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1. General W -Graphs

Let (W, S) be a Coxeter system, S = {s1, . . . , sn}.

Primarily, W = a finite Weyl group.

Let H = H(W, S) = the associated Iwahori-Hecke algebra over Z[q±1/2].

= 〈T1, . . . , Tn | (Ti − q)(Ti + 1) = 0, braid relations〉.

Definition. An S-labeled graph is a triple Γ = (V, m, τ ), where

• V is a (finite) vertex set,

• m : V × V → Z[q±1/2] (i.e., a matrix of edge-weights),

• τ : V → 2S = 2[n].

Conventions.

• u
−3
−→ v means m(u → v) = −3,

• u v means m(u → v) = m(v → u) = 1.

Let M(Γ) = free Z[q±1/2]-module with basis V .

Introduce operators Ti on M(Γ):

Ti(v) =

{

qv if i /∈ τ (v),

−v+q1/2
∑

u:i/∈τ(u) m(v → u)u if i ∈ τ (v).

Definition (K-L). Γ is a W -graph if this yields an H-module.

Note: (Ti − q)(Ti + 1) = 0 (always), so W -graph ⇔ braid relations.



Ti(v) =

{

qv if i /∈ τ (v),

−v+q1/2
∑

u:i/∈τ(u) m(v → u)u if i ∈ τ (v).
(1)

Remarks.

• Kazhdan-Lusztig use T t
i , not Ti.

• Restriction: for J ⊂ S, ΓJ := (V, m, τ |
J
) is a WJ -graph.

• At q = 1, we get a W -representation.

• However, braid relations at q = 1 6⇒ W -graph:

1 1

22

12

• If τ (v) ⊆ τ (u), then (1) does not depend on m(v → u).

Convention. m(v → u) := 0 whenever τ (v) ⊆ τ (u).

Definition. A W -cell is a strongly connected W -graph.

For every W -graph Γ, M(Γ) has a filtration whose subquotients are cells.

Typically, cells are not irreducible as H-reps or W -reps.

However (Gyoja, 1984):

if W is finite every irrep may be realized as a W -cell.



2. Admissible W -graphs

H has a distinguished basis {C ′
w : w ∈ W} (the Kazhdan-Lusztig basis).

The action of Ti on C ′
w is encoded by a W -graph ΓW = (W, m, τ ), where

• τ (v) = {s ∈ S : `(sv) < `(v)} (left descent set),

• m is determined by the Kazhdan-Lusztig polynomials:

m(u → v) =

{

µ(u, v)+µ(v, u) if τ (u) 6⊆ τ (v),

0 if τ (u) ⊆ τ (v),

where µ(u, v) = coeff. of q(`(v)−`(u)−1)/2 in Pu,v(q) (= 0 unless u 6 v).

Remarks.

• This graph is generally very sparse, and has edge weights in Z.

• The cells of ΓW decompose the regular representation of H.

• These cells are often not irreducible as H-reps or W -reps.

• For all W of interest (finite or crystallographic), we know that Pu,v(q)

has nonnegative coefficients.

• These W -graphs are edge-symmetric; i.e.,

m(u → v) = m(v → u) if τ (u) 6⊆ τ (v) and τ (v) 6⊆ τ (u). (2)

• If µ(u, v) 6= 0, then `(u) 6= `(v) mod 2, so these graphs are bipartite.

• (Vogan) Similar W -graphs, cells, and K-L polys exist for real Lie groups.
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Definition. An S-labeled graph Γ = (V, m, τ ) is admissible if

• it is edge-symmetric; i.e.,

m(u → v) = m(v → u) if τ (u) 6⊆ τ (v) and τ (v) 6⊆ τ (u),

• all edge weights m(u → v) are nonnegative integers, and

• it is bipartite.

Main Hypothesis. These axioms capture the W -graphs that we care

about, and are sufficiently rigid that there should be few “synthetic” cells.

Sufficient understanding of admissible W -cells could yield constructions of

K-L cells without having to compute K-L polynomials.

Example. The admissible A4-cells:

13

2 3

24

14

13

134 124

24

234 134 124 1231234

23

12 13 24 34

14

23

4321

All of these are K-L cells; none are synthetic.



The admissible D4-cells (three are synthetic):
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3. The Agenda

Problem 1 (W finite). Are there finitely many admissible W -cells?

• Confirmed for A1, . . . , A9, B2, B3, D4, D5, D6, E6, and rank 2.

Problem 2. Classify/generate all admissible W -cells.

• Are the only admissible An-cells the K-L cells?

• Caution (McLarnan-Warrington): Interesting things happen in A15.

Problem 3. Understand “combinatorial rigidity” for cells.

• Rigidity means M(Γ1) ∼= M(Γ2) (as W -reps) ⇒ Γ1
∼= Γ2.

• Example: Are K-L cells rigid? True for An.

• Admissible W -cells are not rigid in general.

Problem 4. Understand “compressibility” of cells.

• A given cell or W -graph should be recursively constructible from a

small amount of data.



4. The Admissible Cells in Rank 2

Consider W = I2(m), m < ∞. (When m = ∞, anything goes.)

