"Honest" Arthur Packets *

David Vogan

Notes from two talks at the University of Maryland 17 and 18 March, 2008

Peter talked about a procedure to attach to a complex even nilpotent orbit \mathcal{O}^{\vee} for G^{\vee} a set of "special unipotent representations"; these are unions of the form

$$\bigcup_{\mathcal{O}_1^{\vee}} \prod \left(\mathcal{O}_1^{\vee} \right).$$

Here $\prod (\mathcal{O}_1^{\vee})$ is a set of representations attached to a real form \mathcal{O}_1^{\vee} of \mathcal{O}^{\vee} ; this orbit \mathcal{O}_1^{\vee} is a nilpotent K^{\vee} orbit on $(\mathfrak{g}^{\vee}/\mathfrak{k}^{\vee})^*$ for a "real form" K^{\vee} of G^{\vee} . These sets $\prod (\mathcal{O}_1^{\vee})$ are what Jeff calls "honest" Arthur packets.

Question: How to compute these subsets $\prod (\mathcal{O}_1^{\vee})$?

This is an aspect of the more general problem: How to compute the associated variety of a Harish-Chandra module?

Back to the G side...

Atlas point of view: Choose an inner class of real forms

$$G^{\Gamma} = G \rtimes \Gamma.$$

We have fixed $G \supset B \supset T$ (Γ -stable). A "strong real form" of G is an element x in the nonidentity cos t such that $x^2 \in Z(G)$. This gives us $K = Cent_G(x)$.

Start with a complex nilpotent orbit \mathcal{O} for G. We want to describe all real forms (for all K's in the inner class). One way to do this:

Jacobson-Morozov:

 $\Psi: SL(2) \longrightarrow G$

^{*}This material is based upon work supported by the National Science Foundation under Grant No. 0554278.

$$d\Psi\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} \in \mathcal{O}$$

We can line things up so that

$$\Psi(\text{diagonal elements}) \subseteq T \text{ and } \Psi\begin{pmatrix} * & *\\ 0 & * \end{pmatrix} \subseteq B$$

If G^{Ψ} is the centralizer of $im(\Psi)$ in G, let

$$G_{\Psi}^{\Gamma} = G^{\Psi} \cup \left\{ z \in G^{\Gamma} \backslash G : Ad(z) \text{ acts on } im(\Psi) \text{ by inverse transpose} \right\};$$

i.e.,

$$Ad(z)\left(\Psi(y)\right) = \Psi\left(\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} y \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}^{-1}\right).$$

Lemma 1 The second component is non-empty $\iff Cent(im\Psi)$ meets the second component of $G^{\Gamma} \iff$ the Dynkin diagram of \mathcal{O} is stable by the diagram automorphism corresponding to G^{Γ} .

Theorem 2 (Kostant-Rallis) There is a 1-1 correspondence between real forms of \mathcal{O} (*i.e.*, *G*-conjugacy classes of pairs (x, \mathcal{O}_1) , where x is a strong real form, and \mathcal{O}_1 a nilpotent K_x -orbit on $(\mathfrak{g}/\mathfrak{k}_x)^*$) and G^{Ψ} orbits on $\{x \text{ in the second component of } G^{\Gamma}_{\Psi} : x^2 \in Z(G)\}$.

Corollary 3 (Reformulation) There is a bijection

$$\{pairs (x, \mathcal{O}_1)\} / G\text{-}conj. \iff \left\{ y \in Cent(\Psi) \text{ in } G^{\Gamma} \backslash G : y^2 \in \Psi \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \cdot Z(G) \right\}$$

The twist was chosen to get a nicer condition. The Cartan involution is now given by $y \cdot \Psi \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

0.1 Example: $G = Sp(2n, \mathbb{C})$

Consider the split inner class $G^{\Gamma} = G \times \Gamma$, and an orbit given by a partition into even parts

$$\mathcal{O} \longleftrightarrow 2n = (2m_1)^{a_1} + \dots + (2m_r)^{a_r}, \ m_1 > m_2 > \dots > m_r > 0.$$

This corresponds to

$$\Psi: SL(2) \longrightarrow Sp(2n)$$

given by

$$\bigoplus_{i=1}^{r} (a_i \text{ copies of the } m_i \text{-dimensional representation of } SL(2)).$$

We have

$$G^{\Psi} = O(a_1, \mathbb{C}) \times O(a_2, \mathbb{C}) \times \dots \times O(a_r, \mathbb{C})$$

(this is explained in Collingwood/McGovern). The component group is

$$A(\mathcal{O}) = (\mathbb{Z}/2\mathbb{Z})^r$$
, since $O(a_i, \mathbb{C})/\text{ident.comp.} = \mathbb{Z}/2\mathbb{Z}$

We have

$$\Psi\begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} = -I \in Sp(2n)$$

and

 $(G \rtimes \Gamma)^{\Psi} = Cent(\Psi)$ in G^{Γ} (without the twist).

