On the ω -Regular Unitary Representations of $Mp(2n, \mathbb{R})$ MIT/AIM March 19, 2007

Annegret Paul and Susana Salamanca

1. Outline

- Introduction
 - Strongly Regular case. Definition of $A_{\mathfrak{q}}(\lambda)$'s
 - ω -regular case. Construction of $A_{\mathfrak{q}}(\Omega)$ representations
 - Conjecture: These representations exhaust the ω -regular unitary irreducible representations of Mp(2n)
- $\bullet~$ Theorem
- Sketch of proof.
 - Determine the lowest K types (LKT) of $A_{\mathfrak{q}}(\Omega)$ representations
 - Show there is a unique $\omega\text{-regular}$ unitary representation with each of those LKT
 - Show that ω -regular representations with other LKT's are not unitary.
 - Try to give a description of the latter.
- Outlook

2. Introduction.

Let $G, K, T, \mathfrak{g}_0, \mathfrak{g}, \mathfrak{t}_0, \theta, \mathfrak{p}_0$ and $\Delta(\mathfrak{g}, \mathfrak{t}) \subset i(\mathfrak{t}_0), \Delta(\mathfrak{k}, \mathfrak{t}) \Delta(\mathfrak{p}, \mathfrak{t})$, etc. as usual. Let \langle , \rangle symmetric, G-invariant, θ -invariant non degenerate bilinear form on $\mathfrak{g}_0, \mathfrak{g}, \mathfrak{g}^*$.

Fix a positive root system $\Delta^+(\mathfrak{k},\mathfrak{t})$ and define

(2.1)
$$\rho_c = \frac{1}{2} \sum_{\alpha \in \Delta^+(\mathfrak{k}, \mathfrak{t})} \alpha$$

2.1. Strongly Regular Case. For a weight $\phi \in t^*$, choose a positive root system from the set of roots positive on ϕ .

1

(2.2)
$$\Delta^+(\phi) \subseteq \{\alpha \in \Delta(\mathfrak{g}, \mathfrak{t}) \mid \langle \phi, \alpha \rangle \ge 0\}$$

Then define

(2.3)
$$\rho_{\phi} = \rho \left(\Delta^+ \left(\phi \right) \right)$$

DEFINITION 1. Assume $\phi \in \mathfrak{t}^*$ is real. We say that ϕ is strongly regular if

 $\langle \phi - \rho_{\phi}, \alpha \rangle \geq 0$ for all $\alpha \in \Delta^+(\phi)$

PROPOSITION 1. Let X be an irreducible Hermitian (\mathfrak{g}, K) module, infinitesimal character associated to a weight ϕ . Assume that ϕ is a strongly regular infinitesimal character.

Then X is unitary if and only if there is

- (1) a θ -stable parabolic subalgebra $\mathfrak{q} \subset \mathfrak{g}$;
- (2) an admissible unitary character $(\lambda, \mathbb{C}_{\lambda})$ of the Levi subgroup of q (zero on $\Delta(\mathfrak{l},\mathfrak{t}^c)$ and positive on $\Delta(\mathfrak{u},\mathfrak{t}^c)$, such that

(2.4)
$$X \cong A_{\mathfrak{q}}(\lambda) = \mathfrak{R}_{\mathfrak{q}}(\mathbb{C}_{\lambda})$$

REMARK 1. Admissible $A_{q}(\lambda)$ representations are always in the good range. So, nonzero, irreducible and unitary.

2.2. ω -Regular case. Let G = Mp(2n). Then $\mathfrak{g} = \mathfrak{sp}(2n)$. To extend the above result, consider the genuine representations of G.

If

$$\mathfrak{l} = \prod_{i=1}^{t} \mathfrak{u}\left(p_i, q_i\right)$$

then we can construct $A_{\mathfrak{q}}(\lambda)$'s if the infinitessimal character is also strongly Regular (SR).

Also, we can construct genuine $A_{\mathfrak{q}}(\lambda)$ representations which are not SR but in the good range.

But, if

$$\mathfrak{l} = \prod_{i=1}^{t} \mathfrak{u}\left(p_i, q_i\right) \oplus \mathfrak{sp}\left(2m\right)$$

Then there is a surjection

(2.5)
$$\prod_{i=1}^{r} \widetilde{U}(p_i, q_i) \times Mp(2m) \longrightarrow L.$$

So, irreducible admissible of $L \leftrightarrow \bigotimes_{i=1} \pi_i \otimes \sigma$,

To descend to L, either all representations in the product are genuine or all are non-genuine.

So, we have no genuine $A_{\mathfrak{q}}(\lambda)$ representations for L if m > 0 (since there are no genuine one-dimensional representations of Mp(2m)).

To extend these representations:

We use the metaplectic representation of Mp(2m). Then construct a representation of L

(1) λ_i genuine one dimensional of $\widetilde{U}(p_i, q_i)$ and (2) ω^L either ω_o^{\pm} , or ω_e^{\pm} for Mp(2m)

DEFINITION 2. An $A_{\mathfrak{q}}(\Omega)$ is a (genuine) representation X of G of the following form. Let

ON THE ω -REGULAR UNITARY REPRESENTATIONS OF $Mp(2n,\mathbb{R})$ MIT/AIM MARCH 19, 2003

- (1) $q = l \oplus u$ be a theta stable parabolic subalgebra of g with $L = \prod_{i=1}^{r} \widetilde{U}(p_i, q_i) \times Mp(2m)$.
- (2) Let \mathbb{C}_{λ} be a genuine one-dimensional representation of $\prod_{i=1}^{r} \widetilde{U}(p_i, q_i)$ and
 - ω^L an oscillator representation of Mp(2m) as above.
- (3) Assume that $\Omega = \mathbb{C}_{\lambda} \otimes \omega^{L}$ is in the good range for q. Let $A_{\mathfrak{q}}(\Omega) = R_{\mathfrak{q}}(\Omega)$.

