converges absolutely for all continuous functions F in $\mathcal{H}_{\delta \otimes \nu}^{P}$, so we still have an intertwining operator from $X_{q u o}(\delta \otimes \nu)$ to $X_{s u b}(\delta \otimes \nu)$.
Define the Langlands quotient representation to be the closure of the image of this operator:

$$
\bar{X}(\delta, \nu)=\overline{\operatorname{Im}(A(\bar{P}: P: \delta: \nu))}
$$

[^26]It is clear that $\bar{X}(\delta, \nu)$ is a subrepresentation of $X_{s u b}(\delta, \nu)$ and a quotient of $X_{q u o}(\delta, \nu)$. According to Langlands and Milicic, it is actually the largest completely reducible subrepresentation of $X_{\text {sub }}(\delta, \nu)$ and the largest completely reducible quotient of $X_{q u o}(\delta, \nu)$.

D. 3 Reducibility

Remark. The Langlands quotient $\bar{X}(\delta, \nu)$ may be reducible.
Proof. Because $\bar{X}(\delta, \nu)$ is the closure of the image of

$$
X_{q u o}(\delta, \nu)=\operatorname{Ind}_{P}^{G}(\delta \otimes \nu)=\operatorname{Ind}_{Q}^{G}\left(\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)\right)
$$

via the long intertwining operator, we start by discussing the reducibility of the unitary representation $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$.
By deep results of Harish-Chandra and Knapp-Stein, the number of irreducible constituents of $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ is equal to the order of the R-group $R(\delta, \nu)$, and these constituents are all distinct. Let

$$
\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)=\bigoplus_{i=1}^{|R(\delta, \nu)|} X_{L}^{i}
$$

be the decomposition of $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ as a direct sum of irreducible representations. We get:

$$
X_{q u o}(\delta, \nu)=\bigoplus_{i=1}^{|R(\delta, \nu)|} \operatorname{Ind}_{Q}^{G}\left(X_{L}^{i}\right)
$$

and

$$
\bar{X}(\delta, \nu)=\frac{X_{q u o}(\delta, \nu)}{\operatorname{ker}(A)}=\bigoplus_{i=1}^{|R(\delta, \nu)|} \frac{\operatorname{Ind}_{Q}^{G}\left(X_{L}^{i}\right)}{\operatorname{ker}(A) \cap \operatorname{Ind}_{Q}^{G}\left(X_{L}^{i}\right)}
$$

By construction the space

$$
\bar{X}^{i}(\delta, \nu)=\frac{\operatorname{Ind}_{Q}^{G}\left(X_{L}^{i}\right)}{\operatorname{ker}(A) \cap \operatorname{Ind}_{Q}^{G}\left(X_{L}^{i}\right)}
$$

is the largest completely reducible quotient of $\operatorname{Ind}_{Q}^{G}\left(X_{L}^{i}\right)$.
Langlands has proved that each $\bar{X}^{i}(\delta, \nu)$ is irreducible, so the decomposition

$$
\begin{equation*}
\bar{X}(\delta, \nu)=\bigoplus_{i=1}^{|R(\delta, \nu)|} \bar{X}^{i}(\delta, \nu) \tag{D.3}
\end{equation*}
$$

exhibits $\bar{X}(\delta, \nu)$ as a direct sum of irreducible representations.
Equation ($D .3$) also shows that the reducibility of the Langlands quotient $\bar{X}(\delta, \nu)$ comes entirely from the reducibility of the unitarily induced representation $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$.

Remark 7. When G is split, the number of irreducible summands of the unitarily induced representation $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ is equal to the cardinality of the R-group $R_{\delta}(\nu)$. We define

$$
R_{\delta}(\nu)=\frac{W^{\delta}(\nu)}{W_{\delta}^{0}(\nu)}=\frac{\left\{w \in W^{\delta}: w \cdot \nu=\nu\right\}}{\left\{w \in W_{\delta}^{0}: w \cdot \nu=\nu\right\}}
$$

For an explicit example of how to compute the number of Langlands quotients, see section (F.2).

How about the reducibility of the (minimal) principal series $X_{\text {quo }}(\delta, \nu)=$ $\operatorname{Ind}_{P}^{G}(\delta \otimes \nu)$? Because $\bar{X}(\delta, \nu)=\frac{X_{q u o}(\delta, \nu)}{\operatorname{ker}(A)}$, reducibility can occur if and only if
(i) the Langlands quotient is reducible
(ii) the intertwining operator A has a kernel.

Of course these two conditions can happen at the same time.
For minimal principal series in split groups these conditions are equivalent to:
($i)^{\prime}$ the R-group $R_{\delta}(\nu)$ is non-trivial
$(i i)^{\prime}$ there is a root α such that the inner product $\left\langle\alpha^{\vee}, \nu\right\rangle$ is a non-zero integer k, and

$$
(-1)^{k+1}=\delta\left(m_{\alpha}\right)
$$

This parity condition means that $\left\langle\alpha^{\vee}, \nu\right\rangle$ should be an odd integer if α is a good root for δ (i.e. $\delta\left(m_{\alpha}\right)=+1$), and an even integer if α is a bad. ${ }^{4}$

[^27]
Appendix E

The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$

E. 1 Preliminary remarks

Lemma 6. Let α be a restricted root and let σ_{α} be a representative in $M^{\prime}=$ $N_{K}(\mathfrak{a})$ for the root reflection s_{α}. For $\left(\mu, E_{\mu}\right)$ in \hat{K} and $\left(\delta, V^{\delta}\right)$ in \hat{M}, consider the operator

$$
\Psi_{\alpha}: \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{s_{\alpha} \cdot \delta}\right), T \mapsto T \circ \mu\left(\sigma_{\alpha}^{-1}\right) .
$$

Ψ_{α} is well defined and can be computed as follows. Let K^{α} be the $S O(2)$ sugbroup attached to α, and let

$$
E_{\mu}=\bigoplus_{n \in \mathbb{Z}} \phi_{n}
$$

be the decomposition of μ in isotypic components of irreducible representations of K^{α}. Then

$$
\left.\left(\Psi_{\alpha} T\right)\right|_{\phi_{n}}=\left.(-i)^{n} T\right|_{\phi_{n}}
$$

for all T in $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$ and n in \mathbb{Z}.
Proof. In order to show that Ψ_{α} is well defined, we prove that the homomorphism

$$
T \circ \mu\left(\sigma_{\alpha}^{-1}\right): E_{\mu} \longrightarrow V^{s_{\alpha} \cdot \delta}
$$

is invariant under the action of $M .{ }^{1}$
By assumption, T is a map from E_{μ} to V^{δ} with the property that

$$
\delta\left(m_{1}\right) \cdot T\left(\mu\left(m_{1}^{-1}\right) v\right)=T(v)
$$

for all v in E_{μ} and all m_{1} in M. Then

[^28]\[

$$
\begin{aligned}
& \left(s_{\alpha} \cdot \delta\right)(m) \cdot\left(T \circ \mu\left(\sigma_{\alpha}^{-1}\right)\right)\left(\mu\left(m^{-1}\right) v\right)= \\
& =\delta(\underbrace{\sigma_{\alpha}^{-1} m \sigma_{\alpha}}_{m_{1}}) T(\underbrace{\mu\left(\sigma_{\alpha}^{-1}\right) \mu\left(m^{-1}\right) \mu\left(\sigma_{\alpha}\right)}_{\mu\left(m_{1}^{-1}\right)} \mu\left(\sigma_{\alpha}^{-1}\right) v)= \\
& =\delta\left(m_{1}\right) \cdot T\left(\mu\left(m_{1}^{-1}\right) \mu\left(\sigma_{\alpha}^{-1}\right) v\right)=T\left(\mu\left(\sigma_{\alpha}^{-1}\right) v\right)=\left(T \circ \mu\left(\sigma_{\alpha}^{-1}\right)\right)(v)
\end{aligned}
$$
\]

The rest of the lemma follows from the fact that $\mu\left(\sigma_{\alpha}^{-1}\right)=\mu\left(\exp \left(-\frac{\pi}{2} Z_{\alpha}\right)\right)$ acts by

$$
\exp \left(-n \frac{\pi}{2} i\right)=i^{-n}=(-i)^{n}
$$

on Φ_{n}. Indeed, Φ_{n} is the isotypic component of the character χ_{n} of $S O(2)$.
Corollary. Let Ψ_{α} be the operator defined above, and let T be an element of $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$.

- If v belongs to $\phi_{2 k}+\phi_{-2 k}$, then $\left(\Psi_{\alpha} T\right)(v)=(-1)^{k} T(v)$
- If $v=v_{+}+v_{-}$belongs to $\phi_{(2 k+1)}+\phi_{-(2 k+1)}$, then

$$
\left(\Psi_{\alpha} T\right)\left(v_{+}+v_{-}\right)=i(-1)^{k+1} T\left(v_{+}-v_{-}\right)
$$

Remark 8. The operator Ψ_{α} is not uniquely defined when α is a bad root for δ.

Proof. Indeed, the element $\sigma_{\alpha}=\exp \left(\frac{\pi}{2} Z_{\alpha}\right)=\exp \left(\frac{\pi}{2}\left(E_{\alpha}+\theta E_{\alpha}\right)\right)$ depends on the choice of E_{α}. Here E_{α} is any non-zero element of the α-root space satisfying the normalizing condition

$$
B\left(E_{\alpha}, \theta E_{\alpha}\right)=-2 /\|\alpha\|^{2}
$$

Because G is assumed to be split, the α-root space is one-dimensional and the condition (\diamond) determines E_{α} uniquely, up to a sign. The element σ_{α} is therefore defined only up inverse.
When α is a good root for δ, this ambiguity does not affect the operator Ψ_{α}, because

$$
\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)
$$

and the elements σ_{α} and σ_{α}^{-1} act in the same way on the even character of $S O(2)$. On the contrary, when α is bad for δ, the decomposition of $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$ only involves odd characters of $S O(2)$ and the elements σ_{α} and σ_{α}^{-1} act with opposite sign on the odd characters of $S O(2)$. Therefore, when α is a bad root, choosing $-E_{\alpha}$ instead of E_{α} has the effect of replacing Ψ_{α} with $-\Psi_{\alpha}$.

The following pictures are meant to illustrate the action of the operator Ψ_{α} on the space $\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right)$.
If α is a good root for δ, then

$$
\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)
$$

and Ψ_{α} acts by:

If α is a bad root for δ, then we can write

$$
\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{M}\left(\phi_{2 n+1}, V^{\delta}\right)
$$

with Ψ_{α} acting by:

Lemma 7. The mapping $\left[\sigma_{\alpha}\right] \mapsto \Psi_{\alpha}$ defines a a representation of the Weyl group of the good roots on the space $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$.

Proof. The key point here is that if α is a good root, then $s_{\alpha} \cdot \delta=\delta$ and Ψ_{α} becomes an automorphism of $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$.
Because

$$
\left[\sigma_{\alpha} \sigma_{\beta}\right] \cdot T=T \circ \mu\left(\left(\sigma_{\alpha} \sigma_{\beta}\right)^{-1}\right)=\left(T \circ \mu\left(\sigma_{\beta}^{-1}\right)\right) \circ \mu\left(\sigma_{\alpha}^{-1}\right)=\Psi_{\alpha}\left(\Psi_{\beta} T\right)
$$

for every pair of good root, the mapping $\left[\sigma_{\alpha}\right] \mapsto \Psi_{\alpha}$ extends to a homomorphism of W_{δ}^{0} into $\operatorname{Aut}\left(\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)\right)$. The result is a representation of W_{δ}^{0} on $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$, defined by the formula:

$$
\begin{equation*}
([\sigma] \cdot T)(v)=T\left(\mu\left(\sigma^{-1}\right) v\right) \tag{E.1}
\end{equation*}
$$

for all σ in W_{δ}, all T in $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$ and all v in E_{μ}.
Remark 9. Equation (E.1) also defines a representation of the stabilizer of δ on the space $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$.

E. 2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ for α simple

We introduce some notations:

- $K^{\alpha}=\exp \left(\mathbb{R} Z_{\alpha}\right)$ is the $S O(2)$ subgroup attached to α
- $\chi_{l}: \exp \left(t Z_{\alpha}\right) \mapsto e^{i l t}$ is the $l^{\text {th }}$ character of K^{α}
- ϕ_{l} is the isotypic component of χ_{l} inside μ, so that $E_{\mu}=\bigoplus_{l \in \mathbb{Z}} \phi_{l}$ is the decomposition of E_{μ} in K^{α}-stable subspaces.

