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0 Introduction

These are informal notes of my talk during the Atlas of Lie groups workshop at
AIM in Palo Alto, July 2003. All the ideas below are due to others, the primary
references are Mickelsson [M] and Zhelebenko [Z1], [Z2]. Zhelebenko’s papers
contain statements without proofs, therefore one should probably verify the
results independently. Assuming the results, one gets a fairly explicit algorithm
for computing signatures on the K-types of a Harish-Chandra module. (See
notes on David Vogan’s Montreal talk.)

Let g be a reductive Lie algebra with Cartan decomposition g = k ⊕ p. Fix
a Cartan subalgebra t of k and positive root system ∆+ (t, k), and let k+ =
⊕α∈∆+

kα.
Let U = U(g) be the universal enveloping algebra of g, and let I = Uk+ be

the left ideal generated by k+. We define

S̃ = {u ∈ U | uk+ ⊂ I}

Thus S̃ is the idealizer of I, i.e. the largest subalgebra of U which contains I
as a two-sided ideal.

Following Mickelsson, we define the “step-algebra”

S = S̃/I.

Let M = U/I, then by “abstract nonsense” , we have

S ≈ Mk+ ≈ EndU (M)
Op

.

If X is a g-module, then the subspace Xk+ is an S-module. The principal
result regarding S (conjectured by Mickelsson, proved by van den Hombergh)
is the following

Theorem 0.1 If X is an irreducible admissible Harish-Chandra module then
Xk+ is an irreducible S-module.

∗sahi@math.rutgers.edu, Math Department, Rutgers University, New Brunswick, NJ08903

1



1 Localization

Let S (t) be the symmetric algebra on t and consider the imbedding

S (t) ≈ U (t) ⊂ U (g) .

This makes U = U (g) a (free) left and right module over S (t). However U is
not an S (t)-algebra since

t · u − u · t = ad (t) · u for u ∈ U , t ∈ t.

In fact, we have a direct sum decomposition U = ⊕λ∈t∗Uλ into weight spaces
under the adjoint action of t.

Let R be the field of fractions of S (t), and consider the localization U ′ =
U⊗S(t)R. Then U ′ is an algebra (over C) and a right and left R-vector space,
although it is not an R-algebra. In fact, identifying R with the field of rational
functions on t∗, we have

f · u = u · fλ, for u ∈ U ′
λ and f ∈ R

where fλ ∈ R denotes the rational function

fλ (µ) = f (µ + λ) .

It is easy to see that S (t) ⊂ S̃, and that the corresponding map from S (t) →
S is injective. Thus we can localize S to obtain

S ′ = S⊗S(t)R.

Alternatively one can consider the idealizer S̃ ′ of I ′ = U ′k+ in U ′. Then for
M′ = U ′/I ′one also has

S ′ ≈ S̃ ′/I ′ ≈ (M′)
k+ ≈ EndU ′ (M′)

Op
.

2 Completion

We choose basis vectors e±α in k±α such that eα, e−α and hα = [eα, e−α] form
an S-triple. We also fix an ordering α1, . . . , αd of the positive roots (satisfying
some condition). Then by the PBW theorem, elements of the form

(e−α1
)
k1 . . . (e−αd

)
kd (eαd

)
ld . . . (eα1

)
l1

give a basis for U ′ (k) = U (k)⊗S(t)R as a left (and right) R-module. The given
element belongs to the weight space U ′

µ where

µ = (l1 − k1) α1 + . . . + (ld − kd) αd.

We define the formal completion Fµ of U ′
µ to consist of infinite linear com-

binations of PBW basis elements of weight µ; and we consider their direct sum

F = ⊕µFµ.

2



Clearly U ′ (k) imbeds in F , and it is easy to see that formal multiplication
endows F with a natural algebra structure extending that of U ′ (k).

Moreover if M′ is the U ′ (g)-module defined in the previous section, then
the (left) action of k+ coincides with the adjoint action and thus is locally finite.
This implies that the action of U ′ (k) on M′ extends to an action of F .

3 Projection

Let ρ = 1/2
(

∑

α∈∆+
α
)

, and for each α in ∆+ put

fα,k = hα + ρ (hα) + 1, fα,k = fα (fα + 1) · · · (fα + k − 1) .

We define the following elements of weight 0 in F

Pα =

∞
∑

k=0

(−1)
k

k!fα,k

(e−α)
k
(eα)

k
and P = Pα1

· · ·Pαd
.

The main properties of these elements are the following

Theorem 3.1 P is the unique element of F which satisfies

1. eαP = Pe−α = 0

Thus P is independent of the choice of the (normal) ordering of ∆+. More-
over we have

2. P 2 = P and P ∗ = P

(where ∗ is the hermitian involution on F , defined on “generators” by
e±α = e∓α)

(This stuff needs to be checked, especially to clarify the role
of the ordering of ∆+)

4 Presentation

Recall the Cartan decomposition

g = k ⊕ p.

We now fix a basis e1, . . . , ep of p with weights λi, so that λi ≤ λj implies i ≤ j.
We regard the ei as elements of M′ = U ′/I ′. Combining the previous two
sections, we see that P ·e1, . . . , P ·ep are well-defined elements of M′. Moreover

by the previous theorem, eα (P · ei) = 0, and thus P · ei ∈ (M′)
k+ ≈ S ′.

We write zi for P · ei regarded as element of S ′. The main structural result
proved by Zhelebenko is the following:
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Theorem 4.1 The monomials (z1)
k1 . . . (zp)

kp form a basis for S ′ as a left (and
right) vector space over R. Moreover for i < j, the relations are of the form

zjzi =
∑

a<b

fab
ij zazb + gij

where the various coefficients fij, gij belong to R.
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