Weyl Group Representations

and Signatures of Intertwining Operators

Alessandra Pantano

31 May 2004

An overview

- MOTIVATION:

Study of the "non-unitarity" of a spherical principal series for a real split semi-simple Lie group.

- STRATEGY:

1. Use Weyl group calculations to compute the intertwining operator on petite K-types.
2. Use petite K-types to define a non-unitarity test.

- MAIN RESULT:

A method to construct petite K-types.

Plan of the talk...

- INTRODUCTION

1. The classical problem of studying the Unitary Dual.
2. A non-unitarity test for a spherical principal series [Vogan-Barbasch].
For this test we need to know "a lot" of petite K-types.

- ORIGINAL WORK

An inductive argument to extend a certain class of Weyl group representations to petite K-types

Studying the Unitary Dual

By a theorem of Harish-Chandra, this is equivalent to:

1. Describing the irreducible admissible repr.s of G, up to infinitesimal equivalence.
2. Understanding which irreducible admissible repr.s of G admit a non-degenerate invariant Hermitian form.
3. Deciding whether the non-degenerate invariant Hermitian form on an admissible irreducible repr. of G is positive definite.

The irreducible admissible repr.s of G

Langlands, early 1970s:

- Every irreducible admissible representation of G is infinitesimally equivalent to a Langlands quotient $J_{P}(\delta \otimes \nu)$
- Two Langlands quotients $J_{P}(\delta \otimes \nu)$ and $J_{P^{\prime}}\left(\delta^{\prime} \otimes \nu^{\prime}\right)$ are infinitesimally equivalent if and only if there exists an element ω of K such that

$$
\omega P \omega^{-1}=P^{\prime} \quad \omega \cdot \delta=\delta^{\prime} \quad \omega \cdot \nu=\nu^{\prime}
$$

A Langlands Quotient

- $P=M A N$ a parabolic subgroup of G
- $\left(\delta, V^{\delta}\right)$ an irreducible tempered unitary representation of M
- $\nu \in\left(\mathfrak{a}_{0}^{\prime}\right)^{\mathbb{C}}$, with real part in the open positive Weyl chamber
- $I_{P}(\delta \otimes \nu)$ the corresponding principal series
G acts by left translation on $\left\{F: G \rightarrow V^{\delta}\right.$ s.t. $\left.F\right|_{K} \in L^{2}\left(K, V^{\delta}\right)$; $\left.F(x \operatorname{man})=e^{-(\nu+\rho) \log (a)} \delta\left(m^{-1}\right) F(x), \forall \operatorname{man} \in P, \forall x \in G\right\}$
- $J_{P}(\delta \otimes \nu)$: the unique irreducible quotient of $I_{P}(\delta \otimes \nu)$

$$
\begin{gathered}
J_{P}(\delta \otimes \nu) \text { is the quotient of } I_{P}(\delta \otimes \nu) \text { modulo the kernel of } \\
A(\bar{P}: P: \delta: \nu): I_{P}(\delta \otimes \nu) \rightarrow I_{\bar{P}}(\delta \otimes \nu), F \mapsto \int_{\Theta(N)} F(x \bar{n}) d \bar{n}
\end{gathered}
$$

Hermitian Langlands Quotients

Knapp and Zuckerman, 1976:
$J_{P}(\delta \otimes \nu)$ admits a non-degenerate invariant Hermitian form if and only if there exists an element ω of K satisfying the following "formal symmetry condition":

$$
\omega P \omega^{-1}=\bar{P} \quad \omega \cdot \delta \simeq \delta \quad \omega \cdot \nu=-\bar{\nu}
$$

(because the Hermitian dual of $J_{P}(\delta \otimes \nu)$ is $J_{\bar{P}}(\delta \otimes-\bar{\nu})$).
Any non-degenerate invariant Hermitian form on $J_{P}(\delta \otimes \nu)$ is a real multiple of the form induced by the Hermitian operator

$$
B=\delta(\omega) \circ R(\omega) \circ A(\bar{P}: P: \delta: \nu)
$$

from $I_{P}(\delta \otimes \nu)$ to $I_{P}(\delta \otimes-\bar{\nu})$.