In this section we compute the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$, for every α simple. For T in $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$ and v in ϕ_{l}, we have:

$$
\begin{aligned}
& \left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)(v)=\int_{\bar{N}^{\alpha}} e^{-\left(\rho^{\alpha}+\left.\gamma\right|_{\mathfrak{a}^{\alpha}}\right)\left(H^{\alpha}(\bar{n})\right)} T\left(\left(\sigma_{\alpha} \kappa^{\alpha}(\bar{n})\right)^{-1} \cdot v\right) d \bar{n}= \\
& =\int_{\bar{N}^{\alpha}} e^{-\left(\rho^{\alpha}+\left.\gamma\right|_{\mathfrak{a}^{\alpha}}\right)\left(H^{\alpha}(\bar{n})\right)} T\left(\chi_{+l}\left(\sigma_{\alpha} \kappa^{\alpha}(\bar{n})\right)^{-1} v\right) d \bar{n}= \\
& =\left[\int_{\bar{N}^{\alpha}} e^{-\left(\rho^{\alpha}+\gamma \mid \mathbf{a}^{\alpha}\right)\left(H^{\alpha}(\bar{n})\right)} \chi_{+l}\left(\sigma_{\alpha} \kappa^{\alpha}(\bar{n})\right)^{-1} d \bar{n}\right] T(v)
\end{aligned}
$$

To proceed we need to understand the Iwasawa decomposition of an element \bar{n} of \bar{N}. Let us compute such decomposition. Because G is split, the space

$$
\mathfrak{g}^{\alpha} \equiv \mathbb{R} H_{\alpha} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}
$$

is three-dimensional. Let E_{α} be a non-trivial element of \mathfrak{g}_{α} subject to the normalizing condition $B\left(E_{\alpha}, \theta E_{\alpha}\right)=\frac{+2}{\|\alpha\|^{2}} H_{\alpha}$. Then θE_{α} is a generator of $\mathfrak{g}_{-\alpha}$ and the mapping

$$
\psi_{\alpha}: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{g}^{\alpha}=\mathbb{R} H_{\alpha}+\mathbb{R} E_{\alpha}+\mathbb{R} \theta\left(E_{\alpha}\right)
$$

defined by:

$$
\underline{e}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \mapsto E_{\alpha}, \quad \underline{f}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right) \mapsto-\theta\left(E_{\alpha}\right), \quad \underline{h}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \mapsto \frac{+2}{\|\alpha\|^{2}} H_{\alpha}
$$

is an isomorphism between $\mathfrak{s l}(2, \mathbb{R})$ and \mathfrak{g}^{α}.
When G has a complexification ${ }^{2}, \psi_{\alpha}$ lifts to a group homomorphism

$$
\Psi_{\alpha}: S L(2, \mathbb{R}) \rightarrow G^{\alpha}
$$

We can therefore "induce" the Iwasawa decomposition from $S L(2, \mathbb{R})$ to G^{α} :

$$
\begin{aligned}
& \bar{n}=\exp \left(t \theta\left(E_{\alpha}\right)\right)=\exp \left(-t \psi_{\alpha}(\underline{f})\right)=\Psi_{\alpha}(\exp (-t \underline{f}))=\Psi_{\alpha}\left(\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)\right)= \\
& =\Psi_{\alpha}\left(\left(\begin{array}{rr}
\cos (\arctan (t)) & \sin (\arctan (t)) \\
-\sin (\arctan (t)) & \cos (\arctan (t))
\end{array}\right)\left(\begin{array}{cc}
\sqrt{1+t^{2}} & 0 \\
0 & 1 / \sqrt{1+t^{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right)\right)= \\
& =\Psi_{\alpha}\left(\exp (\arctan (t)(\underline{e}-\underline{f})) \Psi_{\alpha}\left(\exp \left(\ln \left(\sqrt{1+t^{2}}\right) \underline{h}\right)\right) \Psi_{\alpha}(\exp (x \underline{e}))=\right. \\
& =\exp \left(\psi_{\alpha}(\arctan (t)(\underline{e}-\underline{f}))\right) \exp \left(\psi_{\alpha}\left(\ln \left(\sqrt{1+t^{2}}\right) \underline{h}\right)\right) \exp \left(\psi_{\alpha}(x \underline{e})\right)= \\
& =\underbrace{\exp \left(\arctan (t) Z_{\alpha}\right)}_{\kappa^{\alpha}(\bar{n})} \exp (\underbrace{\ln \left(\sqrt{1+t^{2}}\right) \frac{2}{\|\alpha\|^{2}} H_{\alpha}}_{H^{\alpha}(\bar{n})}) \exp \left(x E_{\alpha}\right) .
\end{aligned}
$$

Therefore

- $\rho^{\alpha}\left(H^{\alpha}(\bar{n})\right)=\frac{1}{2} \alpha\left(\ln \left(\sqrt{1+t^{2}}\right) \frac{2}{\|\alpha\|^{2}} H_{\alpha}\right)=\ln \left(\sqrt{1+t^{2}}\right)$
- $\left.\gamma\right|_{\mathfrak{a}^{\alpha}}\left(H^{\alpha}(\bar{n})\right)=\gamma\left(\ln \left(\sqrt{1+t^{2}}\right) \frac{2}{\|\alpha\|^{2}} H_{\alpha}\right)=\ln \left(\sqrt{1+t^{2}}\right)\left\langle\gamma, \frac{2}{\|\alpha\|^{2}} \alpha\right\rangle=$ $=\ln \left(\sqrt{1+t^{2}}\right)\left\langle\gamma,{ }^{\vee} \alpha\right\rangle$

[^29]- $\chi_{l}\left(\sigma_{\alpha} \kappa^{\alpha}(\bar{n})\right)^{-1}=\chi_{l}\left(\exp \left(-\left(\frac{\pi}{2}+\arctan (t)\right) Z_{\alpha}\right)\right)=e^{-l i \frac{\pi}{2}} e^{-l i[\arctan (t)]}=$ $=e^{-l i \frac{\pi}{2}}\left(\frac{1+i t}{\sqrt{1+t^{2}}}\right)^{-l}$, for all l in \mathbb{Z}.
Let us go back to the computation of $R_{\mu}\left(s_{\alpha}, \gamma\right) T(v)$.

$$
\begin{aligned}
& R_{\mu}\left(s_{\alpha}, \gamma\right) T(v)=\left[\int_{\bar{N}^{\alpha}} e^{-\left(\rho^{\alpha}+\left.\gamma\right|_{a^{\alpha}}\right)\left(H^{\alpha}(\bar{n})\right)} \chi_{+l}\left(\sigma_{\alpha} \kappa^{\alpha}(\bar{n})\right)^{-1} d \bar{n}\right] T(v)= \\
& \quad=\left[e^{-l i \frac{\pi}{2}} \int_{\mathbb{R}}\left(\sqrt{1+t^{2}}\right)^{-\left(1+\left\langle\gamma,{ }^{\vee} \alpha\right\rangle\right)}\left(\frac{1+i t}{\sqrt{1+t^{2}}}\right)^{-l} d t\right] T(v)=^{3} \\
& \quad=\left[e^{-l i \frac{\pi}{2}} \int_{\mathbb{R}}\left(\sqrt{1+t^{2}}\right)^{-\left(1+\left\langle\gamma,{ }^{\vee} \alpha\right\rangle\right)}\left(\frac{1-i t}{\sqrt{1+t^{2}}}\right)^{-l} d t\right] T(v)=^{4} \\
& \quad=\left[e^{-l i \frac{\pi}{2}} \int_{-\pi / 2}^{\pi / 2}(\cos \theta)^{1+\lambda} e^{l i \theta} \frac{1}{(\cos \theta)^{2}} d \theta\right] T(v) \\
& \quad=\left[e^{-l i \frac{\pi}{2}} \int_{-\pi / 2}^{\pi / 2}(\cos \theta)^{\lambda-1} e^{l i \theta} d \theta\right] T(v)=^{5} \\
& \quad=\left[e^{-l i \pi} \int_{0}^{\pi}(\sin x)^{\lambda-1} e^{l i x} d x\right] T(v) \\
& \left.\quad=\left[\frac{\pi \Gamma(\lambda) e^{-i l \frac{\pi}{2}}}{2^{\lambda-1} \Gamma\left(1+\frac{\lambda+l-1}{2}\right) \Gamma\left(1+\frac{\lambda-l-1}{2}\right.}\right)\right] T(v) .
\end{aligned}
$$

The last equality follows from the following result:

$$
\int_{0}^{\pi}(\sin t)^{a} e^{i b t} d t=\frac{\pi \Gamma(1+a) e^{i \pi b / 2}}{2^{a} \Gamma\left(1+\frac{a+b}{2}\right) \Gamma\left(1+\frac{a-b}{2}\right)}
$$

for each b in \mathbb{R}, and for each a in \mathbb{C} such that $\operatorname{Re}(a)>-1 .{ }^{6}$
For brevity of notations, we set

$$
d_{l}=\left[\frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(1+\frac{\lambda-l-1}{2}\right) \Gamma\left(1+\frac{\lambda+l-1}{2}\right)}\right]
$$

Then

$$
R_{\mu}\left(s_{\alpha}, \gamma\right) T(v)=(-i)^{l} d_{l} T(v)
$$

$$
\begin{aligned}
& { }^{3} \text { Perform the change of variable }(t \mapsto-t) \text {. } \\
& { }^{4} \text { Apply the change variable } \theta \rightarrow x=\theta+\pi / 2 \text {, which gives: } \\
& \sqrt{1+t^{2}}=\frac{1}{\cos \theta} \\
& \frac{1-i t}{\sqrt{1+t^{2}}}=\cos \theta+i \tan \theta \cos \theta=e^{i \theta} \\
& d t=-\frac{1}{(\cos \theta)^{2}} d \theta
\end{aligned}
$$

${ }^{5}$ Another change of variable $\theta \rightarrow x=\theta+\pi / 2$.
${ }^{6}$ See e.g. [?].
for all T in $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, \mathbb{C}\right)$ and all v in ϕ_{l}.
The next task is to give a more explicit description of d_{l}, and to do so we must distinguish between the even and the odd case. ${ }^{7}$

The case $l=2 n, n \geq 0$
It is convenient to introduce the constant

$$
D=d_{0}=\frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda+1}{2}\right) \Gamma\left(\frac{\lambda+1}{2}\right)}
$$

and to look at the normalized coefficients:

$$
\frac{1}{D} d_{2 n}=\frac{\Gamma\left(\frac{\lambda+1}{2}\right) \Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\frac{\lambda+1}{2}+n\right) \Gamma\left(\frac{\lambda+1}{2}-n\right)}
$$

To simplify this expression we recall the factorization property of the Γ function

$$
\Gamma(z+1)=z \Gamma(z)
$$

and we introduce the notation

$$
(z)_{n}=z(z+1)(z+2) \cdots(z+n-1)
$$

for each z in \mathbb{C}, and for every positive integer n. Then
$\frac{\Gamma(z) \Gamma(z)}{\Gamma(z+n) \Gamma(z-n)}=\frac{\Gamma(z)(z-n)_{n} \Gamma(z-n)}{(z)_{n} \Gamma(z) \Gamma(z-n)}=\frac{(z-n)_{n}}{(z)_{n}}=\frac{(z-1)(z-2) \cdots(z-n)}{z(z+1) \cdots(z+n-1)}$.
Setting $z=\frac{\lambda+1}{2}$, we find:
$\frac{1}{D} d_{2 n}=\frac{(\lambda-1)(\lambda-3) \cdots(\lambda-2 n+1)}{(\lambda+1)(\lambda+3) \cdots(\lambda+2 n-1)}=(-1)^{n} \frac{(1-\lambda)(3-\lambda) \cdots(2 n-1-\lambda)}{(1+\lambda)(3+\lambda) \cdots(2 n-1+\lambda)}$.
It follows that

$$
R_{\mu}\left(s_{\alpha}, \gamma\right) T(v)=(-i)^{2 n} d_{2 n} T(v)=\frac{(1-\lambda)(3-\lambda) \cdots(2 n-1-\lambda)}{(1+\lambda)(3+\lambda) \cdots(2 n-1+\lambda)} T(v)
$$

for all T in $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, \mathbb{C}\right)$ and all v in $\phi_{2 n}$. Same result for $v \in \phi_{2 n}$, because $(-i)^{-2 n} d_{-2 n}=(-1)^{n} d_{-2 n}=(-1)^{n} d_{2 n}=(-i)^{2 n} d_{2 n}$.