The corollary says that real forms of \mathcal{O} are in bijection with

 $\{O(a_1) \times ... \times O(a_r) \text{ conj. classes of elts } z \in [O(a_1) \times ... \times O(a_r)] \cdot (1, \sigma) \text{ s.t. } z^2 = \pm 1\}$ (We may ignore the factor $(1, \sigma)$.)

Case 1: $z^2 = 1$; the eigenvalues are ± 1 . Choose $p_1, ..., p_r$, such that $0 \le p_i \le a_i$ (giving the number of -1 eigenvalues in $O(a_i)$). These *r*-tuples correspond to real forms of \mathcal{O} in $Sp(2n, \mathbb{R})$. This is because these give

$$x = \Psi \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} z$$
, so $x^2 = \Psi \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1$,

and the split real form $Sp(2n, \mathbb{R})$ corresponds to $x^2 = -1$.

Case 2: $z^2 = -1$.

Lemma 4 -1 is a square in $O(a) \iff a$ is even; in this case the square root is one conjugacy class.

If all a_i are even then we get one more real form

$$x \longleftrightarrow Sp\left(\frac{n}{2}, \frac{n}{2}\right) \supseteq GL\left(\frac{n}{2}, \mathbb{H}\right);$$

this is characterized by:

the nilpotent orbit over \mathbb{R} meets $GL\left(\frac{n}{2},\mathbb{H}\right)$; this corresponds to the partition

$$\frac{n}{2} = m_1 \frac{a_1}{2} + \dots + m_r \frac{a_r}{2}.$$

Note: In the equal rank case, the real form of \mathcal{O} is given by this element $z \in G^{\Psi}$ satisfying $z^2 = \Psi \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

0.2 Recall Peter/Dan's Example F_4

Self-dual orbit \mathcal{O} :

$$G^{\Psi} \simeq S_4$$
 (the identity component is trivial);
 $\Psi \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in Z(F_4)$ (since \mathcal{O} is even).

Note: $Z(F_4) = \{1\}.$

Kostant/Rallis says: real forms correspond to elements of order 1 or 2 in S_4 (modulo conjugacy). These are

$$1 \rightsquigarrow S_4$$

$$(12) \rightsquigarrow S_2 \times S_2$$

$$(12)(34) \rightsquigarrow D_4$$

0.3 Computing associated varieties

Fix a special nilpotent orbit \mathcal{O} for G. Because of the things Birne/Steve/Alfred explained, we can identify cells with

 $AV(\text{annihilators for cell}) = \overline{\mathcal{O}}.$

List the real forms of $\mathcal{O}: \mathcal{O}_1, \dots, \mathcal{O}_r$

0.3.1 Aside:

If \mathcal{O} is even (corresponding to some parabolic Q), use Peter's list:

- list the minimal kgb elements "in each W(L) orbit"
- list the ones corresponding to a θ -stable Q
- list the corresponding block elements $X_1, ..., X_s$

This is easy to do.

Peter's procedure then says to check whether $G \cdot (\mathfrak{u} \cap \mathfrak{p}) = G \cdot \mathfrak{u}$.

This is hard to compute!

Instead: Check whether $cell(X_i)$ is attached to \mathcal{O} . This is equivalent, but now computable! We get "yes" for a list $X_{i_1}, ..., X_{i_r}$. Conclusion:

$$av(cell(X_{i_j})) = \mathcal{O}_j$$

Real forms of \mathcal{O} are in 1-1 correspondence with nice cells for X_{i_i} .

0.3.2 Back to the general case (\mathcal{O} not necessarily even)

Suppose X is irreducible, in a cell corresponding to \mathcal{O} . The module X has an associated cycle

$$ac(X) = \sum m_i(X)\mathcal{O}_i$$

where the $m_i(X)$ are nonnegative integers, and the \mathcal{O}_i are "real forms" of \mathcal{O} . By definition,

$$av(X) = \{\mathcal{O}_i : m_i(X) \neq 0\}.$$

Computing honest Arthur packets is equivalent to computing av(X) when \mathcal{O} is even nilpotent.

We would like to know ac(X) ... What are the difficulties?

First problem: $m_i(X)$ is not constant on translation families.

Given X, we have Ann(X) (a two-sided ideal in $\mathcal{U}(\mathfrak{g})$), which has rank rk(Ann(X)) (the Goldierank of the annihilator).