The unitary dual of a real semi-simple Lie group

Unitary Langlands Quotients

$J_{P}(\delta \otimes \nu)$ is unitary

B is semi-definite.

Next task: Computing the signature of B

Computing the signature of B

the first reduction: A K-type by K-type calculation...

- For every K-type $\left(\mu, E_{\mu}\right)$, we have a Hermitian operator

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{K}\left(E_{\mu}, I_{P}(\delta \otimes \nu)\right) \rightarrow \operatorname{Hom}_{K}\left(E_{\mu}, I_{P}(\delta \otimes-\bar{\nu})\right)
$$

- By Frobenius reciprocity:

$$
R_{\mu}(\omega, \nu): \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M \cap K}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(\left.E_{\mu}\right|_{M \cap K}, V^{\delta}\right)
$$

The unitary dual of a real semi-simple Lie group

Constructing the operator

$R_{\mu}(\omega, \nu): \operatorname{Hom}_{M}\left(\operatorname{Res}_{M \cap K}^{K} E_{\mu}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M}\left(\operatorname{Res}_{M \cap K}^{K} E_{\mu}, V^{\delta}\right)$
additional assumptions...

- G is split, e.g. $S L(n, \mathbb{R}), S p(2 n, \mathbb{R}), S O(n, n), E_{6}, E_{7}, E_{8}$

Let $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{0}$ be the Cartan decomposition of $\operatorname{Lie}(G)$, and let \mathfrak{a}_{0} be a maximal abelian subspace of $\mathfrak{p}_{0} . G$ split if $Z_{\mathfrak{t}_{0}}\left(\mathfrak{a}_{0}\right)=\{0\}$.

- $P=M A N$ is a minimal parabolic subgroup of G
- δ is the trivial representation of M
- ν is a real character of A

The spherical unitary dual of a real split semi-simple Lie group

Constructing the operator $R_{\mu}(\omega, \nu)$

... a reduction to rank-one computations

- When P is a minimal parabolic, the element ω is a Weyl group element, and it admits a minimal decomposition as a product of simple reflections. We can decompose $R_{\mu}(\omega, \nu)$ accordingly. (Gindikin-Karpalevic)
- When G is split, the operator corresponding to a simple reflection can be computed using the results known for $S L(2, \mathbb{R})$.

The spherical unitary dual of a real split semi-simple Lie group

Constructing the operator $R_{\mu}(\omega, \nu)$

Some Considerations:

pros We obtain a decomposition of $R_{\mu}(\omega, \nu)$ as a product of operators corresponding to simple reflections, for which an explicit formula exists.
cons This formula depends on the decomposition of μ in $K^{(\beta)}$ types, and this decomposition changes when β varies. It is very hard to keep track of these different decompositions when you multiply the various rank-one operators to obtain $R_{\mu}(\omega, \nu)$.

A new strategy [Vogan-Barbasch]

When μ is "petite", compute $R_{\mu}(\omega, \nu)$ by means of Weyl group calculations

- A K-type μ is called petite if the $S O(2)$ subgroup attached to every simple root only acts with characters $0, \pm 1, \pm 2$.
- When μ is petite, we can compute $R_{\mu}(\omega, \nu)$ in a purely algebraic manner. Indeed, $R_{\mu}(\omega, \nu)$ depends only on the representation of the Weyl group on the space of M-fixed vectors of E_{μ}.

