"Honest" Arthur Packets *

David Vogan
Notes from two talks at the University of Maryland
17 and 18 March, 2008

Peter talked about a procedure to attach to a complex even nilpotent orbit \mathcal{O}^{\vee} for G^{\vee} a set of "special unipotent representations"; these are unions of the form

$$
\bigcup_{\mathcal{O}_{1}^{\vee}} \prod\left(\mathcal{O}_{1}^{\vee}\right)
$$

Here $\prod\left(\mathcal{O}_{1}^{\vee}\right)$ is a set of representations attached to a real form \mathcal{O}_{1}^{\vee} of \mathcal{O}^{\vee}; this orbit \mathcal{O}_{1}^{\vee} is a nilpotent K^{\vee} orbit on $\left(\mathfrak{g}^{\vee} / \mathfrak{k}^{\vee}\right)^{*}$ for a "real form" K^{\vee} of G^{\vee}. These sets $\prod\left(\mathcal{O}_{1}^{\vee}\right)$ are what Jeff calls "honest" Arthur packets.

Question: How to compute these subsets $\prod\left(\mathcal{O}_{1}^{\vee}\right)$?
This is an aspect of the more general problem: How to compute the associated variety of a Harish-Chandra module?

Back to the G side...
Atlas point of view: Choose an inner class of real forms

$$
G^{\Gamma}=G \rtimes \Gamma
$$

We have fixed $G \supset B \supset T$ (Γ-stable). A "strong real form" of G is an element x in the nonidentity coset such that $x^{2} \in Z(G)$. This gives us $K=\operatorname{Cent}_{G}(x)$.

Start with a complex nilpotent orbit \mathcal{O} for G. We want to describe all real forms (for all K 's in the inner class). One way to do this:

Jacobson-Morozov:

$$
\Psi: S L(2) \longrightarrow G
$$

[^0]\[

d \Psi\left($$
\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}
$$\right) \in \mathcal{O}
\]

We can line things up so that

$$
\Psi(\text { diagonal elements }) \subseteq T \text { and } \Psi\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right) \subseteq B
$$

If G^{Ψ} is the centralizer of $\operatorname{im}(\Psi)$ in G, let

$$
G_{\Psi}^{\Gamma}=G^{\Psi} \cup\left\{z \in G^{\Gamma} \backslash G: A d(z) \text { acts on } i m(\Psi) \text { by inverse transpose }\right\} ;
$$

i.e.,

$$
A d(z)(\Psi(y))=\Psi\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) y\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)^{-1}\right)
$$

Lemma 1 The second component is non-empty $\Longleftrightarrow \operatorname{Cent}(\mathrm{im} \Psi)$ meets the second component of $G^{\Gamma} \Longleftrightarrow$ the Dynkin diagram of \mathcal{O} is stable by the diagram automorphism corresponding to G^{Γ}.

Theorem 2 (Kostant-Rallis) There is a 1-1 correspondence between real forms of \mathcal{O} (i.e., G-conjugacy classes of pairs $\left(x, \mathcal{O}_{1}\right)$, where x is a strong real form, and \mathcal{O}_{1} a nilpotent K_{x}-orbit on $\left.\left(\mathfrak{g} / \mathfrak{k}_{x}\right)^{*}\right)$ and G^{Ψ} orbits on $\left\{x\right.$ in the second component of $\left.G_{\Psi}^{\Gamma}: x^{2} \in Z(G)\right\}$.