The case $l=2 n+1, n \geq 0$
We introduce the constant

$$
D^{\prime}=d_{1}=(-i) \frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\lambda}{2}+1\right)},
$$

[^30]and consider the normalized coefficients:
$$
\frac{1}{D^{\prime}} d_{2 n+1}=(+i) \frac{\Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\lambda}{2}+1\right)}{\Gamma\left(\frac{\lambda}{2}-n\right) \Gamma\left(\frac{\lambda}{2}+1+n\right)} .
$$

Using the formulas

$$
\begin{gathered}
\frac{\Gamma(z)}{\Gamma(z-n)}=\frac{(z-n)_{n} \Gamma(z-n)}{\Gamma(z-n)}=(z-n)_{n}=(z-1)(z-2) \cdots(z-n) \\
\frac{\Gamma\left(z^{\prime}\right)}{\Gamma\left(z^{\prime}+n\right)}=\frac{\Gamma\left(z^{\prime}\right)}{\left(z^{\prime}\right)_{n} \Gamma\left(z^{\prime}\right)}=\frac{1}{z^{\prime}\left(z^{\prime}+1\right) \cdots\left(z^{\prime}+n-1\right)}
\end{gathered}
$$

for $z=\frac{\lambda}{2}$ and $z^{\prime}=\frac{\lambda}{2}+1$, we can write:

$$
\frac{1}{D^{\prime}} d_{2 n+1}=(+i) \frac{(\lambda-2)(\lambda-4) \cdots(\lambda-2 n)}{(\lambda+2)(\lambda+4) \cdots(\lambda+2 n)}=(-1)^{n}(+i) \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)}
$$

Therefore:

$$
\begin{gathered}
\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{2 n+1}}=\left.(-i)^{2 n+1} d_{2 n+1} T\right|_{\phi_{2 n+1}}= \\
=\left.(-i)^{2 n+1}(-1)^{n}(+i) D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} T\right|_{\phi_{2 n+1}}= \\
=+\left.D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} T\right|_{\phi_{2 n+1}}
\end{gathered}
$$

and

$$
\begin{gathered}
\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{-2 n-1}}=\left.(-i)^{-2 n-1} d_{-2 n-1} T\right|_{\phi_{2 n+1}}=\left.(-i)^{-2 n-1} d_{2 n+1} T\right|_{\phi_{-2 n-1}}= \\
=\left.(-i)^{-2 n-1}(-1)^{n}(+i) D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} T\right|_{\phi_{-2 n-1}} \\
=-\left.D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} T\right|_{\phi_{-2 n-1}}
\end{gathered}
$$

Conclusions

Write $E_{\mu}=\bigoplus_{l \in \mathbb{Z}} \phi_{l}$ for a decomposition of μ in isotypic components of irreducible representations of the $S O(2)$-subgroup attached to α, and denote by F the (common) vector space for the representations δ and $s_{\alpha} \cdot \delta$ of M. The intertwining operator

$$
R_{\mu}\left(s_{\alpha}, \gamma\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}=F\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}=F\right)
$$

acts as follows: for every $T: E_{\mu} \rightarrow F$ in the domain, $R_{\mu}\left(s_{\alpha}, \gamma\right) T$ is the unique homomorphism $E_{\mu} \rightarrow F$ such that

- $\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{2 n}}=\left.D \frac{(1-\lambda)(3-\lambda) \cdots(2 n-1-\lambda)}{(1+\lambda)(3+\lambda) \cdots(2 n-1+\lambda)} T\right|_{\phi_{2 n}}$
- $\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{-2 n}}=\left.D \frac{(1-\lambda)(3-\lambda) \cdots(2 n-1-\lambda)}{(1+\lambda)(3+\lambda) \cdots(2 n-1+\lambda)} T\right|_{\phi_{-2 n}}$
- $\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{2 n+1}}=\left.D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} T\right|_{\phi_{2 n+1}}$
- $\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{-2 n-1}}=-\left.D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} T\right|_{\phi_{-2 n-1}}$
for every integer $n \geq 0$. The constants

$$
D=\frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda+1}{2}\right) \Gamma\left(\frac{\lambda+1}{2}\right)}
$$

and

$$
D^{\prime}=(-i) \frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\lambda}{2}+1\right)}
$$

have been chosen so that

$$
\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{0}}=\left.D \cdot T\right|_{\phi_{0}}
$$

and

$$
\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{1}}=\left.D^{\prime} \cdot T\right|_{\phi_{1}} .
$$

For brevity of notations, set:

$$
c_{2 n}=D \frac{(1-\lambda)(3-\lambda) \cdots(2 n-1-\lambda)}{(1+\lambda)(3+\lambda) \cdots(2 n-1+\lambda)} ; c_{-2 n}=c_{2 n}
$$

and

$$
c_{2 n+1}=D^{\prime} \frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)} ; c_{-2 n-1}=c_{2 n+1} .
$$

Then we have the following picture:

Remark 10. It is possible to give an even simpler description of the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$, if we know whether the root α is good or bad for δ. Indeed, these conditions force an element of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ to be trivial on all the ϕ_{l} with l odd, or on all the ϕ_{l} with l even respectively.

E.2.1 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ for α simple and good

For every good root α, the operator

$$
R_{\mu}\left(s_{\alpha}, \gamma\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta=\delta}\right)
$$

is an endomorphism of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$.
Moreover, the decomposition of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ in $M K^{\alpha}$-stable subspaces involves only even characters.
This is the content of the next two lemmas.
Lemma 8. If α is good for δ, then

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right)
$$

Proof. For every good root α, the reflection s_{α} stabilizes δ. Indeed the Weyl group of the good co-roots is a (normal) subgroup of the stabilizer of δ.

Lemma 9. If α is good for δ, then

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)
$$

Proof. Let n be any integer and let T be an element of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. We show that the restriction of T to every "odd isotypic" $\phi_{2 n+1}$ is trivial.
Pick v in $\phi_{2 n+1}$, then

$$
T(v)=\delta\left(m_{\alpha}\right) T\left(\mu\left(m_{\alpha}^{-1}\right) v\right)=\underbrace{\delta\left(m_{\alpha}\right)}_{+I d} T(\underbrace{\chi_{2 n+1}\left(m_{\alpha}^{-1}\right) v}_{=e^{\pi(2 n+1) i} v=-v})=-T(v)
$$

so $T(v)$ must be equal to zero.
The domain and codomain of $R_{\mu}\left(s_{\alpha}, \gamma\right)$ are now understood.
We already know that

$$
\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{ \pm 2 n}}=\left.c_{2 n} T\right|_{\phi_{ \pm 2 n}}
$$

for all T in $\operatorname{Hom}_{M}\left(\bigoplus_{n \in \mathbb{Z}} \phi_{2 n}, V^{\delta}\right)$, and all $n \geq 0$. So the action of $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is given by:

It is clear from this picture that $R_{\mu}\left(s_{\alpha}, \gamma\right)$ preserves the decomposition of
$\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ in $M K^{\alpha}$-invariant subspaces:

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)
$$

More precisely, $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts on $\operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)$ as scalar multiplication by

$$
c_{2 n}=D \frac{\Pi_{j=1}^{n}\left((2 j-1)-\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}{\Pi_{j=1}^{n}\left((2 j-1)+\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}
$$

for all $n>0$, and it acts on $\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right)$ as scalar multiplication D.
We can normalize the intertwining operator so that it takes the value +1 on the lowest K-type. This corresponds to dividing $R_{\mu}\left(s_{\alpha}, \gamma\right)$ by $D .{ }^{8}$
The normalized operator acts trivially on $\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right)$, and it acts on each subspace $\operatorname{Hom}_{M}\left(\phi_{2 n}+\phi_{-2 n}, V^{\delta}\right)$ by the scalar d_{n} :

We have set $d_{0}=1$ and

$$
d_{2 n}=\frac{\prod_{j=1}^{n}\left((2 j-1)-\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}{\prod_{j=1}^{n}\left((2 j-1)+\left\langle\lambda,{ }^{\vee} \alpha\right\rangle\right)}
$$

for all $n \geq 1$.

E.2.2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ for α simple and bad

When α is a bad root, the reflection s_{α} does not necessarily stabilize δ. Hence the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ may fail to be an endomorphism of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. Moreover, the decomposition of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ in $M K^{\alpha}$-stable subspaces involves only odd characters.
We give the details in the next two lemmas.
Lemma 10. The reflection s_{α} may fail to stabilize δ when α is a bad root.
Proof. Suppose that there exists a positive root β for which the Cartan integer $\left\langle\alpha,{ }^{\vee} \beta\right\rangle$ is odd. Then

$$
\sigma_{\alpha}^{-1} m_{\beta} \sigma_{\alpha}=m_{\beta} m_{\alpha}^{\frac{1}{2}\left[1-(-1)^{\left\langle\alpha, \vee^{\vee}\right\rangle}\right]}=m_{\beta} m_{\alpha}
$$

[^31]and
$$
\left(s_{\alpha} \cdot \delta\right)\left(m_{\beta}\right)=\delta\left(\sigma_{\alpha}^{-1} m_{\beta} \sigma_{\alpha}\right)=\delta\left(m_{\beta} m_{\alpha}\right)=\delta\left(m_{\beta}\right) \underbrace{\delta\left(m_{\alpha}\right)}_{-I d}=-\delta\left(m_{\beta}\right)
$$

Remark 11. For classical split groups, the reflection s_{α} across a bad root is in the stabilizer of δ if and only if there are no positive roots β for which the Cartan integer $\left\langle\alpha,{ }^{\vee} \beta\right\rangle$ is odd.

Proof. If G is a classical split group, then M is abelian and is generated by all the elements $m_{\beta}=\exp \left(\pi Z_{\beta}\right)$. So s_{α} stabilizes δ if and only if

$$
\left(s_{\alpha} \cdot \delta\right)\left(m_{\beta}\right)=\delta\left(m_{\beta}\right)
$$

for every positive root β. Because

$$
\left(s_{\alpha} \cdot \delta\right)\left(m_{\beta}\right)=\delta\left(\sigma_{\alpha}^{-1} m_{\beta} \sigma_{\alpha}\right)=\delta\left(m_{\beta} m_{\alpha}^{\frac{1}{2}\left[1-(-1)^{\left\langle\alpha, \vee_{\beta\rangle}\right]}\right)}\right.
$$

we only need

$$
\delta\left(m_{\alpha}^{\frac{1}{2}\left[1-(-1)^{\left\langle\alpha, \vee_{\beta}\right\rangle}\right]}\right)=+I d
$$

When $\left\langle\alpha,{ }^{\vee} \beta\right\rangle$ is even, this condition is automatically satisfied because m_{α}^{0} is the identity of M and $\delta(e)=+I d$. When $\left\langle\alpha,{ }^{\vee} \beta\right\rangle$ is odd, this condition always fails because $\delta\left(m_{\alpha}\right)=-I d$.

Example: let G be $S L(2)$ and let δ be the sign representation of M. The root $\alpha=\epsilon_{1}-\epsilon_{2}$ is a bad root for δ (because $m_{\alpha}=\operatorname{diag}(-1,-1)$). There are no other positive roots, and in particular there are no positive roots β for which the Cartan integer $\left\langle\alpha,{ }^{\vee} \beta\right\rangle$ is odd. Hence s_{α} to stabilize δ.
Now let G be $S L(3)$ and let δ be the representation of M that picks up the first diagonal entry of an element of M. The root $\alpha=\epsilon_{1}-\epsilon_{2}$ is a bad root for δ (because $m_{\alpha}=\operatorname{diag}(-1,-1,+1)$ so $\delta\left(m_{\alpha}\right)=-1$). We notice that the Cartan integer $\left\langle\epsilon_{1}-\epsilon_{2}, \epsilon_{1}-\epsilon_{3}\right\rangle=+1$ is odd, so s_{α} does not stabilize δ.

Lemma 11. If α is bad for δ, then

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)
$$

Proof. We prove that for all T of $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)$ and all n in \mathbb{Z}, the restriction of T to the "even isotypic" $\phi_{2 n}$ is trivial.
Pick v in $\phi_{2 n}$, then

$$
T(v)=\delta\left(m_{\alpha}\right) T\left(\mu\left(m_{\alpha}^{-1}\right) v\right)=\underbrace{\delta\left(m_{\alpha}\right)}_{-1} T(\underbrace{\chi_{2 n}\left(m_{\alpha}^{-1}\right) v}_{=e^{\pi(2 n) i} v=+v})=-T(v)
$$

so $T(v)$ must be zero.