Constructing $R_{\mu}(\omega, \nu)$, for μ petite

- $R_{\mu}(\omega, \nu)$ is an endomorphism of $\mathcal{H} \equiv \operatorname{Hom}_{M}\left(\operatorname{Res}_{M}^{K} E_{\mu}, V^{\delta}\right)$
- $\mathcal{H} \simeq\left(E_{\mu}^{M}\right)^{*}$, and it carries a Weyl group representation ψ_{μ}
- Decompose $R_{\mu}(\omega, \nu)$ as a product of rank-one operators. For every simple root β, we can write

$$
\mathcal{H}=\underbrace{\operatorname{Hom}_{M}\left(\operatorname{Res}_{M}^{M K^{(\beta)}} \varphi_{0}, \mathbb{C}\right)}_{(+1) \text {-eigenspace of } \psi_{\mu}\left(s_{\beta}\right)} \oplus \underbrace{\operatorname{Hom}_{M}\left(\operatorname{Res}_{M}^{M K^{(\beta)}}\left(\varphi_{2} \oplus \varphi_{-2}\right), \mathbb{C}\right)}_{(-1) \text {-eigenspace of } \psi_{\mu}\left(s_{\beta}\right)}
$$

$$
\Rightarrow R_{\mu}\left(s_{\beta}, \gamma\right)=\left\{\begin{array}{cl}
+1 & \text { on the }(+1) \text {-eigenspace of } \psi_{\mu}\left(s_{\beta}\right) \\
\frac{1-\langle\gamma, \check{\beta}\rangle}{1+\langle\gamma, \dot{\beta}\rangle} & \text { on the }(-1) \text {-eigenspace of } \psi_{\mu}\left(s_{\beta}\right)
\end{array}\right.
$$

A non-unitarity test

- For each petite K-type $\left(\mu, E_{\mu}\right)$, compute the representation ψ_{μ} of the Weyl group on the space of M-invariants in E_{μ}
- Use ψ_{μ} to construct the algebraic operator $R_{\mu}(\omega, \nu)$, and evaluate its signature
- If $R_{\mu}(\omega, \nu)$ fails to be (positive) semi-definite, then $J_{P}(\delta \otimes \nu)$ is not unitary.
[Barbasch] This non-unitarity test also detects unitarity when G is a classical group.

A few more comments on the non-unitarity test

The non-unitarity test consists of computing the signature of the intertwining operator on petite K-types (by means of Weyl group calculations). For this test to be efficient, "we need to know a large number of petite K-types".

Next task: Constructing petite K-types

Plan of the talk...

- INTRODUCTION \checkmark

1. The classical problem of studying the Unitary Dual.
2. A non-unitarity test for a spherical principal series [Vogan-Barbasch].
For this test we need to know "a lot" of petite K-types.

- ORIGINAL WORK

An inductive argument to extend a certain class of Weyl group representations to petite K-types
trick: look at the example of $S L(3)$ to get insight!

The example of $S L(3, \mathbb{R})$

- $G=S L(3, \mathbb{R})$
- $K=S O(3, \mathbb{R})$
- $M=\{3 \times 3$ diag. matrices with det. 1 and diag. entries $= \pm 1\}$
- $A=\{3 \times 3$ diag. matrices with det. 1 and non-negative entries $\}$
- $W \simeq \mathcal{S}_{3}$ (symmetric group on 3 letters)
- $\widehat{M}=\left\{\delta_{0}, \delta_{1}, \delta_{2}, \delta_{3}\right\}$ with δ_{0} the trivial representation of M, and

$$
\delta_{j}: M \rightarrow \mathbb{R},\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{3}
\end{array}\right) \mapsto m_{j}, \forall j=1,2,3 .
$$

The petite K-types for $S L(3, \mathbb{R}) \ldots$

- $\widehat{K}=\left\{\mathcal{H}_{N}: N \geqslant 0\right\}$

For each $N \geqslant 0, \mathcal{H}_{N}$ is the complex v.s. (of dimension $2 N+1$) of harmonic homogeneous polynomials of degree N in three variables. $S O(3)$ acts by:

$$
(g \cdot F)(x, y, z)=F((x, y, z) g) \quad \forall g \in S O(3), \forall F \in \mathcal{H}_{N}
$$

- $\widehat{K}_{\text {petite }}=\left\{\mathcal{H}_{0}, \mathcal{H}_{1}, \mathcal{H}_{2}\right\}$

For each simple root $\alpha,\left.\mathcal{H}_{N}\right|_{K^{\alpha} \simeq S O(2)}=\bigoplus_{l=-N}^{N} \xi_{l}$.

