ADMISSIBLE W-GRAPHS

John R. Stembridge〈jrs@umich.edu〉

Contents

1. General W-Graphs
2. Admissible W-Graphs
3. The Agenda
4. The Admissible Cells in Rank 2
5. Combinatorial Characterization

1. General W-Graphs

Let (W, S) be a Coxeter system, $S=\left\{s_{1}, \ldots, s_{n}\right\}$.
Primarily, $W=$ a finite Weyl group.
Let $\mathcal{H}=\mathcal{H}(W, S)=$ the associated Iwahori-Hecke algebra over $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$.

$$
\left.=\left\langle T_{1}, \ldots, T_{n}\right|\left(T_{i}-q\right)\left(T_{i}+1\right)=0, \text { braid relations }\right\rangle .
$$

Definition. An S-labeled graph is a triple $\Gamma=(V, m, \tau)$, where

- V is a (finite) vertex set,
- $m: V \times V \rightarrow \mathbb{Z}\left[q^{ \pm 1 / 2}\right]$ (i.e., a matrix of edge-weights),
- $\tau: V \rightarrow 2^{S}=2^{[n]}$.

Conventions.

- $u \xrightarrow{-3} v$ means $m(u \rightarrow v)=-3$,
- $u-v$ means $m(u \rightarrow v)=m(v \rightarrow u)=1$.

Let $M(\Gamma)=$ free $\mathbb{Z}\left[q^{ \pm 1 / 2}\right]$-module with basis V.
Introduce operators T_{i} on $M(\Gamma)$:

$$
T_{i}(v)=\left\{\begin{array}{cc}
q v & \text { if } i \notin \tau(v), \\
-v+q^{1 / 2} \sum_{u: i \notin \tau(u)} m(v \rightarrow u) u & \text { if } i \in \tau(v) .
\end{array}\right.
$$

Definition (K-L). Γ is a W-graph if this yields an \mathcal{H}-module.
Note: $\left(T_{i}-q\right)\left(T_{i}+1\right)=0$ (always), so W-graph \Leftrightarrow braid relations.

$$
T_{i}(v)=\left\{\begin{array}{cc}
q v & \text { if } i \notin \tau(v), \tag{1}\\
-v+q^{1 / 2} \sum_{u: i \notin \tau(u)} m(v \rightarrow u) u & \text { if } i \in \tau(v) .
\end{array}\right.
$$

Remarks.

- Kazhdan-Lusztig use T_{i}^{t}, not T_{i}.
- Restriction: for $J \subset S, \Gamma_{J}:=\left(V, m,\left.\tau\right|_{J}\right)$ is a $W_{J \text {-graph. }}$.
- At $q=1$, we get a W-representation.
- However, braid relations at $q=1 \nRightarrow W$-graph:

- If $\tau(v) \subseteq \tau(u)$, then (1) does not depend on $m(v \rightarrow u)$.

Convention. $m(v \rightarrow u):=0$ whenever $\tau(v) \subseteq \tau(u)$.
Definition. A W-cell is a strongly connected W-graph.
For every W-graph $\Gamma, M(\Gamma)$ has a filtration whose subquotients are cells. Typically, cells are not irreducible as \mathcal{H}-reps or W-reps.

However (Gyoja, 1984):
if W is finite every irrep may be realized as a W-cell.

2. Admissible W-graphs

\mathcal{H} has a distinguished basis $\left\{C_{w}^{\prime}: w \in W\right\}$ (the Kazhdan-Lusztig basis).
The action of T_{i} on C_{w}^{\prime} is encoded by a W-graph $\Gamma_{W}=(W, m, \tau)$, where

- $\tau(v)=\{s \in S: \ell(s v)<\ell(v)\}$ (left descent set),
- m is determined by the Kazhdan-Lusztig polynomials:

$$
m(u \rightarrow v)=\left\{\begin{array}{cl}
\mu(u, v)+\mu(v, u) & \text { if } \tau(u) \nsubseteq \tau(v) \\
0 & \text { if } \tau(u) \subseteq \tau(v)
\end{array}\right.
$$

where $\mu(u, v)=$ coeff. of $q^{(\ell(v)-\ell(u)-1) / 2}$ in $P_{u, v}(q)(=0$ unless $u \leqslant v)$.

Remarks.