Now we discuss the action of the operator

$$
R_{\mu}\left(s_{\alpha}, \gamma\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right)
$$

Because

$$
\left.\left(R_{\mu}\left(s_{\alpha}, \gamma\right) T\right)\right|_{\phi_{ \pm(2 n+1)}}= \pm\left. c_{2 n+1} T\right|_{\phi_{ \pm(2 n+1)}}
$$

for all T in $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$, and all $n \geq 0$, we obtain the following picture:

We notice that $R_{\mu}\left(s_{\alpha}, \gamma\right)$ preserves the $M K^{\alpha}$-invariant subspaces, and it carries

$$
\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right) \longrightarrow \operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{s_{\alpha} \cdot \delta}\right)
$$

If T belongs to $\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)$, its image via $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is the mapping

$$
\begin{equation*}
\phi_{2 n+1}+\phi_{-2 n-1} \longrightarrow V^{s_{\alpha} \cdot \delta},\left(v_{+}+v_{-}\right) \longmapsto c_{2 n+1} T\left(v_{+}-v_{-}\right) \tag{E.2}
\end{equation*}
$$

It is interesting to compare the action of $R_{\mu}\left(s_{\alpha}, \gamma\right)$ with that one of the operator

$$
\Psi_{\alpha}: \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right), S \mapsto S \circ \mu\left(\sigma_{\alpha}^{-1}\right)
$$

considered in section (E.1).
For all $n \geq 0$, and all T in $\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)$, we have

$$
\Psi_{\alpha} T\left(v_{+}+v_{-}\right)=-i(-1)^{n} T\left(v_{+}-v_{-}\right)
$$

so we can write

$$
\left.R_{\mu}\left(s_{\alpha}, \gamma\right)\right|_{\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-2 n-1}, V^{\delta}\right)}=i(-1)^{n} c_{2 n+1} \Psi_{\alpha} .
$$

The composition $R_{\mu}\left(s_{\alpha}, \gamma\right) \circ\left(\Psi_{\alpha}\right)^{-1}$ is an endomorphism of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. It acts on each $\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-(2 n+1)}, V^{\delta}\right)$ as scalar multiplication by

$$
i(-1)^{n} c_{2 n+1}=(-1)^{n}\left(i D^{\prime}\right) d_{2 n+1}
$$

The constant $i D^{\prime}=i \frac{-i \pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma\left(\frac{\lambda}{2}\right) \Gamma\left(\frac{\lambda}{2}+1\right)}$ is real and positive, and the normalized operator

$$
\frac{R_{\mu}\left(s_{\alpha}, \gamma\right) \circ\left(\Psi_{\alpha}\right)^{-1}}{i D^{\prime}}
$$

acts by:

Finally, we recall that $d_{1}=1$ and

$$
d_{2 n+1}=\frac{(2-\lambda)(4-\lambda) \cdots(2 n-\lambda)}{(2+\lambda)(4+\lambda) \cdots(2 n+\lambda)}
$$

for all $n \geq 1$.
Remark 12. The operator $\left(\Psi_{\alpha}\right)$ is defined up to a minus sign, but the composition $\left(\Psi_{\alpha}\right)^{-1} \circ R_{\mu}\left(s_{\alpha}, \gamma\right)$ is not affected by this choice.

Proof. By definition, $\sigma_{\alpha}=\exp \left(\frac{\pi}{2} Z_{\alpha}\right)=\exp \left(\frac{\pi}{2}\left(E_{\alpha}+\theta E_{\alpha}\right)\right)$. As noticed in section (E.1) there is an ambiguity of sign in the choice of E_{α}. This implies that σ_{α} is defined up to inverse and Ψ_{α} up to a minus sign.
We notice that replacing σ_{α} with σ_{α}^{-1} has also the effect of switching $\phi_{2 n+1}$ with $\phi_{-2 n-1}$, and $c_{2 n+1}$ with $c_{-2 n-1}=-c_{2 n+1}$. It follows that the operator $\frac{R_{\mu}\left(s_{\alpha}, \gamma\right) \circ\left(\Psi_{\alpha}\right)^{-1}}{i D^{\prime}}$ still acts by $(-1)^{n} d_{2 n+1}$ on $\operatorname{Hom}_{M}\left(\phi_{2 n+1}+\phi_{-(2 n+1)}, V^{\delta}\right)$.

E. 3 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ on petite K-types

For an explicit example, see section (F.3).
When the K-type μ is petite, the restriction of μ to the $S O(2)$-subgroup attached to α can only include the characters $0, \pm 1, \pm 2, \pm 3$. Therefore

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)= \begin{cases}\operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{0}+\phi_{2}, V^{\delta}\right) & \text { if } \alpha \text { is good for } \delta \\ \operatorname{Hom}_{M}\left(\phi_{-3}+\phi_{-1}+\phi_{1}+\phi_{3}, V^{\delta}\right) & \text { if } \alpha \text { is bad for } \delta\end{cases}
$$

We analyze the two cases separately.

If α is $\operatorname{good} \cdots$

If α is a good root for δ, the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is an endomorphism of

$$
\begin{equation*}
\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}, V^{\delta}\right)=\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right) \oplus \operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{+2}, V^{\delta}\right) \tag{E.3}
\end{equation*}
$$

It acts on $\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right)$ by D, and on $\operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{+2}, V^{\delta}\right)$ by $D d_{2}=D \frac{1-\left\langle\lambda,{ }^{\vee} \alpha\right\rangle}{1+\left\langle\lambda,{ }^{\vee} \alpha\right\rangle}$. Let Ψ^{μ} be the representation of the Weyl group of the good co-roots W_{δ}^{0} on (E.3) defined by $([\sigma] \cdot T)(v)=T\left(\mu\left(\sigma^{-1}\right) v\right)$.
The reflection $s_{\alpha}=\left[\sigma_{\alpha}\right]$ belongs to W_{δ}^{0}, so it acts on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$. We have:

$$
\begin{aligned}
\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right) & \equiv \text { the }(+1) \text {-eigenspace of } s_{\alpha} \\
\operatorname{Hom}_{M}\left(\phi_{-2}+\phi_{+2}, V^{\delta}\right) & \equiv \text { the }(-1) \text {-eigenspace of } s_{\alpha} .
\end{aligned}
$$

Therefore, we obtain the following picture:

We can write:

$$
\frac{1}{D} R_{\mu}\left(s_{\alpha}, \gamma\right)=\left\{\begin{array}{cc}
+1 & \text { on the }(+1) \text {-eigenspace of } \Psi^{\mu}\left(s_{\alpha}\right) \\
\frac{1-\langle\gamma, \vee}{1+\langle\gamma, \vee \alpha\rangle} & \text { on the }(-1) \text {-eigenspace of } \Psi^{\mu}\left(s_{\alpha}\right)
\end{array}\right.
$$

Remark 13. When μ is petite and α is good, the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ can be defined in terms of the representation Ψ^{μ} of W_{δ}^{0} on the space $\operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M}\right.$, $\left.V^{\delta}\right)$.
There is no need to know the decomposition of μ in irreducible representations of $K^{\alpha} \simeq S O(2)$.

If α is $\operatorname{bad} \ldots$

If α is a bad root for δ, then

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)=\operatorname{Hom}_{M}\left(\phi_{1}+\phi_{-1}, V^{\delta}\right)+\operatorname{Hom}_{M}\left(\phi_{3}+\phi_{-3}, V^{\delta}\right)
$$

and of course

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right)=\operatorname{Hom}_{M}\left(\phi_{1}+\phi_{-1}, V^{s_{\alpha} \cdot \delta}\right)+\operatorname{Hom}_{M}\left(\phi_{3}+\phi_{-3}, V^{s_{\alpha} \cdot \delta}\right)
$$

The normalized operator $\frac{R_{\mu}\left(s_{\alpha}, \gamma\right)}{i D^{\prime}}$ acts on $\operatorname{Hom}_{M}\left(\phi_{1}+\phi_{-1}, V^{\delta}\right)$ as $d_{1} \Psi^{\alpha}=\Psi^{\alpha}$:

$$
\frac{1}{i D^{\prime}} R_{\mu}\left(s_{\alpha}, \gamma\right) \cdot T=\Psi_{\alpha} \cdot T=T \circ \mu\left(\sigma_{\alpha}^{-1}\right)
$$

and on $\operatorname{Hom}_{M}\left(\phi_{3}+\phi_{-3}, V^{\delta}\right)$ as the operator $-d_{3} \Psi^{\alpha}$:

$$
\frac{1}{i D^{\prime}} R_{\mu}\left(s_{\alpha}, \gamma\right) \cdot T=-d_{3} \Psi_{\alpha} \cdot T=-d_{3} T \circ \mu\left(\sigma_{\alpha}^{-1}\right)
$$

The representation Ψ^{μ} of W_{δ}^{0} on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$ extends to a representation $\widetilde{\Psi^{\mu}}$ of W^{δ} on the same space:

$$
\widetilde{\Psi^{\mu}}[\sigma] \cdot T=T \circ \mu\left(\sigma^{-1}\right)
$$

for all T in $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$.
If s_{α} belongs to the stabilizer of δ, we can interpret the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ in terms of this Weyl group representation:

$$
\frac{1}{D} R_{\mu}\left(s_{\alpha}, \gamma\right)=\widetilde{\Psi^{\mu}}\left(s_{\alpha}\right)
$$

(as noticed in section (E.1) there is an ambiguity of sign. The choice of this sign is independent of γ and μ).
If s_{α} does not belong to W^{δ}, then there is no similar interpretation.
Remark 14. If μ has level 3, we still need to know the decomposition of μ in irreducible representations of $K^{\alpha} \simeq S O(2) .{ }^{9}$
If μ has level at most 2, then we can construct $R_{\mu}\left(s_{\alpha}, \gamma\right)$ only in terms of the representation $\widetilde{\Psi^{\mu}}$ of W^{δ} on the $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$.

[^32]
E.3.1 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ on K-types of level at most two

If the K-type μ has level two, the restriction of μ to the $S O(2)$-subgroup attached to α can only include the characters $0, \pm 1, \pm 2$. Therefore
$\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)= \begin{cases}\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right)+\operatorname{Hom}_{M}\left(\phi_{2}+\phi_{-2}, V^{\delta}\right) & \text { if } \alpha \text { is good for } \delta \\ \operatorname{Hom}_{M}\left(\phi_{-1}+\phi_{1}, V^{\delta}\right) & \text { if } \alpha \text { is bad for } \delta .\end{cases}$
For every simple root α such that s_{α} belongs to W^{δ}, we can define the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ only in terms of the representation $\widetilde{\Psi^{\mu}}$ of W^{δ} on $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$: $R_{\mu}\left(s_{\alpha}, \gamma\right)=\left(-i D^{\prime}\right) \widetilde{\Psi}^{\mu}\left(s_{\alpha}\right)$ is α is bad, and

$$
R_{\mu}\left(s_{\alpha}, \gamma\right)=\left\{\begin{array}{cl}
D & \text { on the }(+1) \text {-eigenspace of } \widetilde{\Psi}^{\mu}\left(s_{\alpha}\right) \\
D \frac{1-\langle\gamma, \vee \alpha\rangle}{1+\langle\gamma, \vee \alpha\rangle} & \text { on the }(-1) \text {-eigenspace of } \widetilde{\Psi}^{\mu}\left(s_{\alpha}\right)
\end{array}\right.
$$

if α is good.

E.3.2 The operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ on fine K-types

Finally, we discuss the case in which the K-type μ is fine.
The restriction of μ to the $S O(2)$-subgroup attached to α can only include the characters $0, \pm 1$. Therefore

$$
\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)= \begin{cases}\operatorname{Hom}_{M}\left(\phi_{0}, V^{\delta}\right) & \text { if } \alpha \text { is good for } \delta \\ \operatorname{Hom}_{M}\left(\phi_{-1}+\phi_{1}, V^{\delta}\right) & \text { if } \alpha \text { is bad for } \delta\end{cases}
$$

When α is good, the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is a scalar operator, equal to D. We notice that the operator $\widetilde{\Psi^{\mu}}\left(s_{\alpha}\right)$ is trivial. So we can write: $R_{\mu}\left(s_{\alpha}, \gamma\right)=D \widetilde{\Psi^{\mu}}\left(s_{\alpha}\right)$. When α is bad and the root reflection s_{α} stabilizes δ, the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ acts as $-i D^{\prime} \widetilde{\Psi^{\mu}}\left(s_{\alpha}\right)$.

Remark 15. If μ is fine, the operator $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is a multiple of $\widetilde{\Psi^{\mu}}\left(s_{\alpha}\right)$, for every root α such that s_{α} is in the stabilizer of δ.
Corollary. $R_{\mu}(\omega, \nu)$ is a multiple of $\widetilde{\Psi^{\mu}}(\omega)=\mu\left(\sigma_{\alpha}^{-1}\right)$, when ω belongs to the stabilizer of δ.

One final remark. If $\# R_{\mu}>\# R_{\mu}(\nu)$, then there is at least one Langlands quotient that contains more than one fine K-type. The operator $R_{\mu}(\omega, \nu)$ may separate the two fine K-types or act with the same sign. Only in the latter case we can hope for unitarity.
To conclude the section, we give example of these two possible behaviors.