The example of $S L(3, \mathbb{R})$
\ldots the corresponding Weyl group representations

- $\left.\underbrace{\mathcal{H}_{0}}\right|_{M}=\delta_{0} \Rightarrow\left(\mathcal{H}_{0}\right)^{M}$ is the trivial repr. of $W=\mathcal{S}_{3}$ $\operatorname{dim} 1$
- $\left.\underbrace{\mathcal{H}_{1}}_{\text {dim3 }}\right|_{M}=\delta_{1} \oplus \delta_{2} \oplus \delta_{3} \Rightarrow\left(\mathcal{H}_{1}\right)^{M}=\{0\}$
- $\left.\underbrace{\mathcal{H}_{2}}_{\operatorname{dim} 5}\right|_{M}=\left(\delta_{0}\right)^{2} \oplus \delta_{1} \oplus \delta_{2} \oplus \delta_{3} \Rightarrow\left(\mathcal{H}_{2}\right)^{M}=\mathbb{C}^{2}$
$\left(\mathcal{H}_{2}\right)^{M}$ is the standard repr. of $W=\mathcal{S}_{3}$

The example of $S L(3, \mathbb{R})$

The restriction to M^{\prime} of the petite K-types

Repr.s of M^{\prime}	trivial	sign	standard	ν_{1}	ν_{2}
dimension	1	1	2	3	3
eigenvalues of σ_{α}	1	-1	± 1	$1, \pm i$	$-1, \pm 1$

- $\left.\mathcal{H}_{0}\right|_{M^{\prime}}=$ trivial
- $\left.\mathcal{H}_{1}\right|_{M^{\prime}}=\nu_{1}$
- $\left.\mathcal{H}_{2}\right|_{M^{\prime}}=$ standard $\oplus \nu_{2}$

There is no sign repr. (of $\left.W=\mathcal{S}_{3}\right)$!!

The example of $S L(3, \mathbb{R})$

A closer look at \mathcal{H}_{2}

$$
E_{\mathcal{H}_{2}}=\underbrace{\left\{a y^{2}+b z^{2}-(a+b) x^{2}: a, b \in \mathbb{C}\right\}}_{F \equiv\{M \text {-fixed vectors }\}} \oplus \underbrace{\mathbb{C} x y \oplus \mathbb{C} x z \oplus \mathbb{C} y z}_{" Z_{\beta} \cdot v ", \text { with } v \in F, \sigma_{\beta} \cdot v=-v}
$$

- $x y=Z_{\varepsilon_{1}-\varepsilon_{2}} \cdot \underline{v}$, with \underline{v} the "unique" (-1) eigenv. of $\sigma_{\varepsilon_{1}-\varepsilon_{2}}$ in F
- $x z=Z_{\varepsilon_{1}-\varepsilon_{3}} \cdot \underline{u}$, with \underline{u} the "unique" (-1) eigenv. of $\sigma_{\varepsilon_{1}-\varepsilon_{3}}$ in F
- $y z=Z_{\varepsilon_{2}-\varepsilon_{3}} \cdot \underline{w}$, with \underline{w} the "unique" (-1) eigenv. of $\sigma_{\varepsilon_{2}-\varepsilon_{3}}$ in F

An algorithm to construct petite K-types

- Input: a representation ρ of $M^{\prime} \subseteq S L(n)$ not containing the sign representation of $W(S L(3))$
(when ρ is a Weyl group representation, this is equivalent to requiring that the partition ρ have at most two parts)
- Output: a petite representation μ_{ρ} of $S O(n)$ that extends ρ
- Value: When ρ is a Weyl group representation, the signature w.r.t. μ_{ρ} of the intertwining operator for a spherical principal series can be computed using only the Weyl group repr. ρ.

The main ideas...

