Can someone answer: what is maximal degree of a Kazhdan-Lusztig polynomial? (Throughout this note, look for definitions in [KL79].)

 E_8 : typical cell has ~ 5,000 block elements Potentially: ~ 1.25×10^7 edges Actually: ~ 10^5 edges ~ 1% of potential edges

Real E_8 : Lengths: $0, 1, \ldots, 64$ Degree bound: $\lfloor \frac{64-1}{2} \rfloor = 31$ achieved (Atlas) Average degree: ~ 12 (Atlas) The distribution of length differences over pairs

The distribution of length differences over pairs of elements in a block cannot be uniform:

If so, then average length difference over pairs $= \frac{1}{64} \int_0^{64} \ell/2 \, d\ell$ $= \frac{1}{64} \frac{\ell^2}{4} \Big|_0^{64} = 16$

But then average degree $= 8 \neq 12$

Distribution actually Gaussian

- \leftarrow Can draw a diagram for a block indicating descents and ascents.
 - some y_i 's may be missing (eg. α_i compact imaginary)
 - may have two $y'_i s$ for one α_i (eg. α_i real type I)

Non-primitive case: May happen that a descent for y is an ascent for x as in the diagram. Then in this case:

 $P_{x,y} = P_{x_2,y}$ x_2 may not exist (eg. α_2 "real non-parity" $\Rightarrow P_{x_2,y} = 0$) may be two x_2 's (eg. α_2 type II nc imaginary)

deg $P_{x,y} = \deg P_{x_2,y} \leq \frac{\ell(y) - \ell(x_2) - 1}{2}$ and $\ell(x_2) = \ell(x) + 1$ so the degree bound for $P_{x,y}$ has been improved by $\frac{1}{2}$. In the non-primitive case, the maximal degree bound is therefore never achieved.

Given y, x: ascend x along descents of y as long as possible. Arrive at: x' such that every descent for y is a descent for x'.

Definition: the pair (x, y) is **extremal** if

$$desc(x) \supset desc(y)$$

(few of these)

eg. x' as chosen above is extremal. Observe: maximal degree is achieved for extremal pairs.

Definition: the pair (x, y) is **primitive** if

 $desc(x) \cup (type \text{ II nc imaginary ascents of }) x \supset desc(y)$

(many of these)

Reformulated question: What is the maximal length difference for an extremal pair (x, y) in a block?

eg. Complex G_2 :

Four simple roots α_L , β_L , α_R , β_R Outer edges: left action Crosses: right action

Primitive pairs $x \neq y$: Maximal length difference in extremal pair:

 $y = w_0 s_\alpha \qquad \text{length difference} = 4$ $x = s_\beta \qquad \Rightarrow \deg P_{x,y} \le 1$

What's biggest length difference in $W, x \leq y, desc(x) \supset desc(y)$?

Guess:

partition simple roots as Π = S ⊔ T where both S and T are type A₁^{*} (i.e. any two elements of S are orthogonal, any two elements of T are orthogonal)
choose:

$$x = \text{long element of } W(S)$$

 $y = w_0 \text{long element of } W(T)$

(x, y) is primitive if w_0 commutes with long element of W(T)

$$\ell(y) = \#\Delta^{+} - \#T$$

$$\ell(x) = \#S$$
length difference: $\#\Delta^{+} - \#\Pi$
degree bound: $\frac{\#\Delta^{+} - \#\Pi - 1}{2} \leftarrow \text{Not sharp!} \sim \frac{n^{2}}{4}$ Lower bound: $\frac{n^{2}}{16}$

eg. A_6 :

Pick S and T as indicated in diagram. - long element of W(T) does not commute with w_0 - guess for largest degree from above parition: $\frac{21-6-1}{2} = 7$ - Atlas: 5

Take extra pair

$$\begin{array}{cccc} (x & , & y) \\ \downarrow & & \text{recursion relation (descend } y) \\ (x' & , & y') & \leftarrow \text{may not be extremal} \\ & & \text{therefore degree bound smaller than expected} \end{array}$$

Geometric picture:

$$\begin{array}{cccc} \mathscr{L}_y & \longleftrightarrow & \cdot y \\ \downarrow & & & \\ \mathscr{O}_y & & & \\ \mathscr{L}_x & \longleftrightarrow & \cdot x \\ \downarrow & & \\ \mathscr{O}_x & & \end{array}$$

What is constant term of $P_{y,x}$?

Guess: constant term \longleftrightarrow extensions of local systems \mathscr{L}_y to $\overline{\mathscr{O}}_y$ agreeing with \mathscr{L}_x on \mathscr{O}_x

eg. E_8 : degree 31 \leftrightarrow length difference 63 or 64, say 64

 $\begin{aligned} \mathscr{L}_y &= \text{ local system on open orbit of } K \text{ on flag manifold} \\ \mathscr{O}_x &= \text{ closed orbit} \\ \mathscr{L}_x &= \text{ trivial} \end{aligned}$ $\begin{aligned} desc(x) &= \text{ compact imaginary roots that are simple} \\ &- \text{ proper subset} \\ &\text{ Therefore } y \text{ has "real non-parity roots"} \end{aligned}$ $\begin{aligned} \text{Guess: } \mathscr{L}_y \text{ cannot extend all the way to } \mathscr{O}_x \Rightarrow \text{ constant term is 0?} \end{aligned}$

References

[KL79] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53:165–184, 1979.