ADMISSIBLE W-GRAPHS

JOHN R. STEMBRIDGE (jrs@umich.edu)

Contents

- 1. General W-Graphs
- 2. Admissible W-Graphs
- 3. The Agenda
- 4. The Admissible Cells in Rank 2
- 5. Combinatorial Characterization

1. General W-Graphs

Let (W, S) be a Coxeter system, $S = \{s_1, \ldots, s_n\}.$

Primarily, W = a finite Weyl group.

Let
$$\mathcal{H} = \mathcal{H}(W, S)$$
 = the associated Iwahori-Hecke algebra over $\mathbb{Z}[q^{\pm 1/2}]$.
= $\langle T_1, \ldots, T_n \mid (T_i - q)(T_i + 1) = 0$, braid relations \rangle .

DEFINITION. An S-labeled graph is a triple $\Gamma = (V, m, \tau)$, where

- V is a (finite) vertex set,
- $m: V \times V \to \mathbb{Z}[q^{\pm 1/2}]$ (i.e., a matrix of edge-weights),
- $\tau: V \to 2^S = 2^{[n]}$.

CONVENTIONS.

- $u \xrightarrow{-3} v$ means $m(u \to v) = -3$,
- u v means $m(u \to v) = m(v \to u) = 1$.

Let $M(\Gamma) = \text{free } \mathbb{Z}[q^{\pm 1/2}]$ -module with basis V.

Introduce operators T_i on $M(\Gamma)$:

$$T_i(v) = \begin{cases} qv & \text{if } i \notin \tau(v), \\ -v + q^{1/2} \sum_{u: i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$

DEFINITION (K-L). Γ is a *W*-graph if this yields an *H*-module.

NOTE: $(T_i - q)(T_i + 1) = 0$ (always), so W-graph \Leftrightarrow braid relations.

$$T_i(v) = \begin{cases} qv & \text{if } i \notin \tau(v), \\ -v + q^{1/2} \sum_{u: i \notin \tau(u)} m(v \to u)u & \text{if } i \in \tau(v). \end{cases}$$
(1)

REMARKS.

- Kazhdan-Lusztig use T_i^t , not T_i .
- Restriction: for $J \subset S$, $\Gamma_J := (V, m, \tau|_J)$ is a W_J -graph.
- At q = 1, we get a W-representation.
- However, braid relations at $q = 1 \Rightarrow W$ -graph:

• If $\tau(v) \subseteq \tau(u)$, then (1) does not depend on $m(v \to u)$.

CONVENTION. $m(v \to u) := 0$ whenever $\tau(v) \subseteq \tau(u)$.

DEFINITION. A W-cell is a strongly connected W-graph.

For every W-graph Γ , $M(\Gamma)$ has a filtration whose subquotients are cells.

Typically, cells are not irreducible as \mathcal{H} -reps or W-reps.

However (Gyoja, 1984):

if W is finite every irrep may be realized as a W-cell.

2. Admissible *W*-graphs

 \mathcal{H} has a distinguished basis $\{C'_w : w \in W\}$ (the Kazhdan-Lusztig basis). The action of T_i on C'_w is encoded by a W-graph $\Gamma_W = (W, m, \tau)$, where

- $\tau(v) = \{s \in S : \ell(sv) < \ell(v)\}$ (left descent set),
- \bullet *m* is determined by the Kazhdan-Lusztig polynomials:

$$m(u \to v) = \begin{cases} \mu(u, v) + \mu(v, u) & \text{if } \tau(u) \not\subseteq \tau(v), \\ 0 & \text{if } \tau(u) \subseteq \tau(v), \end{cases}$$

where $\mu(u, v) = \text{coeff.}$ of $q^{(\ell(v) - \ell(u) - 1)/2}$ in $P_{u,v}(q)$ (= 0 unless $u \leq v$).

REMARKS.

