Can someone answer: what is maximal degree of a Kazhdan-Lusztig polynomial?
(Throughout this note, look for definitions in [KL79].)

E_{8} : typical cell has $\sim 5,000$ block elements
Potentially: $\sim 1.25 \times 10^{7}$ edges
Actually: $\sim 10^{5}$ edges $\sim 1 \%$ of potential edges
Real E_{8} :
Lengths: $0,1, \ldots, 64$
Degree bound: $\left\lfloor\frac{64-1}{2}\right\rfloor=31$ achieved (Atlas)
Average degree: ~ 12 (Atlas)
The distribution of length differences over pairs of elements in a block cannot be uniform:

$$
\begin{aligned}
\text { If so, then average length difference over pairs } & =\frac{1}{64} \int_{0}^{64} \ell / 2 d \ell \\
& =\left.\frac{1}{64} \frac{\ell^{2}}{4}\right|_{0} ^{64}=16
\end{aligned}
$$

But then average degree $=8 \neq 12$
Distribution actually Gaussian

$\left.\alpha_{2}\right|_{x} ^{x}$
\leftarrow Can draw a diagram for a block indicating descents and ascents.

- some y_{i} 's may be missing (eg. α_{i} compact imaginary)
- may have two $y_{i}^{\prime} s$ for one α_{i} (eg. α_{i} real type I)

Non-primitive case: May happen that a descent for y is an ascent for x as in the diagram. Then in this case:

$$
\begin{array}{ll}
P_{x, y}=P_{x_{2}, y} & \left.x_{2} \text { may not exist (eg. } \alpha_{2} \text { "real non-parity" } \Rightarrow P_{x_{2}, y}=0\right) \\
& \text { may be two } x_{2} \text { 's (eg. } \alpha_{2} \text { type II nc imaginary) }
\end{array}
$$

$\operatorname{deg} P_{x, y}=\operatorname{deg} P_{x_{2}, y} \leq \frac{\ell(y)-\ell\left(x_{2}\right)-1}{2}$ and $\ell\left(x_{2}\right)=\ell(x)+1$ so the degree bound for $P_{x, y}$ has been improved by $\frac{1}{2}$. In the non-primitive case, the maximal degree bound is therefore never achieved.

Given y, x : ascend x along descents of y as long as possible. Arrive at: x^{\prime} such that every descent for y is a descent for x^{\prime}.
Definition: the pair (x, y) is extremal if

$$
\operatorname{desc}(x) \supset \operatorname{desc}(y)
$$

$$
\operatorname{desc}(x) \supset \operatorname{desc}(y)
$$

$\quad($ few of these $)$
eg. x^{\prime} as chosen above is extremal.
Observe: maximal degree is achieved for extremal pairs.

$$
\operatorname{desc}(x) \supset \operatorname{desc}(y)
$$

$\quad($ few of these $)$
eg. x^{\prime} as chosen above is extremal.
Observe: maximal degree is achieved for extremal pairs.

$$
\operatorname{desc}(x) \supset \operatorname{desc}(y)
$$

$\quad($ few of these $)$
eg. x^{\prime} as chosen above is extremal.
Observe: maximal degree is achieved for extremal pairs.
Definition: the pair (x, y) is primitive if

$$
\operatorname{desc}(x) \cup(\text { type II nc imaginary ascents of }) \mathrm{x} \supset \operatorname{desc}(y)
$$

 (many of these)

Reformulated question:
What is the maximal length difference for an extremal pair (x, y) in a block?
eg. Complex G_{2} :

Four simple roots $\alpha_{L}, \beta_{L}, \alpha_{R}, \beta_{R}$
Outer edges: left action
Crosses: right action

Primitive pairs $x \neq y$:
Maximal length difference in extremal pair:

$$
\begin{array}{ll}
y=w_{0} s_{\alpha} & \text { length difference }=4 \\
x=s_{\beta} & \Rightarrow \operatorname{deg} P_{x, y} \leq 1
\end{array}
$$

What's biggest length difference in $W, x \leq y, \operatorname{desc}(x) \supset \operatorname{desc}(y) ?$

Guess:

- partition simple roots as $\Pi=S \sqcup T$ where both S and T are type A_{1}^{*} (i.e. any two elements of S are orthogonal, any two elements of T are orthogonal)
- choose:

$$
\begin{aligned}
x & =\text { long element of } W(S) \\
y & =w_{0} \text { long element of } W(T)
\end{aligned}
$$

(x, y) is primitive if w_{0} commutes with long element of $W(T)$

$$
\begin{aligned}
& \ell(y)=\# \Delta^{+}-\# T \\
& \ell(x)=\# S
\end{aligned}
$$

length difference: $\quad \# \Delta^{+}-\# \Pi$
degree bound: $\quad \frac{\# \Delta^{+}-\# \Pi-1}{2} \leftarrow$ Not sharp! $\sim \frac{n^{2}}{4} \quad$ Lower bound: $\frac{n^{2}}{16}$
eg. A_{6} :
Pick S and T as indicated in diagram.

- long element of $W(T)$ does not commute with w_{0}
- guess for largest degree from above parition: $\frac{21-6-1}{2}=7$
- Atlas: 5

Take extra pair

$\left(\begin{array}{lll}x & , & y\end{array}\right)$			
	\downarrow		
$\left(x^{\prime}\right.$,	$\left.y^{\prime}\right)$	recursion relation (descend $y)$ \leftarrow may not be extremal
		therefore degree bound smaller than expected	

Geometric picture:

What is constant term of $P_{y, x}$?
Guess: constant term \longleftrightarrow extensions of local systems \mathscr{L}_{y} to $\overline{\mathscr{O}}_{y}$ agreeing with \mathscr{L}_{x} on \mathscr{O}_{x}
eg. E_{8} : degree $31 \longleftrightarrow$ length difference 63 or 64 , say 64

$$
\begin{aligned}
\mathscr{L}_{y} & =\text { local system on open orbit of } K \text { on flag manifold } \\
\mathscr{O}_{x} & =\text { closed orbit } \\
\mathscr{L}_{x} & =\text { trivial }
\end{aligned}
$$

$$
\operatorname{desc}(x)=\text { compact imaginary roots that are simple }
$$

- proper subset

Therefore y has "real non-parity roots"
Guess: \mathscr{L}_{y} cannot extend all the way to $\mathscr{O}_{x} \Rightarrow$ constant term is 0 ?

References

[KL79] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math., 53:165-184, 1979.