Corollary 3 (Reformulation) There is a bijection

$$
\left\{\text { pairs }\left(x, \mathcal{O}_{1}\right)\right\} / G \text {-conj. } \longleftrightarrow\left\{y \in \operatorname{Cent}(\Psi) \text { in } G^{\Gamma} \backslash G: y^{2} \in \Psi\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \cdot Z(G)\right\}
$$

The twist was chosen to get a nicer condition. The Cartan involution is now given by $y \cdot \Psi\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

0.1 Example: $G=S p(2 n, \mathbb{C})$

Consider the split inner class $G^{\Gamma}=G \times \Gamma$, and an orbit given by a partition into even parts

$$
\mathcal{O} \longleftrightarrow 2 n=\left(2 m_{1}\right)^{a_{1}}+\ldots+\left(2 m_{r}\right)^{a_{r}}, m_{1}>m_{2}>\ldots>m_{r}>0
$$

This corresponds to

$$
\Psi: S L(2) \longrightarrow S p(2 n)
$$

given by

$$
\bigoplus_{i=1}^{r}\left(a_{i} \text { copies of the } m_{i} \text {-dimensional representation of } S L(2)\right) .
$$

We have

$$
G^{\Psi}=O\left(a_{1}, \mathbb{C}\right) \times O\left(a_{2}, \mathbb{C}\right) \times \ldots \times O\left(a_{r}, \mathbb{C}\right)
$$

(this is explained in Collingwood/McGovern). The component group is

$$
A(\mathcal{O})=(\mathbb{Z} / 2 \mathbb{Z})^{r}, \text { since } O\left(a_{i}, \mathbb{C}\right) / \text { ident.comp. }=\mathbb{Z} / 2 \mathbb{Z}
$$

We have

$$
\Psi\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I \in S p(2 n)
$$

and

$$
(G \rtimes \Gamma)^{\Psi}=\operatorname{Cent}(\Psi) \text { in } G^{\Gamma} \text { (without the twist). }
$$

The corollary says that real forms of \mathcal{O} are in bijection with
$\left\{O\left(a_{1}\right) \times \ldots \times O\left(a_{r}\right)\right.$ conj. classes of elts $z \in\left[O\left(a_{1}\right) \times \ldots \times O\left(a_{r}\right)\right] \cdot(1, \sigma)$ s.t. $\left.z^{2}= \pm 1\right\}$ (We may ignore the factor $(1, \sigma)$.)

Case 1: $z^{2}=1$; the eigenvalues are ± 1. Choose p_{1}, \ldots, p_{r}, such that $0 \leq p_{i} \leq a_{i}$ (giving the number of -1 eigenvalues in $O\left(a_{i}\right)$). These r-tuples correspond to real forms of \mathcal{O} in $S p(2 n, \mathbb{R})$. This is because these give

$$
x=\Psi\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) z, \text { so } x^{2}=\Psi\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-1
$$

and the split real form $\operatorname{Sp}(2 n, \mathbb{R})$ corresponds to $x^{2}=-1$.
Case 2: $z^{2}=-1$.
Lemma $4-1$ is a square in $O(a) \Longleftrightarrow a$ is even; in this case the square root is one conjugacy class.

If all a_{i} are even then we get one more real form

$$
x \longleftrightarrow S p\left(\frac{n}{2}, \frac{n}{2}\right) \supseteq G L\left(\frac{n}{2}, \mathbb{H}\right) ;
$$

this is characterized by:
the nilpotent orbit over \mathbb{R} meets $G L\left(\frac{n}{2}, \mathbb{H}\right)$; this corresponds to the partition

$$
\frac{n}{2}=m_{1} \frac{a_{1}}{2}+\ldots+m_{r} \frac{a_{r}}{2} .
$$

Note: In the equal rank case, the real form of \mathcal{O} is given by this element $z \in G^{\Psi}$ satisfying $z^{2}=\Psi\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.