Given an I2(m)-graph, partition the vertices according to τ :

12

1 2

φ

Focus on non-trivial cells: τ (v) = {1} or {2} for all v ∈ V .

Encode edge weights {1} → {2} (resp., {2} → {1}) by a matrix A (resp. B).

The conditions on A and B are as follows:

• m = 2: A = 0, B = 0.

• m = 3: AB = 1, BA = 1.

• m = 4: ABA = 2A, BAB = 2B.

• m = 5: ABAB − 3AB + 1 = 0, BABA − 3BA + 1 = 0.

...

Remarks.

• If we assume only Z-weights, no classification is possible (cf. m = 3).

• Edge symmetry ⇔ A = Bt.

• When m = 3, edge weights ∈ Z
>0 ⇒ edge symmetry, but not in general.



Theorem 1. A 2-colored graph is an admissible I2(m)-cell iff it is a prop-

erly 2-colored A-D-E Dynkin diagram whose Coxeter number divides m.

Example. The Dynkin diagrams with Coxeter number dividing 6 are A1,

A2, D4, and A5. Therefore, the (nontrivial) admissible G2-cells are

1

2

2

2 2

1

1 1

1

2

1 2 11 2

12 2 1 2

21

Note: The nontrival K-L cells for I2(m) are paths of length m − 2.

Proof Sketch. Let Γ be any properly 2-colored graph.

Let M =

[

0 B
A 0

]

encode the edge weights of Γ.

Let φm(t) be the Chebyshev polynomial such that φm(2 cos θ) =
sin mθ

sin θ
.

Then Γ is an I2(m)-cell ⇔ φm(M) = 0

⇔ M is diagonalizable with eigenvalues ⊂ {2 cos(πj/m) : 1 6 j < m}.

Now assume Γ is admissible (M = M t, Z
>0-entries).

If Γ is an I2(m)-cell, then 2 − M is positive definite.

Hence, 2 − M is a (symmetric) Cartan matrix of finite type.

Conversely, let A be any Cartan matrix of finite type (symmetric or not).

Then the eigenvalues of A are 2 − 2 cos(πej/h), where e1, e2, . . . are the

exponents and h is the Coxeter number. �



5. Combinatorial Characterization

For brevity, we restrict to the simply-laced case.

Theorem 2. (Assume (W, S) is simply-laced.) An admissible S-labeled

graph is a W -graph if and only if it satisfies

• the Compatibility Rule,

• the Simplicity Rule,

• the Frontier Rule,

• the Diamond Rule, and

• the Hexagon Rule.

The Compatibility Rule (applies to all W -graphs for all W ):

If m(u → v) 6= 0, then

every i ∈ τ (u) − τ (v) is bonded to every j ∈ τ (v) − τ (u).

Necessity follows from analyzing commuting braid relations.

Reformulation: Define the compatibility graph Comp(W, S):

• vertex set 2S = 2[n],

• edges I → J when I ⊃ J ,

• edges I J when I 6⊂ J and J 6⊂ I and

every i ∈ I − J is bonded to every j ∈ J − I.

Compatibility means that τ : Γ → Comp(W, S) is a graph morphism.



Compatibility graphs for A3, A4, and D4:
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The Simplicity Rule (applies whenever o(sisj) < ∞ for all i, j):

All edges are either simple or are inclusion arcs.

That is, m(u → v) 6= 0 implies m(u → v) = m(v → u) = 1 or τ (u) ⊃ τ (v).

Necessity follows from Theorem 1.

The Frontier Rule (simply-laced only):

For each simple edge u − v, define

Bonds(u, v) :=
{

{i, j} : i ∈ τ (u) − τ (v), j ∈ τ (v) − τ (u)
}

.

Compatibility ⇒ this is a set of bonds in the Dynkin diagram of (W, S).

Define the frontier of v:

Fr(v) :=
{

bonds {i, j} : i ∈ τ (v), j /∈ τ (v)
}

.

The Frontier Rule requires that

Fr(v) =
⋃

u:u−v

Bonds(u, v) (disjoint union).

Necessity follows from the m = 3 case of Theorem 1.

Example. Say (W, S) = 1 a 2 b 3 c 4 d 5 and τ (v) = {1, 3, 4}.

Then Fr(v) = {a, b, d} and

135 d 134 ab 24 is legal at v,

135 d 134 a 234 is not.

Remark. The Compatibility, Simplicity, and Frontier Rules suffice to

determine all admissible A3-cells.



[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]

Define Vi/j := {v ∈ V : i ∈ τ (v), j /∈ τ (v)}.

The Diamond Rule:

For all i 6= j and all vertices u, v such that i, j ∈ τ (u) and i, j /∈ τ (v),

∑

w∈Vi/j

m(u → w)m(w → v) =
∑

w∈Vj/i

m(u → w)m(w → v).

i,j

v

u

j/ii/j

The Hexagon Rule:

For all bonded {i, j} and all vertices u, v such that i, j ∈ τ (u) and i, j /∈ τ (v),

∑

w∈Vi/j

m(u → w)m(w′ → v) =
∑

w∈Vi/j

m(u → w′)m(w → v),

where w′ is the unique vertex in Vj/i such that m(w → w′) = 1.

i,j

i/j

u

j/i

v

j/i

i/j