Joseph: As X varies in a translation family, rk(Ann(X)) is a homogeneous polynomial on the translation parameters. The degree of this polynomial is the number of positive roots minus $\frac{1}{2} \dim(\mathcal{O})$.

Proposition 5 The numbers $m_i(X)$ are given by

 $m_i(X) = c_i(X)rk(Ann(X)),$

for some rational numbers $c_i(X)$ which are constant on translation families.

This suggests to try to compute the numbers $c_i(X)$. A natural question: Is $c_i(X)$ constant on cells? Guess: Probably not. We need to modify the question to make the answer "yes".

atlas gives character formulas (functions on CSG's) which allow to compute something like $c_i(X)$ (not quite). It is a horrible computation. We may look at how to clear this up...

Another problem: No one knows how to compute rk(Ann(X)) - just how to compute the polynomials up to a constant.

0.4 Question/Desideratum

(Think on the dual side G^{\vee} ; for simplicity of notation we make the statements for G.) Choose $G \supset K$ and a block \mathcal{B} at regular integral infinitesimal character.

 $\mathbb{Z}\mathcal{B}(\text{virtual rep'ns}) \xrightarrow{\sim} \begin{vmatrix} \text{virtual characters} \\ (\text{distributions on } G(\mathbb{R})) \end{vmatrix} \supseteq \begin{vmatrix} \text{characters vanishing} \\ \text{near 1} \end{vmatrix} \simeq \mathbb{Z}\mathcal{B}_{van}$

Recall that

 $\mathbb{Z}\mathcal{B}_{van} = \operatorname{span}\left\{I(\gamma) - I(\gamma') : I(\gamma), I(\gamma') \text{ stand. chars supp. on same } K \text{-orbit on } G/B\right\}.$

There is a W-action on $\mathbb{Z}\mathcal{B}$, and the sublattice $\mathbb{Z}\mathcal{B}_{van}$ is W-invariant. Consider

 $\mathbb{ZB}/\mathbb{ZB}_{van}$

which carries a W-action and is dual to stable characters on the other side.

Question: Relate this to the cell filtration of $\mathbb{Z}\mathcal{B}$ (as *W*-representations).

Beilinson-Bernstein:

 $\mathbb{Z}\mathcal{B} =$ Grothendieck group of some category of K-equivt. \mathcal{D} -modules on G/B. We have a the characteristic cycle map

$$ch: \mathbb{Z}\mathcal{B} \longrightarrow \begin{array}{c} \mathbb{Z}\text{-span of conormal} \\ \text{bundles of } K\text{-orbits} \end{array}$$

Proposition 6 Ker $ch = \mathbb{Z}\mathcal{B}_{van}$.

Remark 7 W acts naturally on the right-hand side. Peter: Outside of type A, we do NOT get the KL W-graphs.

What does this have to do with honest Arthur packets?

Fix a K-orbit on G/B. This gives $KB_x \simeq K/K \cap B_x$ and the conormal bundle

$$K \times_{K \cap B_x} (\mathfrak{g}/\mathfrak{k} + \mathfrak{b}_x)^* \subseteq T^* (G/B).$$

We have the moment map (Grothendieck-Springer resolution)

$$\mu: T^*\left(G/B\right) \longrightarrow \mathcal{N}$$

(here \mathcal{N} = the nilpotent elements in \mathfrak{g}^*) such that

$$\begin{array}{cc} \mu| & \longrightarrow \mathcal{N} \cap (\mathfrak{g}/\mathfrak{k})^* \ (\text{the nilpotent cone in } \mathfrak{p}). \\ & \text{to } K\text{-orbits} \end{array}$$

Proposition 8

$$\mu \left(K \times_{K \cap B_x} \left(\mathfrak{g}/\mathfrak{k} + \mathfrak{b}_x \right)^* \right) = K \cdot \left(\mathfrak{g}/\mathfrak{k} + \mathfrak{b}_x \right)^*$$

= the closure of a single K-orbit $\mathcal{O}_x \subseteq \mathcal{N} \cap \left(\mathfrak{g}/\mathfrak{k} \right)^*$.

Moreover, we get all K-orbit closures (special and non-special) this way.

See P. Trapa: Leading term cycles of Harish-Chandra modules and partial orders on components of the Springer fiber, Compositio Mathematica 2007.

This says: To compute av(X), it would be enough to compute

- ch(X) which is REALLY HARD, and
- μ —- which is just hard.

This should tell you how many elements are in cells related to a given nilpotent, modulo $\mathbb{Z}\mathcal{B}_{van}$.