- This graph is generally very sparse, and has edge weights in \mathbb{Z}.
- The cells of Γ_{W} decompose the regular representation of \mathcal{H}.
- These cells are often not irreducible as \mathcal{H}-reps or W-reps.
- For all W of interest (finite or crystallographic), we know that $P_{u, v}(q)$ has nonnegative coefficients.
- These W-graphs are edge-symmetric; i.e.,

$$
\begin{equation*}
m(u \rightarrow v)=m(v \rightarrow u) \text { if } \tau(u) \nsubseteq \tau(v) \text { and } \tau(v) \nsubseteq \tau(u) . \tag{2}
\end{equation*}
$$

- If $\mu(u, v) \neq 0$, then $\ell(u) \neq \ell(v) \bmod 2$, so these graphs are bipartite.
- (Vogan) Similar W-graphs, cells, and K-L polys exist for real Lie groups.

Definition. An S-labeled graph $\Gamma=(V, m, \tau)$ is admissible if

- it is edge-symmetric; i.e.,

$$
m(u \rightarrow v)=m(v \rightarrow u) \text { if } \tau(u) \nsubseteq \tau(v) \text { and } \tau(v) \nsubseteq \tau(u),
$$

- all edge weights $m(u \rightarrow v)$ are nonnegative integers, and
- it is bipartite.

Main Hypothesis. These axioms capture the W-graphs that we care about, and are sufficiently rigid that there should be few "synthetic" cells. Sufficient understanding of admissible W-cells could yield constructions of K-L cells without having to compute K-L polynomials.

Example. The admissible A_{4}-cells:

(1234)

All of these are K-L cells; none are synthetic.

The admissible D_{4}-cells (three are synthetic):

3. The Agenda

Problem 1 (W finite). Are there finitely many admissible W-cells?

- Confirmed for $A_{1}, \ldots, A_{9}, B_{2}, B_{3}, D_{4}, D_{5}, D_{6}, E_{6}$, and rank 2.

Problem 2. Classify/generate all admissible W-cells.

- Are the only admissible A_{n}-cells the K-L cells?
- Caution (McLarnan-Warrington): Interesting things happen in A_{15}.

Problem 3. Understand "combinatorial rigidity" for cells.

- Rigidity means $M\left(\Gamma_{1}\right) \cong M\left(\Gamma_{2}\right)$ (as W-reps) $\Rightarrow \Gamma_{1} \cong \Gamma_{2}$.
- Example: Are K-L cells rigid? True for A_{n}.
- Admissible W-cells are not rigid in general.

Problem 4. Understand "compressibility" of cells.

- A given cell or W-graph should be recursively constructible from a small amount of data.

4. The Admissible Cells in Rank 2

Consider $W=I_{2}(m), m<\infty$. (When $m=\infty$, anything goes.)
Given an $I_{2}(m)$-graph, partition the vertices according to τ :

Focus on non-trivial cells: $\tau(v)=\{1\}$ or $\{2\}$ for all $v \in V$.
Encode edge weights $\{1\} \rightarrow\{2\}$ (resp., $\{2\} \rightarrow\{1\}$) by a matrix A (resp. B).
The conditions on A and B are as follows:

- $m=2: A=0, B=0$.
- $m=3: A B=1, B A=1$.
- $m=4: A B A=2 A, B A B=2 B$.
- $m=5: A B A B-3 A B+1=0, B A B A-3 B A+1=0$.

Remarks.

- If we assume only \mathbb{Z}-weights, no classification is possible (cf. $m=3$).
- Edge symmetry $\Leftrightarrow A=B^{t}$.
- When $m=3$, edge weights $\in \mathbb{Z} \geqslant 0 \Rightarrow$ edge symmetry, but not in general.

Theorem 1. A 2-colored graph is an admissible $I_{2}(m)$-cell iff it is a properly 2-colored $A-D-E$ Dynkin diagram whose Coxeter number divides m.

Example. The Dynkin diagrams with Coxeter number dividing 6 are A_{1}, A_{2}, D_{4}, and A_{5}. Therefore, the (nontrivial) admissible G_{2}-cells are
(1)
(2)

Note: The nontrival K-L cells for $I_{2}(m)$ are paths of length $m-2$.
Proof Sketch. Let Γ be any properly 2 -colored graph.
Let $M=\left[\begin{array}{cc}0 & B \\ A & 0\end{array}\right]$ encode the edge weights of Γ.
Let $\phi_{m}(t)$ be the Chebyshev polynomial such that $\phi_{m}(2 \cos \theta)=\frac{\sin m \theta}{\sin \theta}$.
Then Γ is an $I_{2}(m)$-cell $\Leftrightarrow \phi_{m}(M)=0$
$\Leftrightarrow M$ is diagonalizable with eigenvalues $\subset\{2 \cos (\pi j / m): 1 \leqslant j<m\}$.
Now assume Γ is admissible ($M=M^{t}, \mathbb{Z}^{\geqslant 0}$-entries).
If Γ is an $I_{2}(m)$-cell, then $2-M$ is positive definite.
Hence, $2-M$ is a (symmetric) Cartan matrix of finite type.
Conversely, let A be any Cartan matrix of finite type (symmetric or not).
Then the eigenvalues of A are $2-2 \cos \left(\pi e_{j} / h\right)$, where e_{1}, e_{2}, \ldots are the exponents and h is the Coxeter number.