0.2 Recall Peter/Dan's Example F_{4}

Self-dual orbit \mathcal{O} :

$$
\begin{gathered}
G^{\Psi} \simeq S_{4} \quad \text { (the identity component is trivial) } \\
\\
\Psi\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \in Z\left(F_{4}\right) \quad \text { (since } \mathcal{O} \text { is even) }
\end{gathered}
$$

Note: $Z\left(F_{4}\right)=\{1\}$.
Kostant/Rallis says: real forms correspond to elements of order 1 or 2 in S_{4} (modulo conjugacy). These are

$$
\begin{aligned}
1 & \rightsquigarrow S_{4} \\
(12) & \rightsquigarrow S_{2} \times S_{2} \\
(12)(34) & \rightsquigarrow D_{4}
\end{aligned}
$$

0.3 Computing associated varieties

Fix a special nilpotent orbit \mathcal{O} for G. Because of the things Birne/Steve/Alfred explained, we can identify cells with

$$
A V(\text { annihilators for cell })=\overline{\mathcal{O}}
$$

List the real forms of $\mathcal{O}: \mathcal{O}_{1}, \ldots, \mathcal{O}_{r}$

0.3.1 Aside:

If \mathcal{O} is even (corresponding to some parabolic Q), use Peter's list:

- list the minimal $k g b$ elements "in each $W(L)$ orbit"
- list the ones corresponding to a θ-stable Q
- list the corresponding block elements X_{1}, \ldots, X_{s}

This is easy to do.
Peter's procedure then says to check whether $G \cdot(\mathfrak{u} \cap \mathfrak{p})=G \cdot \mathfrak{u}$.
This is hard to compute!
Instead: Check whether $\operatorname{cell}\left(X_{i}\right)$ is attached to \mathcal{O}. This is equivalent, but now computable! We get "yes" for a list $X_{i_{1}}, \ldots, X_{i_{r}}$. Conclusion:

$$
\operatorname{av}\left(\operatorname{cell}\left(X_{i_{j}}\right)\right)=\mathcal{O}_{j}
$$

Real forms of \mathcal{O} are in $1-1$ correspondence with nice cells for $X_{i_{j}}$.

0.3.2 Back to the general case (\mathcal{O} not necessarily even)

Suppose X is irreducible, in a cell corresponding to \mathcal{O}. The module X has an associated cycle

$$
a c(X)=\sum m_{i}(X) \mathcal{O}_{i}
$$

where the $m_{i}(X)$ are nonnegative integers, and the \mathcal{O}_{i} are "real forms" of \mathcal{O}. By definition,

$$
\operatorname{av}(X)=\left\{\mathcal{O}_{i}: m_{i}(X) \neq 0\right\}
$$

Computing honest Arthur packets is equivalent to computing $\operatorname{av}(X)$ when \mathcal{O} is even nilpotent.
We would like to know $\operatorname{ac}(X)$...What are the difficulties?
First problem: $m_{i}(X)$ is not constant on translation families.
Given X, we have $\operatorname{Ann}(X)$ (a two-sided ideal in $\mathcal{U}(\mathfrak{g})$), which has rank $\operatorname{rk}(\operatorname{Ann}(X))$ (the Goldierank of the annihilator).

Joseph: As X varies in a translation family, $\operatorname{rk}(\operatorname{Ann}(X))$ is a homogeneous polynomial on the translation parameters. The degree of this polynomial is the number of positive roots minus $\frac{1}{2} \operatorname{dim}(\mathcal{O})$.

Proposition 5 The numbers $m_{i}(X)$ are given by

$$
m_{i}(X)=c_{i}(X) r k(\operatorname{Ann}(X))
$$

for some rational numbers $c_{i}(X)$ which are constant on translation families.
This suggests to try to compute the numbers $c_{i}(X)$.
A natural question: Is $c_{i}(X)$ constant on cells?
Guess: Probably not. We need to modify the question to make the answer "yes".
atlas gives character formulas (functions on CSG's) which allow to compute something like $c_{i}(X)$ (not quite). It is a horrible computation. We may look at how to clear this up...

Another problem: No one knows how to compute $\operatorname{rk}(\operatorname{Ann}(X))$ - just how to compute the polynomials up to a constant.