1. Consider the minimal principal series for $S L(2)$ induced from the sign representation, with parameter $\nu=a \epsilon_{1}-a \epsilon_{2}, a>0$.
There are two lowest K-types, χ_{1} and χ_{-1}, and indeed the R-group R_{δ}
has cardinality two. ${ }^{10}$ These K-types lie in the same Langlands quotient ($R_{\delta}(\nu)$ is trivial). We also notice that the element ω is the reflection through the (unique positive) root and it belongs to W^{δ}, so we are in the right setting. ω acts by $+i$ on χ_{1} and by $-i$ on χ_{-1}, so it separates the two fine K-types, and there is no hope for unitarity.
2. Consider the minimal principal series for $S L(4)$ induced from the representation $\delta=\delta_{2,3}$ of M, with parameter $\nu=a \epsilon_{1}+b \epsilon_{2}-b \epsilon_{3}-a \epsilon_{4}$, with $a>b>0 .{ }^{11}$ There are two fine representations of $S O(4)$ containing $\delta,{ }^{12}$ $\psi_{1}+\psi_{2}$ and $\psi_{1}-\psi_{2}$, and indeed the R-group R_{δ} has cardinality two. ${ }^{13}$ The two lowest K-types lie in the same Langlands quotient, because $R_{\delta}(\nu)$ is trivial. ${ }^{14}$ The element $\omega=(14)(23)$ belongs to W_{δ}^{0}, hence to W^{δ}.
The setting is similar to the one of the previous example, but in this case the intertwining operator does not separate the two lowest K-types (the signs are the same).
[^33]
Appendix F

Non-spherical representations of $S P(4)$

F. 1 Preliminary remarks

The data for $S P(4)$
We recall the data for $S P(4)$, mainly to fix the notations:

- $G=S P(4)=\left\{x \in G L(4): x^{T} J x=J\right\}$ with J the skew-symmetric matrix $J=\left(\begin{array}{cc}O & I_{2} \\ -I_{2} & O\end{array}\right)$. We can also write: $G=\left\{\left(\begin{array}{cc}A & B \\ C & D\end{array}\right): A^{T} C-C^{T} A=O=B^{T} D-D^{T} B ; A^{T} D-C^{T} B=I\right\}$
- $\mathfrak{g}=\mathfrak{s p}(4)=\left\{X \in \mathfrak{g l}(4): x^{T} J+J X=O\right\}=\left\{\left(\begin{array}{cc}A & B \\ C & -A^{T}\end{array}\right): B C\right.$ symmetric $\}$
- $\theta: \mathfrak{g} \rightarrow \mathfrak{g}, X \mapsto-X^{T}$
- $K=S P(4) \cap S O(4) \simeq U(2)$ via the mapping

$$
\left(\begin{array}{cc}
A & -C \\
C & A
\end{array}\right) \mapsto A+i C
$$

- $\mathfrak{k}=\{$ skew-symmetric matrices in $\mathfrak{g}\} \simeq \mathfrak{u}(2)$ via the mapping

$$
\left(\begin{array}{cc}
A & C \\
-C^{T} & -A^{T}
\end{array}\right) \mapsto A+i C
$$

- $\mathfrak{p}=\{$ symmetric matrices in $\mathfrak{g}\}=\left\{\left(\begin{array}{cc}A & C \\ C^{T} & -A^{T}\end{array}\right): A\right.$ and C are symmetric $\}$
- $\mathfrak{a}=$ maximal abelian subspace in $\mathfrak{g}=\left\{\left(\begin{array}{cc}\Lambda & O \\ O & -\Lambda\end{array}\right): \Lambda\right.$ is diagonal $\}$
- $A=\left\{\left(\begin{array}{cc}D & O \\ O & D^{-1}\end{array}\right): D\right.$ is diagonal, with positive entries $\}$
- $M=\left\{\left(\begin{array}{ll}D & O \\ O & D\end{array}\right): D\right.$ is diagonal, with entries $\left.\pm 1\right\} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $\Delta(\mathfrak{g}, \mathfrak{a})=\left\{ \pm\left(\epsilon_{1} \pm \epsilon_{2}\right), \pm 2 \epsilon_{1}, \pm 2 \epsilon_{2}\right\}$. We notice that:
- If $\alpha=\epsilon_{1}-\epsilon_{2}$, then (in the $U(2)$-picture)

$$
\sigma_{\alpha}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad m_{\alpha}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

- If $\alpha=\epsilon_{1}+\epsilon_{2}$, then

$$
\sigma_{\alpha}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \quad \text { and } \quad m_{\alpha}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

- If $\alpha=2 \epsilon_{1}$, then

$$
\sigma_{\alpha}=\left(\begin{array}{cc}
-i & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad m_{\alpha}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

- If $\alpha=2 \epsilon_{2}$, then

$$
\sigma_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & -i
\end{array}\right) \quad \text { and } \quad m_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- For the simple root $\epsilon_{1}-\epsilon_{2}$, we find $M G^{\alpha} \simeq S L^{ \pm}(2)$ and $M G^{\alpha} \cap K \simeq O(2)$
- For the simple root $2 \epsilon_{2}$, we find $M G^{\alpha} \simeq O(1) \times S L(2)$ and $M G^{\alpha} \cap K \simeq$ $O(1) \times U(1)$ (in the $U(2)$-picture).

Irreducible representations of M

The group M is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, so it has four characters

$$
\begin{aligned}
& -\delta_{0}:\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) \mapsto 1 \\
& -\delta_{1}:\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) \mapsto a_{1} \\
& -\delta_{2}:\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) \mapsto a_{1} a_{2}
\end{aligned}
$$

$$
-\delta_{3}:\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right) \mapsto a_{2}
$$

The Weyl group fixes both the trivial representation δ_{0} and the determinant representation δ_{2}, but switches δ_{1} and δ_{3}.

Irreducible representations of K

In this subsection we describe the reducible representations of K, and their restriction to the subgroups M, and K^{α} for α simple.

Classification

$$
\hat{K}=\left\{a \epsilon_{1}+b \epsilon_{2}: a, b \in \mathbb{Z}, a \geq b\right\}
$$

We notice that $a \epsilon_{1}+b \epsilon_{2}$ has dimension $a-b+1$.

$$
\epsilon_{1} \text { is the standard representation; }
$$

$-\epsilon_{1}$ is the dual of the standard representation;
$\epsilon_{1}+\epsilon_{2}$ is representation $\bigwedge^{2}\left(\mathbb{C}^{2}\right) ;$
$-\epsilon_{1}-\epsilon_{2}$ is the dual of $\bigwedge^{2}\left(\mathbb{C}^{2}\right)$.
Remark 16. Using the isomorphism $U(2) \simeq \frac{S^{1} \otimes S U(2)}{ \pm(1, I)}$, we can give another classification of the irreducible representations of $K=U(2)$:

$$
\hat{K}=\{(m, n): m \in \mathbb{Z}, n \in \mathbb{N} \text { and } m+n \equiv 0(\bmod 2)\}
$$

Here m stands for the $m^{t h}$ character of S^{1}, and n stands for the irreducible representation of $S U(2)$ on the space of homogeneous polynomials of degree n. The tensor product (m, n) has dimension $1 \cdot(n+1)=n+1$ and is trivial on $\pm(1, I)$ if and only if $(-1)^{m+n}=+1$.
The equivalence between the two classifications is given by:

$$
\begin{aligned}
\quad(m, n) & \mapsto \frac{m+n}{2} \epsilon_{1}+\frac{m-n}{2} \epsilon_{2} \\
a \epsilon_{1}+b \epsilon_{2} & \mapsto(a+b, a-b) .
\end{aligned}
$$

Restriction from K to M

$\operatorname{Res}_{M}\left(a \epsilon_{1}+b \epsilon_{2}\right)= \begin{cases}\left(\frac{a-b}{2}+1\right) \delta_{0}+\left(\frac{a-b}{2}\right) \delta_{2} & \text { if } a \text { and } b \text { are both even } \\ \left(\frac{a-b}{2}\right) \delta_{0}+\left(\frac{a-b}{2}+1\right) \delta_{2} & \text { if } a \text { and } b \text { are both odd } \\ \left(\frac{a-b+1}{2}\right) \delta_{1}+\left(\frac{a-b+1}{2}\right) \delta_{3} & \text { if } a \text { and } b \text { have different parity. }\end{cases}$

Restriction from $K \simeq U(2)$ to $O(2)$
Recall that $\widehat{O(2)}=\left\{\sigma_{0}^{+}, \sigma_{0}^{-}\right\} \cup\left\{\sigma_{j}: j \geq 1\right\}$. The notations have been chosen so that

$$
\operatorname{Ind} d_{S O(2)}^{O(2)}\left(\chi_{0}\right)=\sigma_{0}^{+}+\sigma_{0}^{-} \quad \text { and } \quad \operatorname{Ind} d_{S O(2)}^{O(2)}\left(\chi_{j}\right)=\sigma_{j} \forall j \geq 1
$$

We have:
$\operatorname{Res}_{O(2)}\left(a \epsilon_{1}+b \epsilon_{2}\right)= \begin{cases}\sigma_{0}^{+}+\bigoplus_{j \text { even }=1 \ldots a-b} & \sigma_{j} \\ \sigma_{0}^{-}+\bigoplus_{j \text { even }=1 \ldots a-b} a \text { and } b \text { are both even } \\ \sigma_{j} & \text { if } a \text { and } b \text { are both odd } \\ \bigoplus_{j \text { odd }=1 \ldots a-b} \sigma_{j} & \text { if } a \text { and } b \text { have different parity }\end{cases}$

Restriction from $K \simeq U(2)$ to $U(1) \times U(1)$

$$
\operatorname{Res}_{U(1) \times U(1)}\left(a \epsilon_{1}+b \epsilon_{2}\right)=\sum_{k=0 \ldots(a-b)}\left(\chi_{a-k}\right) \times\left(\chi_{b+k}\right) .
$$

Fine and petite K-types

Let μ be the irreducible representation of $U(2)$ with highest weight $a \epsilon_{1}+b \epsilon_{2}$. The eigenvalues of $\mu\left(i Z_{\alpha}\right)$ are

$$
\begin{aligned}
& 0, \pm 2, \ldots, \pm(a-b) \text { if } \alpha=\epsilon_{1} \pm \epsilon_{2} \text { and } a-b \text { is even; } \\
& \pm 1, \pm 3, \ldots, \pm(a-b) \text { if } \alpha=\epsilon_{1} \pm \epsilon_{2} \text { and } a-b \text { is odd; } \\
& b, b+1, \ldots, a \text { if } \alpha=2 \epsilon_{1} \text { or } \alpha=2 \epsilon_{2}
\end{aligned}
$$

Therefore we conclude that $a \epsilon_{1}+b \epsilon_{2}$ is fine if and only if

$$
|a| \leq 1 \quad|b| \leq 1 \quad|a-b| \leq 1
$$

and is petite if and only if

$$
|a| \leq 3 \quad|b| \leq 3 \quad|a-b| \leq 3
$$

We obtain the following list:

Level 1 (fine)

0 the trivial representation
$\epsilon_{1} \quad$ the standard representation
$-\epsilon_{2} \quad$ the dual of the standard representation
$\epsilon_{1}+\epsilon_{2} \quad$ representation $\bigwedge^{2}\left(\mathbb{C}^{2}\right)$
$-\epsilon_{1}-\epsilon_{2} \quad$ the dual of $\bigwedge^{2}\left(\mathbb{C}^{2}\right)$.

Level 2
$\epsilon_{1}-\epsilon_{2} \quad-\epsilon_{1}-2 \epsilon_{2} \quad 2 \epsilon_{1}+\epsilon_{2} \quad 2 \epsilon_{1} \quad-2 \epsilon_{2} \quad 2 \epsilon_{1}+2 \epsilon_{2} \quad-2 \epsilon_{1}-2 \epsilon_{2}$.

Level 3

$$
2 \epsilon_{1}-\epsilon_{2} \quad \epsilon_{1}-2 \epsilon_{2} \quad 3 \epsilon_{1} \quad-3 \epsilon_{2} .
$$

F. 2 Number of Langlands quotients of $X_{P}(\delta \otimes$ $\left.a \epsilon_{1}\right)$

Let $P=M A N$ be the minimal parabolic subgroup introduced in section $F .1$ and let ν be weakly dominant character of A :

$$
\nu=a \epsilon_{1} \quad a>0 .
$$

For every non trivial representation δ of M, we discuss the number of Langlands quotients of the principal series $X_{P}\left(\delta \otimes a \epsilon_{1}\right)$.