- This graph is generally very sparse, and has edge weights in \mathbb{Z} .
- The cells of Γ_W decompose the regular representation of \mathcal{H} .
- These cells are often not irreducible as \mathcal{H} -reps or W-reps.
- For all W of interest (finite or crystallographic), we know that $P_{u,v}(q)$ has *nonnegative* coefficients.
 - These W-graphs are edge-symmetric; i.e.,

$$m(u \to v) = m(v \to u)$$
 if $\tau(u) \not\subseteq \tau(v)$ and $\tau(v) \not\subseteq \tau(u)$. (2)

- If $\mu(u, v) \neq 0$, then $\ell(u) \neq \ell(v) \mod 2$, so these graphs are bipartite.
- (Vogan) Similar W-graphs, cells, and K-L polys exist for real Lie groups.

DEFINITION. An S-labeled graph $\Gamma = (V, m, \tau)$ is admissible if

• it is edge-symmetric; i.e.,

 $m(u \to v) = m(v \to u)$ if $\tau(u) \not\subseteq \tau(v)$ and $\tau(v) \not\subseteq \tau(u)$,

- all edge weights $m(u \rightarrow v)$ are nonnegative integers, and
- it is bipartite.

MAIN HYPOTHESIS. These axioms capture the W-graphs that we care about, and are sufficiently rigid that there should be few "synthetic" cells. Sufficient understanding of admissible W-cells could yield constructions of K-L cells without having to compute K-L polynomials.

EXAMPLE. The admissible A_4 -cells:

All of these are K-L cells; none are synthetic.

The admissible D_4 -cells (three are synthetic):

3. The Agenda

PROBLEM 1 (W finite). Are there finitely many admissible W-cells?

• Confirmed for $A_1, \ldots, A_9, B_2, B_3, D_4, D_5, D_6, E_6$, and rank 2.

PROBLEM 2. Classify/generate all admissible W-cells.

- Are the only admissible A_n -cells the K-L cells?
- Caution (McLarnan-Warrington): Interesting things happen in A_{15} .

PROBLEM 3. Understand "combinatorial rigidity" for cells.

- Rigidity means $M(\Gamma_1) \cong M(\Gamma_2)$ (as W-reps) $\Rightarrow \Gamma_1 \cong \Gamma_2$.
- Example: Are K-L cells rigid? True for A_n .
- Admissible *W*-cells are not rigid in general.

PROBLEM 4. Understand "compressibility" of cells.

• A given cell or W-graph should be recursively constructible from a small amount of data.

4. The Admissible Cells in Rank 2

Consider $W = I_2(m)$, $m < \infty$. (When $m = \infty$, anything goes.) Given an $I_2(m)$ -graph, partition the vertices according to τ :

Focus on non-trivial cells: $\tau(v) = \{1\}$ or $\{2\}$ for all $v \in V$. Encode edge weights $\{1\} \rightarrow \{2\}$ (resp., $\{2\} \rightarrow \{1\}$) by a matrix A (resp. B).

The conditions on A and B are as follows:

• m = 2: A = 0, B = 0.

•
$$m = 3$$
: $AB = 1$, $BA = 1$.

- m = 4: ABA = 2A, BAB = 2B.
- m = 5: ABAB 3AB + 1 = 0, BABA 3BA + 1 = 0.

:

Remarks.

- If we assume only \mathbb{Z} -weights, no classification is possible (cf. m = 3).
- Edge symmetry $\Leftrightarrow A = B^t$.
- When m = 3, edge weights $\in \mathbb{Z}^{\geq 0} \Rightarrow$ edge symmetry, but not in general.

THEOREM 1. A 2-colored graph is an admissible $I_2(m)$ -cell iff it is a properly 2-colored A-D-E Dynkin diagram whose Coxeter number divides m.

EXAMPLE. The Dynkin diagrams with Coxeter number dividing 6 are A_1 , A_2 , D_4 , and A_5 . Therefore, the (nontrivial) admissible G_2 -cells are

NOTE: The nontrival K-L cells for $I_2(m)$ are paths of length m-2.

Proof Sketch. Let Γ be any properly 2-colored graph.

Let $M = \begin{bmatrix} 0 & B \\ A & 0 \end{bmatrix}$ encode the edge weights of Γ .