0.4 Question/Desideratum

(Think on the dual side G^{\vee}; for simplicity of notation we make the statements for G.) Choose $G \supset K$ and a block \mathcal{B} at regular integral infinitesimal character.
$\mathbb{Z} \mathcal{B}$ (virtual rep'ns) $\widetilde{\rightsquigarrow} \begin{gathered}\text { virtual characters } \\ (\text { distributions on } G(\mathbb{R}))\end{gathered} \supseteq \begin{gathered}\text { characters vanishing } \\ \text { near } 1\end{gathered} \simeq \mathbb{Z} \mathcal{B}_{\text {van }}$
Recall that
$\mathbb{Z} \mathcal{B}_{\text {van }}=\operatorname{span}\left\{I(\gamma)-I\left(\gamma^{\prime}\right): I(\gamma), I\left(\gamma^{\prime}\right)\right.$ stand. chars supp. on same K-orbit on $\left.G / B\right\}$.
There is a W-action on $\mathbb{Z B}$, and the sublattice $\mathbb{Z}_{\mathcal{B}}$ van is W-invariant. Consider

$$
\mathbb{Z} \mathcal{B} / \mathbb{Z}_{\text {van }}
$$

which carries a W-action and is dual to stable characters on the other side.
Question: Relate this to the cell filtration of $\mathbb{Z B}$ (as W-representations).
Beilinson-Bernstein:
$\mathbb{Z B}=$ Grothendieck group of some category of K-equivt. \mathcal{D}-modules on G / B. We have a the characteristic cycle map

$$
c h: \mathbb{Z} \mathcal{B} \longrightarrow \begin{aligned}
& \mathbb{Z} \text {-span of conormal } \\
& \text { bundles of } K \text {-orbits }
\end{aligned}
$$

Proposition 6 Ker ch $=\mathbb{Z} \mathcal{B}_{\text {van }}$.
Remark $7 W$ acts naturally on the right-hand side. Peter: Outside of type A, we do NOT get the KL W-graphs.

What does this have to do with honest Arthur packets?
Fix a K-orbit on G / B. This gives $K B_{x} \simeq K / K \cap B_{x}$ and the conormal bundle

$$
K \times_{K \cap B_{x}}\left(\mathfrak{g} / \mathfrak{k}+\mathfrak{b}_{x}\right)^{*} \subseteq T^{*}(G / B) .
$$

We have the moment map (Grothendieck-Springer resolution)

$$
\mu: T^{*}(G / B) \longrightarrow \mathcal{N}
$$

(here $\mathcal{N}=$ the nilpotent elements in \mathfrak{g}^{*}) such that

$$
\begin{aligned}
& \mu \mid \underset{\text { conormal }}{\text { co } K \text {-orbits }}
\end{aligned}
$$

Proposition 8

$$
\begin{aligned}
\mu\left(K \times_{K \cap B_{x}}\left(\mathfrak{g} / \mathfrak{k}+\mathfrak{b}_{x}\right)^{*}\right) & =K \cdot\left(\mathfrak{g} / \mathfrak{k}+\mathfrak{b}_{x}\right)^{*} \\
& =\text { the closure of a single } K \text {-orbit } \mathcal{O}_{x} \subseteq \mathcal{N} \cap(\mathfrak{g} / \mathfrak{k})^{*} .
\end{aligned}
$$

Moreover, we get all K-orbit closures (special and non-special) this way.

See P. Trapa: Leading term cycles of Harish-Chandra modules and partial orders on components of the Springer fiber, Compositio Mathematica 2007.

This says: To compute $a v(X)$, it would be enough to compute

- $\operatorname{ch}(X)$ — which is REALLY HARD, and
- μ - which is just hard.

This should tell you how many elements are in cells related to a given nilpotent, modulo $\mathbb{Z} \mathcal{B}_{\text {van }}$.

[^0]: *This material is based upon work supported by the National Science Foundation under Grant No. 0554278.