The representation δ_{1} of M is included in two fine K-types $\left(\epsilon_{1}\right.$ and $\left.-\epsilon_{2}\right)$, so $X_{P}\left(\delta_{1} \otimes \nu\right)$ contains two lowest K-types. To understand whether they belong to the same Langlands quotient, we look at the group $R_{\delta_{1}}(\nu)$.
The only positive root that is good for δ_{1} is $2 \epsilon_{2}$, so $W_{\delta_{1}}^{0}=\left\{I d, s_{2 \epsilon_{2}}\right\}=\mathbb{Z}_{2}$, while

$$
W^{\delta_{1}}=\left\{I d, s_{2 \epsilon_{1}}, s_{2 \epsilon_{2}}, s_{2 \epsilon_{1}} \cdot s_{2 \epsilon_{2}}\right\}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

The R-group $R_{\delta_{1}}=W^{\delta_{1}} / W_{\delta_{1}}^{0}$ has order two, as expected.
To find $R_{\delta_{1}}(\nu)$, we look for elements of $W_{\delta_{1}}^{0}$ and $W^{\delta_{1}}$ that stabilize ν :

$$
W_{\delta_{1}}^{0}(\nu)=W^{\delta_{1}}(\nu)=\left\{I d, s_{2 \epsilon_{2}}\right\}
$$

The R-group $R_{\delta_{1}}(\nu)=W^{\delta_{1}}(\nu) / W_{\delta_{1}}^{0}(\nu)$ is trivial, hence there is a unique Langlands quotient.
Next, we consider the principal series $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$. There are two lowest K types, because there are exactly two fine K-types containing $\delta_{3}\left(\epsilon_{1}\right.$ and $\left.-\epsilon_{2}\right)$. We have:

- $W_{\delta_{3}}^{0}=\left\{I d, s_{2 \epsilon_{1}}\right\}=\mathbb{Z}_{2}$
- $W^{\delta_{3}}=\left\{I d, s_{2 \epsilon_{1}}, s_{2 \epsilon_{2}}, s_{2 \epsilon_{1}} \cdot s_{2 \epsilon_{2}}\right\}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $\# R_{\delta_{3}}=\#\left(W^{\delta_{3}} / W_{\delta_{3}}^{0}\right)=2$, as expected
- $W_{\delta_{3}}^{0}(\nu)=\{I d\}$
- $W^{\delta_{3}}(\nu)=\left\{I d, s_{2 \epsilon_{2}}\right\}$

$$
-\# R_{\delta_{3}}(\nu)=\#\left(W^{\delta_{3}}(\nu) / W_{\delta_{3}}^{0}(\nu)\right)=2 .
$$

Hence there are two Langlands quotients.
Finally, we look at the principal series $X_{P}\left(\delta_{2} \otimes a \epsilon_{1}\right)$. There are two lowest K types, because there are exactly two fine K-types containing $\delta_{2}\left(\pm\left(\epsilon_{1}+\epsilon_{2}\right)\right)$. The good roots for δ_{2} are $\pm\left(\epsilon_{1}+\epsilon_{2}\right)$ and $\pm\left(\epsilon_{1}-\epsilon_{2}\right)$. We have:

- $W_{\delta_{2}}^{0}=\left\{I d, s_{\epsilon_{1}+\epsilon_{2}}, s_{\epsilon_{1}-\epsilon_{2}}, s_{\epsilon_{1}+\epsilon_{2}} \cdot s_{\epsilon_{1}-\epsilon_{2}}\right\}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $W^{\delta_{2}}=W($ order 8$)$
- $\# R_{\delta_{2}}=\#\left(W^{\delta_{2}} / W_{\delta_{2}}^{0}\right)=2$, as expected
- $W_{\delta_{2}}^{0}(\nu)=\{I d\}$
- $W^{\delta_{2}}(\nu)=\left\{I d, s_{2 \epsilon_{2}}\right\}$
- $\# R_{\delta_{2}}(\nu)=\#\left(W^{\delta_{2}}(\nu) / W_{\delta_{2}}^{0}(\nu)\right)=2$.

Again, there are two Langlands quotients.
To motivate these results, we give a different argument for computing the number of Langlands quotient of $X_{P}\left(\delta \otimes a \epsilon_{1}\right)$.

If $\nu=a \epsilon_{1}$ then there is exactly one positive root orthogonal to ν, namely $2 \epsilon_{2}$. Let $P^{1}=M^{1} A^{1} N^{1}$ be the parabolic subgroup containing P determined by $\nu .{ }^{1}$ By the principle of double induction

$$
X_{P}\left(\delta_{3} \otimes \nu\right)=\operatorname{Ind}_{P}^{G}\left(\delta_{3} \otimes \nu\right)=\operatorname{Ind}_{P^{1}}^{G}\left(\delta_{3}^{1} \otimes \nu^{1}\right)
$$

where

$$
\begin{aligned}
& -\delta_{3}^{1}=\operatorname{Ind}_{M^{1} \cap P=M\left(A \cap M^{1}\right)\left(N \cap M^{1}\right)}^{M^{1}}\left(\left.\delta_{3} \otimes \nu\right|_{A \cap M^{1}}\right) \\
& -\nu^{1}=\left.\nu\right|_{A^{1}} .
\end{aligned}
$$

Here $\left.\nu\right|_{A \cap M^{1}}=0$ and $\nu^{1}=\left.\nu\right|_{A^{1}}=\nu$. If we write

$$
M^{1}=M G^{2 \epsilon_{2}}=O(1) \times S L(2)
$$

then

- $M=O(1) \times O(1)$ (the second copy comes from scalar matrices in $S L(2)$)

```
\({ }^{1}\) We have:
    \(-\operatorname{Lie}\left(P^{1}\right)=\mathfrak{m}+\mathfrak{a}+\mathfrak{g}_{-2 \epsilon_{2}} \oplus \mathfrak{g}_{2 \epsilon_{2}} \oplus \mathfrak{g}_{\epsilon_{1}+\epsilon_{2}} \oplus \mathfrak{g}_{\epsilon_{1}-\epsilon_{2}} \oplus \mathfrak{g}_{2 \epsilon_{1}}\)
    \(-\operatorname{Lie}\left(M^{1}\right)=\mathbb{R} H_{2 \epsilon_{2}} \oplus \mathfrak{g}_{2 \epsilon_{2}} \oplus \mathfrak{g}_{-2 \epsilon_{2}} \simeq \mathfrak{s l}(2)\)
    - \(\operatorname{Lie}\left(A^{1}\right)=\operatorname{Ker}\left(2 \epsilon_{2}\right)\)
    \(-\operatorname{Lie}\left(N^{1}\right)=\mathfrak{g}_{\epsilon_{1}+\epsilon_{2}} \oplus \mathfrak{g}_{\epsilon_{1}-\epsilon_{2}} \oplus \mathfrak{g}_{2 \epsilon_{1}}\).
```

- $\delta_{3}=\operatorname{tr} \otimes$ sign.

Therefore

$$
\delta_{3}^{1}=(\text { triv. of } O(1)) \times I n d_{\text {min.parab. of SL(2) }}^{S L(2)}(\operatorname{sign} \otimes 0) .
$$

This representation is reducible, and has two irreducible components.
Hence $X_{P}\left(\delta_{3} \otimes \nu\right)$ has two Langlands quotients.
Using the same argument, we find that $\delta_{2}=\operatorname{sign} \otimes \operatorname{sign}$ hence

$$
\delta_{2}^{1}=(\operatorname{sign} \text { of } O(1)) \times I n d_{\text {min.parab. of } S L(2)}^{S L(2)}(\operatorname{sign} \otimes 0)
$$

is reducible with two components, while $\delta_{1}=\operatorname{sign} \otimes \operatorname{triv}$, so

$$
\delta_{1}^{1}=(\text { sign of } O(1)) \times I n d_{\text {min. parab. of SL(2) }}^{S L(2)}(\text { triv. } \otimes 0)
$$

is irreducible.

F. 3 Intertwining operators for $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$

We dedicate this section to the construction of intertwining operators for the minimal principal series $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$.

For brevity, set $\delta_{3}=\delta$ and $a \epsilon_{1}=\nu$. The element $\omega=s_{2 \epsilon_{1}}$ stabilizes δ_{1} and carries ν into $-\nu$, so we have an intertwining operator

$$
A(\omega, \delta, \nu): X_{P}(\delta \otimes \nu) \rightarrow X_{P}(\delta \otimes-\nu), F \mapsto\left[x \mapsto \int_{\bar{N}^{1}} F(x \omega \bar{n}) d \bar{n}\right]
$$

We decompose ω as a product of simple reflections:

$$
\omega=s_{2 \epsilon_{1}}=s_{\epsilon_{1}-\epsilon_{2}} s_{2 \epsilon_{2}} s_{\epsilon_{1}-\epsilon_{2}}
$$

and we look at the corresponding decomposition of the operator $A(\omega, \delta, \nu)$:
$A(\omega, \delta, \nu)=A\left(s_{\epsilon_{1}-\epsilon_{2}}, s_{2 \epsilon_{2}} s_{\epsilon_{1}-\epsilon_{2}} \cdot \delta, s_{2 \epsilon_{2}} s_{\epsilon_{1}-\epsilon_{2}} \cdot \nu\right) \circ A\left(s_{2 \epsilon_{2}}, s_{\epsilon_{1}-\epsilon_{2}} \cdot \delta, s_{\epsilon_{1}-\epsilon_{2}} \cdot \nu\right) \circ A\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta, \nu\right)$.
Because $\delta_{3}=\delta$ and $a \epsilon_{1}=\nu$, we get:

$$
A(\omega, \delta, \nu)=A\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{1},-a \epsilon_{2}\right) \circ A\left(s_{2 \epsilon_{2}}, \delta_{1}, a \epsilon_{2}\right) \circ A\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{3}, a \epsilon_{1}\right)
$$

We notice that

- $A\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{3}, a \epsilon_{1}\right): X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right) \rightarrow X_{P}\left(\delta_{1} \otimes a \epsilon_{2}\right)$
- $A\left(s_{2 \epsilon_{2}}, \delta_{1}, a \epsilon_{2}\right): X_{P}\left(\delta_{1} \otimes a \epsilon_{2}\right) \rightarrow X_{P}\left(\delta_{1} \otimes-a \epsilon_{2}\right)$
- $A\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{1},-a \epsilon_{2}\right): X_{P}\left(\delta_{1} \otimes-a \epsilon_{2}\right) \rightarrow X_{P}\left(\delta_{3} \otimes-a \epsilon_{1}\right)$.

For every K-type μ, we obtain an operator

$$
\begin{equation*}
R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right) \tag{F.1}
\end{equation*}
$$

that factorizes as the product of three factors:

- $R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{3}, a \epsilon_{1}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right)$
- $R_{\mu}\left(s_{2 \epsilon_{2}}, \delta_{1}, a \epsilon_{2}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right)$
- $R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{1},-a \epsilon_{2}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right)$.

We need to construct the intertwining operator (F.1) for every petite K-type μ. It is convenient to work simultaneously with ${ }^{2}$

$$
R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{1}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right)
$$

because each factor of the operator

$$
R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{1}\right) \oplus R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{3}\right)
$$

is an endomorphism of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right) \oplus \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right)$.
Remark 17. At the moment we are looking at operators defined on the full principal series. Later we will worry about how the various K-types split between the two Langlands quotients.
$\mu=\epsilon_{1}$
The irreducible representation of $U(2)$ with highest weight ϵ_{1} is the standard representation, and has dimension two. In order to compute the various factors of the intertwining operator, we need to know the restriction of μ to M and to the $S O(2)$-subgroups attached to the simple roots.

Explicit description of μ

There exists a basis $\{x, y\}$ of E_{μ} with the following properties:

[^34]\[

$$
\begin{aligned}
& -\left.\mu\right|_{M}=\delta_{1}+\delta_{3}, \text { with } V_{\mu}\left(\delta_{1}\right)=\mathbb{C} x \text { and } V_{\mu}\left(\delta_{3}\right)=\mathbb{C} y \\
& -\left.\mu\right|_{K^{\epsilon_{1}-\epsilon_{2}}}=\chi_{-1}+\chi_{1}, \text { and } V_{\mu}\left(\chi_{1}\right)=\mathbb{C}(x+i y) \text { and } V_{\mu}\left(\chi_{-1}\right)=\mathbb{C}(x-i y) \\
& \text { - }\left.\mu\right|_{K^{2 \epsilon_{2}}=}=\xi_{0}+\xi_{1}, \text { and } V_{\mu}\left(\xi_{0}\right)=\mathbb{C} x \text { and } V_{\mu}\left(\xi_{1}\right)=\mathbb{C}(y) .
\end{aligned}
$$
\]

We choose the basis $T: a x+b y \mapsto a$ in $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right)$, and $T^{\prime}: a x+b y \mapsto b$ in $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right)$. Notice that $T=T^{\prime} \circ \mu\left(\sigma_{\epsilon_{1}-\epsilon_{2}}^{-1}\right)$.

The various factors...

Having set the notations, we describe the action of the various factors:

$$
\begin{aligned}
& \text { - } R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{1}, a \epsilon_{1}\right) \oplus R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{3}, a \epsilon_{1}\right)=\left(\begin{array}{cc}
O & C_{1} \\
-C_{1} & 0
\end{array}\right) \\
& \text { - } R_{\mu}\left(s_{2 \epsilon_{2}}, \delta_{3}, a \epsilon_{2}\right) \oplus R_{\mu}\left(s_{2 \epsilon_{2}}, \delta_{1}, a \epsilon_{2}\right)=\left(\begin{array}{cc}
C_{0} & 0 \\
0 & -i C_{1}
\end{array}\right) \\
& \text { - } R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{3},-a \epsilon_{2}\right) \oplus R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{1},-a \epsilon_{2}\right)=\left(\begin{array}{cc}
O & C_{1} \\
-C_{1} & 0
\end{array}\right) .
\end{aligned}
$$

This gives:

$$
R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{1}\right) \oplus R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)=C_{1}^{2}\left(\begin{array}{cc}
i C_{1} & 0 \\
0 & -C_{0}
\end{array}\right)
$$

We have set: ${ }^{3}$

$$
\begin{aligned}
C_{0} & =\frac{\pi \Gamma(a)}{2^{a-1} \Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{a+1}{2}\right)} \\
C_{1} & =\frac{\pi \Gamma(a)}{2^{a-1} \Gamma\left(\frac{a}{2}\right) \Gamma\left(\frac{a}{2}+1\right)} .
\end{aligned}
$$

$\mu=-\epsilon_{2}$
The irreducible representation of $U(2)$ with highest weight $-\epsilon_{2}$ is the dual of the standard representation, and has dimension two.