- As a Lie algebra representation, the differential of a petite representation of K is generated by its restriction to M^{\prime} through an iterated application of the Z_{α} s.
- Because the representation is petite, the eigenvalues of Z_{α} must lie in the set $\{0, \pm i, \pm 2 i\}$. More precisely, Z_{α} must act by:

$$
\begin{array}{cl}
0 & \text { on the }(+1) \text {-eigenspace of } \sigma_{\alpha} \\
+i & \text { on the }(+i) \text {-eigenspace of } \sigma_{\alpha} \\
-i & \text { on the }(-i) \text {-eigenspace of } \sigma_{\alpha} \\
\pm 2 i & \text { on the }(-1) \text {-eigenspace of } \sigma_{\alpha} .
\end{array}
$$

The element $\sigma_{\alpha}=\exp \left(\frac{\pi}{2} Z_{\alpha}\right)$ is a representative in M^{\prime} for s_{α}.
We only need to know the action of Z_{α} on the (-1)-eigensp. of σ_{α}

A sketch of the construction...

It is an inductive argument. This is the m th step:

- By construction $\left(\rho_{m}, F_{\rho_{m}}\right)$ is a representation of M^{\prime} that does not include the sign of \mathcal{S}_{3}.
- We add some generators \mathcal{G}_{m} (to specify the action of each Z_{α} on the (-1)-eigenspace of $\left.\sigma_{\alpha}\right)$.
- We impose some relations \mathcal{R}_{m} (to control the eigenvalues of Z_{α} and make sure not to introduce any copy of the sign representation of \mathcal{S}_{3}).
- The result is a new vector space

$$
\frac{F_{\rho_{m}}+\operatorname{Span}\left(\mathcal{G}_{m}\right)}{\mathcal{R}_{m}}
$$

on which we define a representation ρ_{m+1} of M^{\prime}.

A sketch of the construction... (continued)

- Because $\left(\rho_{m+1}, F_{\rho_{m+1}}\right)$ does not include the sign of \mathcal{S}_{3}, we can iterate the construction.
- The number of steps is finite $\left(\mathcal{G}_{m}=\varnothing\right.$ for m big $)$.
- The final result is a representation of M^{\prime} that extends the original representation. It is possible to define an action of $\operatorname{Lie}(K)$ on this space, that lifts to a petite representation of K.

Some details

I will describe:

- The set of generators \mathcal{G}_{m} to be added at the m th step of the construction.
- The set of relations \mathcal{R}_{m} to be added at the m th step of the construction.
- The vector space that results from this inductive construction, and the actions of M^{\prime} and $\operatorname{Lie}(K)$ on this space.

The "new generators" $\mathcal{G}_{m} \ldots$

The set \mathcal{G}_{m} consists of all the "formal strings" $Z_{\nu} v$, with v a (-1)-eigenvector of σ_{ν} in $F_{\rho_{m}}$, and ν a positive root.
... keep in mind the example of $S L(3)!!$

The "new relations" $\mathcal{R}_{m} \ldots$

The set \mathcal{R}_{m} consists of the following four kinds of relations:

1. "linearity relations"

$$
Z_{\nu}\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} Z_{\nu} v_{1}+a_{2} Z_{\nu} v_{2}
$$

for all a_{1}, a_{2} in \mathbb{C}, and for all (-1)-eigenv.s v_{1}, v_{2} of σ_{ν} in $F_{\rho_{m}}$.
2. "commutativity relations"

$$
Z_{\nu_{1}} Z_{\nu_{2}} v=Z_{\nu_{2}} Z_{\nu_{1}} v
$$

for all mutually orthogonal positive roots ν_{1}, ν_{2} and all simultaneous (-1)-eigenvectors of $\sigma_{\nu_{1}}, \sigma_{\nu_{2}}$ in $F_{\rho_{m-1}}$.