Let $\phi_m(t)$ be the Chebyshev polynomial such that $\phi_m(2\cos\theta) = \frac{\sin m\theta}{\sin\theta}$. Then Γ is an $I_2(m)$ -cell $\Leftrightarrow \phi_m(M) = 0$

 $\Leftrightarrow M$ is diagonalizable with eigenvalues $\subset \{2\cos(\pi j/m) : 1 \leq j < m\}$. Now assume Γ is admissible $(M = M^t, \mathbb{Z}^{\geq 0}\text{-entries})$. If Γ is an $I_2(m)$ -cell, then 2 - M is positive definite. Hence, 2 - M is a (symmetric) Cartan matrix of finite type. Conversely, let A be any Cartan matrix of finite type (symmetric or not). Then the eigenvalues of A are $2 - 2\cos(\pi e_j/h)$, where e_1, e_2, \ldots are the exponents and h is the Coxeter number. \Box

5. Combinatorial Characterization

For brevity, we restrict to the simply-laced case.

THEOREM 2. (Assume (W, S) is simply-laced.) An admissible S-labeled graph is a W-graph if and only if it satisfies

- the Compatibility Rule,
- the Simplicity Rule,
- the Frontier Rule,
- the Diamond Rule, and
- the Hexagon Rule.

THE COMPATIBILITY RULE (applies to all W-graphs for all W):

If $m(u \rightarrow v) \neq 0$, then

every $i \in \tau(u) - \tau(v)$ is bonded to every $j \in \tau(v) - \tau(u)$.

Necessity follows from analyzing commuting braid relations.

REFORMULATION: Define the compatibility graph Comp(W, S):

- vertex set $2^S = 2^{[n]}$,
- edges $I \to J$ when $I \supset J$,
- edges I J when $I \not\subset J$ and $J \not\subset I$ and

every $i \in I - J$ is bonded to every $j \in J - I$.

Compatibility means that $\tau: \Gamma \to \operatorname{Comp}(W, S)$ is a graph morphism.

Compatibility graphs for A_3 , A_4 , and D_4 :

THE SIMPLICITY RULE (applies whenever $o(s_i s_j) < \infty$ for all i, j):

All edges are either simple or are inclusion arcs.

That is, $m(u \to v) \neq 0$ implies $m(u \to v) = m(v \to u) = 1$ or $\tau(u) \supset \tau(v)$. Necessity follows from Theorem 1.

THE FRONTIER RULE (simply-laced only):

For each simple edge u - v, define

Bonds $(u, v) := \{\{i, j\} : i \in \tau(u) - \tau(v), j \in \tau(v) - \tau(u)\}.$

Compatibility \Rightarrow this is a set of bonds in the Dynkin diagram of (W, S). Define the **frontier** of v:

$$\operatorname{Fr}(v) := \left\{ \operatorname{bonds} \{i, j\} : i \in \tau(v), \ j \notin \tau(v) \right\}.$$

The Frontier Rule requires that

$$Fr(v) = \bigcup_{u:u-v} Bonds(u, v)$$
 (disjoint union).

Necessity follows from the m = 3 case of Theorem 1.

EXAMPLE. Say $(W, S) = 1 - \frac{a}{2} - 2 - \frac{b}{3} - \frac{c}{4} - \frac{d}{5}$ and $\tau(v) = \{1, 3, 4\}$. Then $Fr(v) = \{a, b, d\}$ and

$$135 \underbrace{d}{134} \underbrace{ab}{24} \text{ is legal at } v,$$
$$135 \underbrace{d}{134} \underbrace{ab}{234} \text{ is not.}$$

REMARK. The Compatibility, Simplicity, and Frontier Rules suffice to determine all admissible A_3 -cells.

[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]

Define
$$V_{i/j} := \{ v \in V : i \in \tau(v), j \notin \tau(v) \}.$$

THE DIAMOND RULE:

For all $i \neq j$ and all vertices u, v such that $i, j \in \tau(u)$ and $i, j \notin \tau(v)$,

THE HEXAGON RULE:

For all bonded $\{i, j\}$ and all vertices u, v such that $i, j \in \tau(u)$ and $i, j \notin \tau(v)$,

$$\sum_{w \in V_{i/j}} m(u \to w) m(w' \to v) = \sum_{w \in V_{i/j}} m(u \to w') m(w \to v),$$

where w' is the unique vertex in $V_{j/i}$ such that $m(w \to w') = 1$.