Explicit description of μ

There exists a basis $\{x, y\}$ of E_{μ} with the following properties:

```
\({ }^{3}\) To compute these constants, we must know that:
    \(-\left\langle a \epsilon_{1}, \vee\left(\epsilon_{1}-\epsilon_{2}\right)\right\rangle=a\)
    - \(\left\langle a \epsilon_{2},{ }^{\vee}\left(2 \epsilon_{2}\right)\right\rangle=a\)
    \(-\left\langle-a \epsilon_{2},{ }^{\vee}\left(\epsilon_{1}-\epsilon_{2}\right)\right\rangle=a\)
```

- $\left.\mu\right|_{M}=\delta_{1}+\delta_{3}$, with $V_{\mu}\left(\delta_{1}\right)=\mathbb{C} y$ and $V_{\mu}\left(\delta_{3}\right)=\mathbb{C} x$
- $\left.\mu\right|_{K^{\epsilon_{1}-\epsilon_{2}}}=\chi_{-1}+\chi_{1}$, and $V_{\mu}\left(\chi_{1}\right)=\mathbb{C}(x+i y)$ and $V_{\mu}\left(\chi_{-1}\right)=\mathbb{C}(x-i y)$
- $\left.\mu\right|_{K^{2 \epsilon_{2}}}=\xi_{-1}+\xi_{0}$, and $V_{\mu}\left(\xi_{-1}\right)=\mathbb{C} x$ and $V_{\mu}\left(\xi_{0}\right)=\mathbb{C}(y)$.

An argument similar to the one used before shows that ${ }^{4}$

$$
R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{1}\right) \oplus R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)=C_{1}^{2}\left(\begin{array}{cc}
-i C_{1} & 0 \\
0 & -C_{0}
\end{array}\right)
$$

$$
\mu=2 \epsilon_{1}+\epsilon_{2}
$$

The irreducible representation of $U(2)$ with highest weight $2 \epsilon_{1}+\epsilon_{2}$ has dimension two.

Explicit description of μ

There exists a basis $\{x, y\}$ of E_{μ} with the following properties:

- $\left.\mu\right|_{M}=\delta_{1}+\delta_{3}$, with $V_{\mu}\left(\delta_{1}\right)=\mathbb{C} y$ and $V_{\mu}\left(\delta_{3}\right)=\mathbb{C} x$
- $\left.\mu\right|_{K^{\epsilon_{1}-\epsilon_{2}}}=\chi_{-1}+\chi_{1}$, and $V_{\mu}\left(\chi_{1}\right)=\mathbb{C}(x+i y)$ and $V_{\mu}\left(\chi_{-1}\right)=\mathbb{C}(x-i y)$
- $\left.\mu\right|_{K^{2 \epsilon_{2}}}=\xi_{1}+\xi_{2}$, and $V_{\mu}\left(\xi_{1}\right)=\mathbb{C} x$ and $V_{\mu}\left(\xi_{2}\right)=\mathbb{C}(y)$.

Then we get ${ }^{5}$

$$
R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{1}\right) \oplus R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)=C_{1}^{2}\left(\begin{array}{cc}
+i C_{1} & 0 \\
0 & -C_{0} \frac{1-a}{1+a}
\end{array}\right)
$$

$\mu=-\epsilon_{1}-2 \epsilon_{2}$
This the dual of the previous representation.

Explicit description of μ

There exists a basis $\{x, y\}$ of E_{μ} with the following properties:

$$
-\left.\mu\right|_{M}=\delta_{1}+\delta_{3}, \text { with } V_{\mu}\left(\delta_{1}\right)=\mathbb{C} x \text { and } V_{\mu}\left(\delta_{3}\right)=\mathbb{C} y
$$

[^35]\[

$$
\begin{aligned}
& -\left.\mu\right|_{K^{\epsilon_{1}-\epsilon_{2}}}=\chi_{-1}+\chi_{1}, \text { and } V_{\mu}\left(\chi_{1}\right)=\mathbb{C}(x+i y) \text { and } V_{\mu}\left(\chi_{-1}\right)=\mathbb{C}(x-i y) \\
& -\left.\mu\right|_{K^{2 \epsilon_{2}}=\xi_{-2}+\xi_{-1}, \text { and } V_{\mu}\left(\xi_{-2}\right)=\mathbb{C} x \text { and } V_{\mu}\left(\xi_{-1}\right)=\mathbb{C}(y)} .
\end{aligned}
$$
\]

Then we get ${ }^{6}$

$$
R_{\mu}\left(\omega, \delta_{1}, a \epsilon_{1}\right) \oplus R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)=C_{1}^{2}\left(\begin{array}{cc}
-i C_{1} & 0 \\
0 & -C_{0} \frac{1-a}{1+a}
\end{array}\right)
$$

Remark 18. An explicit computation shows that, when looking at petite K types for detecting unitarity, it is enough to stop at level 2. Indeed, the petite K-types of level 3 do not give rise to any additional restriction on the values of the parameters.
Therefore we omit the construction for the intertwining operators corresponding to $\mu=2 \epsilon_{1}-\epsilon_{2} \mu=\epsilon_{1}-2 \epsilon_{2}, \mu=3 \epsilon_{1}$ and $\mu=-3 \epsilon_{2}$.

F. 4 The Langlands quotients of $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$

In this section, we discuss the unitarity of the Langlands quotients of $X_{P}\left(\delta_{3} \otimes\right.$ $a \epsilon_{1}$).

In section (F.2) we have proved that the minimal principal series

$$
X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)=\operatorname{Ind}_{P=M A N}^{G}\left(\delta_{3} \otimes \nu\right)=\operatorname{Ind}_{P^{1}=M^{1} A^{1} N^{1}}^{G}\left(\delta_{3}^{1} \otimes \nu^{1}\right)
$$

is reducible. We can write:

$$
\begin{aligned}
& -M^{1}=M G^{2 \epsilon_{2}}=O(1) \times S L(2) \\
& -M=O(1) \times O(1) \subset M^{1} \\
& -\delta_{3}=\operatorname{tr} \otimes \operatorname{sign} . \\
& -\delta_{3}^{1}=\operatorname{Ind} d_{M^{1} \cap P}^{M^{1}}\left(\left.\delta_{3} \otimes \nu\right|_{A \cap M^{1}}\right)=\operatorname{Ind}_{M^{1} \cap P}^{M^{1}}\left(\delta_{3} \otimes 0\right)= \\
& =(\text { triv.of } O(1)) \times \text { Ind }_{\text {min.parab.of } S L(2)}^{S L(2)}(\operatorname{sign} \otimes 0)=\left(\delta_{3}^{1}\right)_{+}+\left(\delta_{3}^{1}\right)_{-}
\end{aligned}
$$

We obtain: ${ }^{7}$

$$
X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)=\operatorname{Ind}_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)_{+} \otimes \nu^{1}\right)+\operatorname{Ind}_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)_{-} \otimes \nu^{1}\right)
$$

The easiest way to distinguish between these two summands is to look at the action of the $S O(2)$-subgroup attached to $2 \epsilon_{2}$: the first summand contains every K-type whose restriction to $K^{2 \epsilon_{2}}$ includes a positive odd character, the second summand contains every K-type whose restriction to $K^{2 \epsilon_{2}}$ includes a negative

[^36]odd character. ${ }^{8}$
Next we describe the petite K-types included in each summand.
By Frobenious reciprocity, the multiplicity of μ in $\operatorname{Res}_{K}\left(X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)\right)$ equals the multiplicity of δ_{3} in $\operatorname{Res}_{M}(\mu)$. It is easy to check that:

- $\operatorname{Res}_{M}(0)=\delta_{0}$
- $\operatorname{Res}_{M}\left(\epsilon_{1}\right)=\operatorname{Res}_{M}\left(-\epsilon_{2}\right)=\delta_{1}+\delta_{3}$
- $\operatorname{Res}_{M}\left(\epsilon_{1}+\epsilon_{2}\right)=\operatorname{Res}_{M}\left(-\epsilon_{1}-\epsilon_{2}\right)=\delta_{2}$
- $\operatorname{Res}_{M}\left(\epsilon_{1}-\epsilon_{2}\right)=\delta_{0}+2 \delta_{2}$
- $\operatorname{Res}_{M}\left(2 \epsilon_{1}+\epsilon_{2}\right)=\operatorname{Res}_{M}\left(-\epsilon_{1}-2 \epsilon_{2}\right)=\delta_{1}+\delta_{3}$
- $\operatorname{Res}_{M}\left(2 \epsilon_{1}\right)=\operatorname{Res}_{M}\left(-2 \epsilon_{2}\right)=2 \delta_{0}+\delta_{2}$
- $\operatorname{Res}_{M}\left(2 \epsilon_{1}+2 \epsilon_{2}\right)=\operatorname{Res}_{M}\left(-2 \epsilon_{1}-2 \epsilon_{2}\right)=\delta_{0}$
- $\operatorname{Res}_{M}\left(2 \epsilon_{1}-\epsilon_{2}\right)=\operatorname{Res}_{M}\left(\epsilon_{1}-2 \epsilon_{2}\right)=2 \delta_{1}+2 \delta_{3}$
- $\operatorname{Res}_{M}\left(3 \epsilon_{1}\right)=\operatorname{Res}_{M}\left(-3 \epsilon_{2}\right)=2 \delta_{1}+2 \delta_{3}$.

So $X_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)$ contains one copy of $\epsilon_{1},-\epsilon_{2}, 2 \epsilon_{1}+\epsilon_{2}-\epsilon_{1}-2 \epsilon_{2}$, and two copies of $2 \epsilon_{1}-\epsilon_{2}, \epsilon_{1}-2 \epsilon_{2}, 3 \epsilon_{1},-3 \epsilon_{2}$. We can say more:

- $\operatorname{Ind}_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)_{+} \otimes \nu^{1}\right)$ contains one copy of $\epsilon_{1}, 2 \epsilon_{1}+\epsilon_{2}, 2 \epsilon_{1}-\epsilon_{2}, \epsilon_{1}-2 \epsilon_{2}$, and two copies of $3 \epsilon_{1}$.
- $\operatorname{Ind}_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)_{+} \otimes \nu^{1}\right)$ contains one copy of $-\epsilon_{2},-\epsilon_{1}-2 \epsilon_{2}, 2 \epsilon_{1}-\epsilon_{2}, \epsilon_{1}-2 \epsilon_{2}$, and two copies of $-3 \epsilon_{2}$.

The corresponding Langlands quotients

- $\bar{X}_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)_{+}=\frac{\operatorname{Ind} d_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)_{+} \otimes \nu^{1}\right)}{\operatorname{Ker}(A)}$
- $\bar{X}_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)_{-}=\frac{\operatorname{Ind} d_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)-\otimes \nu^{1}\right)}{\operatorname{Ker}(A)}$
are unitary only if the intertwining operator $R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)$ is semi-definite for every petite K-type included in the quotient, that has level two or less. More explicitly:
- $\bar{X}_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)_{+}$is unitary only if $R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)$ is semi-definite for $\mu=\epsilon_{1}$ and $2 \epsilon_{1}+\epsilon_{2}$.
- $\bar{X}_{P}\left(\delta_{3} \otimes a \epsilon_{1}\right)_{-}$is unitary only if $R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)$ is semi-definite for $\mu=-\epsilon_{2}$ and $-\epsilon_{1}-2 \epsilon_{2}$.

[^37]The normalized operator $\frac{R_{\mu}\left(\omega, \delta_{3}, a \epsilon_{1}\right)}{-C_{0} C_{1}^{2}}$ acts by +1 on the fine K-types ϵ_{1} and $-\epsilon_{2}$, and it acts by $\frac{1-a}{1+a}$ on $2 \epsilon_{1}+\epsilon_{2}$ and $-\epsilon_{1}-2 \epsilon_{2}$.
Therefore, the two Langlands quotients are unitary if and only if $0<a<1$.

[^0]: ${ }^{1}$ This is a necessary condition for the unitarity of the Langlands quotient $\bar{X}_{P}(\delta \otimes \nu)$.

[^1]: ${ }^{2} G$ is split if and only if the centralizer of \mathfrak{a} in \mathfrak{k} is trivial.

[^2]: ${ }^{3}$ Such a decomposition is called minimal if ω has length r.
 ${ }^{4}$ For $j=1$, set $P^{0}=P, \delta^{0}=\delta, \nu^{0}=\nu$.
 ${ }^{5}$ Details are given in the next chapters.

[^3]: ${ }^{1} R_{\mu}(\omega, \nu)$ acts on $\left(E_{\mu}^{*}\right)^{M}$, and so does every factor $R_{\mu}\left(s_{\alpha}, \gamma\right)$.