The "new relations" $\mathcal{R}_{m} \ldots$ (continued)

3. "no repetitions!"

$$
Z_{\nu} Z_{\nu} v=-4 v
$$

for all positive roots ν and all (-1)-eigenvectors of σ_{ν} in $F_{\rho_{m-1}}$.
4. " (\star)-relations"

$$
Z_{\nu} v=\sigma_{\beta} \cdot\left(Z_{\nu} v\right)+\sigma_{\gamma} \cdot\left(Z_{\nu} v\right)
$$

for all positive roots ν, all (-1)-eigenvectors v of σ_{ν} in $F_{\rho_{m}}$, and all triples of positive roots α, β, γ forming an \mathcal{A}_{2}, such that

- $\alpha=\nu$ or $\alpha \perp \nu ; \beta \not \perp \nu$ (so automatically $\gamma \not \perp \nu$), and
- $\sigma_{\alpha} \cdot v=-v ; \sigma_{\beta}^{2} \cdot v=-v$ (so automatically $\sigma_{\gamma}^{2} \cdot v=-v$).

The final result...

- the vector space: we have added to F_{ρ} the equivalence classes of all the strings of the form:

$$
S=Z_{\alpha_{1}} \ldots Z_{\alpha_{r}} v
$$

with $\alpha_{1}, \ldots, \alpha_{r}$ mutually orthogonal positive roots, and v a simultaneous (-1)-eigenvector for $\sigma_{\alpha_{1}}, \ldots, \sigma_{\alpha_{r}}$ in F_{ρ}.

- the action of $M^{\prime}: \sigma \cdot\left[Z_{\nu} v\right]=\left[\left(\operatorname{Ad}(\sigma)\left(Z_{\nu}\right)\right)(\sigma \cdot v)\right]$
- the action of $\operatorname{Lie}(K)$:

$$
\begin{array}{ll}
Z_{\alpha} \cdot\left[Z_{\nu} v\right]=[0] & \text { if } \sigma_{\alpha} \cdot\left(Z_{\nu} v\right)=+\left(Z_{\nu} v\right) \\
Z_{\alpha} \cdot\left[Z_{\nu} v\right]=\left[Z_{\alpha} Z_{\nu} v\right] & \text { if } \sigma_{\alpha} \cdot\left(Z_{\nu} v\right)=-\left(Z_{\nu} v\right) \\
Z_{\alpha} \cdot\left[Z_{\nu} v\right]=\sigma_{\alpha} \cdot\left[Z_{\nu} v\right] & \text { if } \sigma_{\alpha}^{2} \cdot\left(Z_{\nu} v\right)=-\left(Z_{\nu} v\right) .
\end{array}
$$

Constructing petite K-types. . .

Construction for $S L(2 n, \mathbb{R})$

$$
(2 n) \Rightarrow L\left(0 \psi_{1}+0 \psi_{2}+\cdots+0 \psi_{n}\right)
$$

$$
\begin{array}{||}
\hline(2 n-k, k) \Rightarrow L\left(2 \psi_{1}+2 \psi_{2}+\cdots+2 \psi_{k}\right), \text { for all } 0<k<n \\
\hline
\end{array}
$$

$$
(n, n) \Rightarrow L\left(2 \psi_{1}+\cdots+2 \psi_{n-1}-2 \psi_{n}\right) \oplus L\left(2 \psi_{1}+\cdots+2 \psi_{n-1}+2 \psi_{n}\right)
$$

Construction for $S L(2 n+1, \mathbb{R})$

$$
(2 n+1) \Rightarrow L\left(0 \psi_{1}+0 \psi_{2}+\cdots+0 \psi_{n}\right)
$$

$$
\text { (2n+1-k,k) } \Rightarrow L\left(2 \psi_{1}+2 \psi_{2}+\cdots+2 \psi_{k}\right), \text { for all } 0<k \leq n
$$

Possible generalizations...

- Our method for constructing petite K-types appears to be generalizable to other split semi-simple Lie groups, other than $S L(n)$, whose root system admits one root length.
- As ρ varies in the set of Weyl group repr.s that do not contain the sign of \mathcal{S}_{3}, the output will be a list of petite K-types on which the intertwining operator for a spherical principal series can be constructed by means of Weyl group computations.
- The final result will be a non-unitarity test for a spherical principal series for split groups of type $\mathcal{A}, \mathcal{D}, E_{6}, E_{7}$ and E_{8}.