5. Combinatorial Characterization

For brevity, we restrict to the simply-laced case.
Theorem 2. (Assume (W, S) is simply-laced.) An admissible S-labeled graph is a W-graph if and only if it satisfies

- the Compatibility Rule,
- the Simplicity Rule,
- the Frontier Rule,
- the Diamond Rule, and
- the Hexagon Rule.

The Compatibility Rule (applies to all W-graphs for all W): If $m(u \rightarrow v) \neq 0$, then every $i \in \tau(u)-\tau(v)$ is bonded to every $j \in \tau(v)-\tau(u)$.
Necessity follows from analyzing commuting braid relations.
Reformulation: Define the compatibility graph $\operatorname{Comp}(W, S)$:

- vertex set $2^{S}=2^{[n]}$,
- edges $I \rightarrow J$ when $I \supset J$,
- edges $I-J$ when $I \not \subset J$ and $J \not \subset I$ and
every $i \in I-J$ is bonded to every $j \in J-I$.
Compatibility means that $\tau: \Gamma \rightarrow \operatorname{Comp}(W, S)$ is a graph morphism.

Compatibility graphs for A_{3}, A_{4}, and D_{4} :

The Simplicity Rule (applies whenever $o\left(s_{i} s_{j}\right)<\infty$ for all i, j):
All edges are either simple or are inclusion arcs.
That is, $m(u \rightarrow v) \neq 0$ implies $m(u \rightarrow v)=m(v \rightarrow u)=1$ or $\tau(u) \supset \tau(v)$.
Necessity follows from Theorem 1.

The Frontier Rule (simply-laced only):
For each simple edge $u-v$, define

$$
\operatorname{Bonds}(u, v):=\{\{i, j\}: i \in \tau(u)-\tau(v), j \in \tau(v)-\tau(u)\}
$$

Compatibility \Rightarrow this is a set of bonds in the Dynkin diagram of (W, S).
Define the frontier of v :

$$
\operatorname{Fr}(v):=\{\text { bonds }\{i, j\}: i \in \tau(v), j \notin \tau(v)\} .
$$

The Frontier Rule requires that

$$
\operatorname{Fr}(v)=\bigcup_{u: u-v} \operatorname{Bonds}(u, v) \quad \text { (disjoint union). }
$$

Necessity follows from the $m=3$ case of Theorem 1 .
Example. Say $(W, S)=1 \underset{a}{-b} 3 \xrightarrow{c} 4 \xrightarrow{d} 5$ and $\tau(v)=\{1,3,4\}$. Then $\operatorname{Fr}(v)=\{a, b, d\}$ and

$$
\begin{gathered}
135 \frac{d}{-} 134-\frac{a b}{2} 24 \quad \text { is legal at } v, \\
135-d \\
-134-a \\
-234 \quad \text { is not. }
\end{gathered}
$$

Remark. The Compatibility, Simplicity, and Frontier Rules suffice to determine all admissible A_{3}-cells.
[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]
Define $V_{i / j}:=\{v \in V: i \in \tau(v), j \notin \tau(v)\}$.

The Diamond Rule:

For all $i \neq j$ and all vertices u, v such that $i, j \in \tau(u)$ and $i, j \notin \tau(v)$,

$$
\sum_{w \in V_{i / j}} m(u \rightarrow w) m(w \rightarrow v)=\sum_{w \in V_{j / i}} m(u \rightarrow w) m(w \rightarrow v) .
$$

The Hexagon Rule:
For all bonded $\{i, j\}$ and all vertices u, v such that $i, j \in \tau(u)$ and $i, j \notin \tau(v)$,

$$
\sum_{w \in V_{i / j}} m(u \rightarrow w) m\left(w^{\prime} \rightarrow v\right)=\sum_{w \in V_{i / j}} m\left(u \rightarrow w^{\prime}\right) m(w \rightarrow v)
$$

where w^{\prime} is the unique vertex in $V_{j / i}$ such that $m\left(w \rightarrow w^{\prime}\right)=1$.