[^4]: ${ }^{2}$ Because it is induced by the corresponding intertwining operator for $M G^{\alpha}$
 ${ }^{3}$ The constant $D=\frac{\pi \Gamma(\lambda)}{2^{\lambda-1} \Gamma \frac{\lambda+1}{2} \Gamma \frac{\lambda+1}{2}}$ is real and positive.

[^5]: ${ }^{4}$ This problem has been solved by Dan Barbasch.

[^6]: ${ }^{1}$ We assume $\left.\mu\right|_{K^{\alpha}}=\bigoplus_{n \in \mathbb{Z}} \phi_{n}$.

[^7]: ${ }^{2}$ More precisely, $R_{\mu}\left(s_{\alpha}, \gamma\right)$ is an endomorphism of $\operatorname{Hom}_{M}\left(\left.E\right|_{\mu}, V^{\delta}\right)$ only is the reflection s_{α} belongs to the stabilizer of δ.
 ${ }^{3}$ If G is a classical group, then M is abelian and $w \in W^{\delta} \Leftrightarrow w \cdot \delta=\delta$.

[^8]: ${ }^{4}$ In general, we need some extra conditions that guarantee the existence of a matching between the intertwining operator $R_{\mu}(\omega, \nu)$ for G and the intertwining operator $R_{\mu}(\omega, \nu)$ for the split group associated to Δ_{δ}^{0}. These operators may be different, because if you regard ω as an element of W_{δ}^{0}, then you obtain a different minimal decomposition for ω, and of course a different Gindikin-Karpelevic decomposition for $R_{\mu}(\omega, n u)$.

[^9]: ${ }^{5}$ We recall the definition of $\widetilde{\Psi^{\mu}}$:

 $$
 \widetilde{\Psi \mu}[\sigma] \cdot T=T \circ \mu\left(\sigma^{-1}\right)
 $$

 for all T in $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right)$, and all $[\sigma]$ in W^{δ}.

[^10]: ${ }^{6}$ Because $W=W^{\delta}=W_{\delta}^{0}$, every simple root is good.
 ${ }^{7}$ In this case, μ is allowed to have level three.
 ${ }^{8}$ In general, \check{G} is not a subgroup of G.

[^11]: ${ }^{9}$ The two operators have different Gindikin-Karpelevic decompositions. Only the factors that correspond to simple good reflections agree.
 ${ }^{10}$ Recall that $R_{\tau}\left(s_{\beta_{j}}, \gamma_{j}\right)$ acts by 1 on the $(+1)$-eigenspace of $s_{\beta_{j}}$ in τ, and to act by $\frac{1-\left\langle{ }^{\vee} \beta_{j}, \gamma_{j}\right\rangle}{1+\left\langle\beta_{j}, \gamma_{j}\right\rangle}$ on the (-1)-eigenspace.

[^12]: ${ }^{1}$ This condition determines E_{β} up to a sign.

[^13]: ${ }^{2} \sigma_{\beta}$ is defined only up to inverse, but the action of the operator $\operatorname{Ad}\left(\sigma_{\beta}\right)$ on \mathfrak{a} is completely determined.
 ${ }^{3}$ Let Θ be the global Cartan involution. Being Θ an involutive automorphism of G which fixes K (hence M), we have

 $$
 m x m^{-1}=\Theta\left(m \Theta(x) m^{-1}\right) \quad \forall x \in G \text { and } m \in M
 $$

 Differentiating at $x=1$ we find that $\operatorname{Ad}(m)=\theta \operatorname{Ad}(m) \theta$, for all m in M. The results follows from the fact that also θ is an involution.

[^14]: ${ }^{4}$ The proof of this formula uses some standard results from the representation theory of $S L(2, \mathbb{C})$ and the fact that, because G is split, every restricted root is the restriction to \mathfrak{a} of one (and only one) root in $\Delta\left(\mathfrak{g}_{0}^{\mathbb{C}}, \mathfrak{a}^{\mathbb{C}}\right)$.

[^15]: ${ }^{5}$ Equation (A.3) exhibits $\delta\left(m_{1}\right)$ as an intertwining operator between δ and ($m_{1} \cdot \delta$).

[^16]: ${ }^{6}$ Because M is finite, the irreducible representation δ is also finite-dimensional.

[^17]: ${ }^{7}$ Call T the intertwining operator between δ and $s_{\beta}^{-1} \cdot \delta$.
 ${ }^{8}$ By equation (A.1).

[^18]: ${ }^{9}$ The roots α and β are said to be strongly orthogonal if they are orthogonal, and neither $\alpha+\beta$ nor $\alpha-\beta$ is a root.

[^19]: ${ }^{1}$ Because every element of M has determinant one.

[^20]: ${ }^{2}$ General remark: If G is a connected semisimple Lie group and has a complexification $G^{\mathbb{C}}$, then the group M is generated by M_{0} (the identity component of M) and by the elements $\left\{m_{\alpha}\right\}_{\alpha \text { real } .}{ }^{3}$ If G is also split, then M is discrete (so M_{0} is trivial) and every root is real, so M is generated by all the m_{α} 's. We can therefore write:

 $$
 \begin{aligned}
 W^{\delta} & =\{w \in W:(w \cdot \delta)(m)=\delta(m) \quad \forall m \in M\} \\
 = & \left\{w \in W:(w \cdot \delta)\left(m_{\alpha}\right)=\delta\left(m_{\alpha}\right) \quad \forall \alpha \in \Delta\right\} \\
 = & \left\{w \in W: \delta\left(m_{w \cdot \alpha}\right)=\delta\left(m_{\alpha}\right) \quad \forall \alpha \in \Delta\right\} \\
 = & \left\{w \in W: w \text { preserves } \Delta_{\delta}\right\} .
 \end{aligned}
 $$

[^21]: ${ }^{4}$ By definition, a root α is good for δ_{S} if and only if $\delta_{S}\left(m_{\alpha}\right)=1$. Recall that if G has a complexification, and α is a real root, we can construct m_{α} by the formula:

 $$
 m_{\alpha}=\exp \frac{2 \pi i}{\|\alpha\|^{2}} H_{\alpha}
 $$

 For details, please refer to Knapp's book "Lie groups beyond an introduction", chapter seven, section 8 .

[^22]: ${ }^{1}$ Representation Theory 5 (2001), 1-16.
 ${ }^{2}$ Two roots α and β are "simply-orthogonal" if $<\alpha, \beta>=0$ and $\alpha \pm \beta$ is not a root. For simple roots, this the usual notion of orthogonality. Indeed, the difference of two simple roots is never a root, and $\alpha+\beta$ is a root if and only if the α-string through β has length strictly greater than one, and this happens exactly when the two roots are not orthogonal.

[^23]: ${ }^{4}$ This is the case for $S O_{0}(n+1, n)$.
 ${ }^{5}$ For the other split groups, it has order at most four.

[^24]: ${ }^{1}$ Equivalently, choose a positive system Δ^{+}in Δ such that
 $\langle\Re(\nu), \alpha\rangle \geq 0 \quad \forall \alpha \in \Delta^{+}$
 and set $N=\exp _{G}\left(\bigoplus_{\alpha \in \Delta+} \mathfrak{g}_{\alpha}\right)$.

[^25]: ${ }^{2}$ The Lie algebra of Q is

 $$
 \mathfrak{q}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha:\langle\alpha, \Re(\nu)\rangle \geq 0} \mathfrak{g}_{\alpha}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Delta_{L}} \mathfrak{g}_{\alpha} \oplus \bigoplus_{\alpha \in \Delta_{U}^{+}} \mathfrak{g}_{\alpha} .
 $$

[^26]: ${ }^{3}$ By construction, $\langle\Re(\nu), \alpha\rangle=0$ for the roots of A in N_{L}, so ν is imaginary and $\operatorname{Ind}_{P_{L}}^{Q}(\delta \otimes \nu)$ is unitary.

[^27]: ${ }^{4}$ For a motivation of this reducibility condition, see section 4.2 in Vogan's book "Representations of Real Reductive Lie Groups".

[^28]: ${ }^{1}$ An element m of M acts on the domain by $\mu\left(m^{-1}\right)$ and on the codomain by $\left(s_{\alpha} \cdot \delta\right)(m)$. So $T \circ \mu\left(\sigma_{\alpha}^{-1}\right)$ is invariant under M if and only if

 $$
 \left(s_{\alpha} \cdot \delta\right)(m) \cdot\left(T \circ \mu\left(\sigma_{\alpha}^{-1}\right)\right)\left(\mu\left(m^{-1}\right) v\right)=\left(T \circ \mu\left(\sigma_{\alpha}^{-1}\right)\right)(v)
 $$

 for all m in M and all v in E_{μ}.

[^29]: ${ }^{2}$ This is always the case if G is semi-simple. Indeed every adjoint group has a complexification: if $G=\operatorname{Ad} \mathfrak{g}$, you can take $G^{\mathbb{C}}$ to be $\operatorname{Ad}\left(\mathfrak{g}^{\mathbb{C}}\right)$.
 It also true, more generally, if the group G is real reductive and satisfies the condition

 $$
 Z(G) \cap K=\{1\}
 $$

 Indeed, if $G=K \exp \left(\mathfrak{p}_{0}\right)$ is the Cartan decomposition of G, and ζ is the center of the Lie algebra of G (so that $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}] \oplus \zeta$), then we can write

 $$
 G=\underbrace{K \exp \left(\mathfrak{p}_{0} \cap[\mathfrak{g}, \mathfrak{g}]\right)}_{G^{1}} \underbrace{\exp \left(\mathfrak{p}_{0} \cap \zeta\right)}_{Z^{1}} .
 $$

 with G^{1} real reductive (of the same rank as G) and Z^{1} a vector group included in the center. Because $Z\left(G^{1}\right)=Z(G) \cap K=\{1\}$, the group G^{1} is actually semi-simple. So (\%) is a decomposition of G as a direct product of an adjoint group and a vector group, both of which have a complexification. As a result, we obtain a complexification for G.
 Finally, we notice that $Z(G)$ acts by scalars on any irreducible representation of G (this is Schur's lemma), and that $Z(G) \cap K$ acts trivially on the trivial K-type included in any irreducible spherical representation ρ of G (hence on the whole representation space E_{ρ}). So, when dealing with spherical representations, we can assume w.l.o.g. that the condition $Z(G) \cap K=\{1\}$ is satisfied.

[^30]: ${ }^{7}$ Because $d_{+l}=d_{-l}$, we assume $l \geq 0$.

[^31]: ${ }^{8}$ The constant D is real and positive, so this normalization does not affect the signature.

[^32]: ${ }^{9}$ The $(+i)$-eigenspace of $\mu\left(\sigma_{\alpha}\right)$ is the union of ϕ_{1} and ϕ_{-3}.

[^33]: ${ }^{10}$ There are no good roots, but there is one positive root stabilizing δ.
 ${ }^{11}$ The notations are the same used in section (B.1).
 ${ }^{12}$ They are the two irreducible summands of $\bigwedge^{2}\left(\mathbb{C}^{4}\right)$.
 ${ }^{13}$ The Weyl group of the good co-roots is

 $$
 W_{\delta}^{0}=(\text { symm. group on }\{2,3\}) \times(\text { symm. group on }\{1,4\}) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
 $$

 but the stabilizer of δ also contains the permutation (12)(34).
 ${ }^{14}$ Because $W_{\delta}^{0}(\nu)=W^{\delta}(\nu)=\{I d\}$.

[^34]: ${ }^{2}$ This operator factorizes as the product of three factors:

 - $R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{1}, a \epsilon_{1}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right)$
 - $R_{\mu}\left(s_{2 \epsilon_{2}}, \delta_{3}, a \epsilon_{2}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right)$
 - $R_{\mu}\left(s_{\epsilon_{1}-\epsilon_{2}}, \delta_{3},-a \epsilon_{2}\right): \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right) \rightarrow \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right)$.

[^35]: ${ }^{4}$ This matrix is with respect to the basis $\left\{T^{\prime}, T\right\}$. We have inverted the basis elements, because we want to get an endomorphism of $\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{1}}\right)+\operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta_{3}}\right)$, with δ_{1} coming first.
 ${ }^{5}$ Again with respect to the basis $\left\{T^{\prime}, T\right\}$.

[^36]: ${ }^{6}$ With respect to the basis $\left\{T, T^{\prime}\right\}$.
 ${ }^{7}$ This may not be a decomposition in irreducible subspaces. The intertwining operator A can in fact have a Kernel.

[^37]: ${ }^{8}$ The restriction of a K-type μ to $K^{2 \epsilon_{2}}$ contains both even and odd characters. Look at the odd ones: if they are all negative, μ belongs only to $\operatorname{Ind}_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)-\otimes \nu^{1}\right)$; if they are all positive, μ belongs only to $\operatorname{Ind} P_{P^{1}}^{G}\left(\left(\delta_{3}^{1}\right)_{+} \otimes \nu^{1}\right)$; if some are positive and some are negative, μ belongs to both summands.