Construction for the representation $S^{2,2}$ of \mathcal{S}_{4}

We can choose a basis $\{v, u\}$ of $F_{\rho}=\mathbb{C}^{2}$ that consists of a $(+1)$ and a (-1) eigenvector of σ_{12}. W.r.t. this basis, we have:

$$
\begin{array}{ll}
\sigma_{12}, \sigma_{34} \rightsquigarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) & u:(-1) \text { eigenvector of } \sigma_{12}, \sigma_{34} \\
\sigma_{13}, \sigma_{24} \rightsquigarrow\left(\begin{array}{cc}
-1 / 2 & -1 / 2 \\
-3 / 2 & 1 / 2
\end{array}\right) & u+v:(-1) \text { eigenvector of } \sigma_{13}, \sigma_{24} \\
\sigma_{23}, \sigma_{14} \rightsquigarrow\left(\begin{array}{cc}
-1 / 2 & 1 / 2 \\
3 / 2 & 1 / 2
\end{array}\right) & v-u:(-1) \text { eigenvector of } \sigma_{23}, \sigma_{14} .
\end{array}
$$

Complete list of generators:

$$
\begin{array}{cccc}
u & v & Z_{12} u & Z_{34} u \\
Z_{13}(u+v) & Z_{24}(u+v) & Z_{23}(v-u) & Z_{14}(v-u) \\
Z_{12} Z_{34} u & Z_{13} Z_{24}(v+u) & Z_{23} Z_{14}(v-u) . &
\end{array}
$$

There are no relations among strings of length one, and there is only one relation among strings of length two:

$$
Z_{12} Z_{34} u=-\frac{1}{2} Z_{23} Z_{14}(v-u)-\frac{1}{2} Z_{13} Z_{24}(u+v)
$$

The extension has dimension 10, and the corresponding representation of $\operatorname{Lie}(K)$ is $\rho_{2 \varepsilon_{1}+2 \varepsilon_{2}} \oplus \rho_{2 \varepsilon_{1}-2 \varepsilon_{2}}$.

For all α, β in Δ, we have:

$$
\operatorname{Ad}\left(\sigma_{\beta}^{2}\right)\left(Z_{\alpha}\right)= \begin{cases}+Z_{\alpha} & \text { if } \alpha=\beta \text { or } \alpha \perp \beta \\ -Z_{\alpha} & \text { otherwise }\end{cases}
$$

For every string $S=Z_{\alpha_{1}} \ldots Z_{\alpha_{r}} v$ and for every positive root β

$$
\sigma_{\beta}^{2} \cdot\left(Z_{\alpha_{1}} Z_{\alpha_{2}} \cdots Z_{\alpha_{k}} v\right)=(-1)^{\#\left\{j:\left[Z_{\beta}, Z_{\alpha_{j}}\right] \neq 0\right\}}\left(Z_{\alpha_{1}} Z_{\alpha_{2}} \cdots Z_{\alpha_{k}} v\right)
$$

- Let Φ be a root system with one root-length. For all α, β in Φ, $s_{\beta}(\alpha)$ cannot be orthogonal to α.
- Let $\alpha_{1}, \ldots, \alpha_{r}$ be mutually orthogonal positive roots and let v be an element of F_{ρ} satisfying

$$
\sigma_{\alpha_{1}} \cdot v=\cdots=\sigma_{\alpha_{r}} \cdot v=-v
$$

Let ν be any positive root. Then
(i) $S=Z_{\alpha_{1}} \ldots Z_{\alpha_{r}} v$ is a $(+1)$-eigenvector of σ_{ν} if and only if the following conditions are satisfied:

- $\sigma_{\nu} \cdot v=+v$
- $\nu \perp\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$.
(ii) $S=Z_{\alpha_{1}} \ldots Z_{\alpha_{r}} v$ is a (-1)-eigenvector of σ_{ν} if and only of the following conditions are satisfied:
- $\sigma_{\nu} \cdot v=-v$
- ν belongs to the set $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$, or it is orthogonal to it.