DEFINITION 3. A Meta- $A_{\mathfrak{q}}(\lambda)$ is a (non-genuine) representation X of G of the following form. Let

- (1) $\mathfrak{q} = \mathfrak{l} \oplus \mathfrak{u}$ be a theta stable parabolic subalgebra of \mathfrak{g} with $L = \prod_{i=1}^{r} \widetilde{U}(p_i, q_i) \times Mp(2m)$.
- (2) \mathbb{C}_{λ} be a non-genuine one-dimensional representation of $\prod \widetilde{U}(p_i, q_i)$
- (3) J_{ν} the spherical constituent of the spherical principal series of Mp(2m) with infinitesimal character ν .

If $m \neq 1$ then $\nu = \rho$ so that $J_{\nu} = J_{\rho}$ is the trivial representation; If m = 1 then $\frac{1}{2} \leq \nu \leq 1$, so that J_{ν} is a complementary series of Mp(2).

- (4) $C_{\lambda} \otimes J_{\nu}$ is in the good range for q.
- (5) Denote by $A_{\mathfrak{q}}(\lambda,\nu) = R_{\mathfrak{q}}(\mathbb{C}_{\lambda}\otimes J_{\nu}).$

PROPOSITION 2. With notation as above,

- (1) $A_{\mathfrak{q}}(\Omega)$'s and Meta- $A_{\mathfrak{q}}(\lambda)$'s are nonzero, irreducible and unitary.
- (2) Meta- $A_{\mathfrak{q}}(\lambda)$'s with $\nu = \rho$ are admissible $A_{\mathfrak{q}}(\lambda)$'s, and they have strongly regular infinitesimal character.
- (3) $A_{\mathfrak{q}}(\Omega)$'s and Meta- $A_{\mathfrak{q}}(\lambda)$'s are ω -regular (definition below).

DEFINITION 4. Let X be a genuine Hermitian (\mathfrak{g}, K) module of Mp(2n) with infinitesimal character associated to $\phi \in t^*$ as above. Assume that ϕ is real. Let γ^{ω} be a weight representating the infinitesimal character of the oscillator representation of Mp(2n) such that ϕ belongs to the Weyl chamber determined by γ^{ω} . We say that ϕ (as well as X) is ω -regular if

(2.6)
$$\langle \phi - \gamma^{\omega}, \alpha \rangle \ge 0 \text{ for all } \alpha \in \Delta^+(\phi)$$

CONJECTURE 1. (Adams, Barbasch, Vogan) The $A_{\mathfrak{q}}(\Omega)$ and Meta- $A_{\mathfrak{q}}(\lambda)$ representations exhaust all the ω -regular unitary irreducible representations of G.

3. Main Theorem

THEOREM 1. Assume G = Mp(2n) for $n \leq 3$. Then the $A_q(\Omega)$'s exhaust all the genuine ω -regular unitary representations of G.

REMARK 2. The non-genuine part of the conjecture is true for Mp(4); we will restrict our attention to the genuine case for the remainder of this talk.

4. Sketch of proof

PROPOSITION 3. Let $n \leq 3$, and let $\mu = \mu(\mathfrak{q},\Omega)$ be the LKT of an $A_{\mathfrak{q}}(\Omega)$ representation of G.

Let $\phi = \phi(\mathbf{q}, \Omega)$ be its infinitesimal character. Then if X is an ω -regular, unitary representation of G with LKT μ and infinitesimal character γ , then

$$\gamma = \phi\left(\mathfrak{q},\Omega
ight)$$

PROPOSITION 4. Let $n \leq 3$. If X is genuine ω -regular representation of G with LKT $\mu(\mathfrak{q},\Omega)$ and infinitesimal character $\phi(\mathfrak{q},\Omega)$ then

$$X \cong A_{\mathfrak{q}}(\Omega).$$

PROOF. For $n \leq 3$, these two propositions can be proved case by case, going through all the possible choices for \mathfrak{q} , listing the corresponding LKT's. For Proposition 3, we show that Parthasarathy's Dirac operator inequality (*PDOI*), together with the ω -regular condition force the infinitesimal character to be $\gamma = \phi(\mathfrak{q}, \Omega)$. For Proposition 4 one shows that for representations with these special *LKT*'s, the infinitesimal character uniquely determines the continuous parameter.

The two propositions should be true for all n; we are working on a general argument.

It remains to show that all representations which do not have the LKT of an $A_{\mathfrak{q}}(\Omega)$ are nonunitary.

- (1) n = 1. Let $\mu \leftrightarrow a \in \mathbb{Z} + \frac{1}{2}$ be the *LKT* of the representation. If $|a| \geq \frac{3}{2}$, then representation is a discrete series. The *K*-types $\mu = \pm \frac{1}{2}$ are *LKT*'s of oscillator representations, hence of $A_{\mathfrak{q}}(\Omega)$ modules, so the propositions tell the whole story for Mp(2).
- (2) Now assume n = 2. We can separate all those K representations that are LKT's of $A_{\mathfrak{q}}(\Omega)$ modules from those that are not. The $A_{\mathfrak{q}}(\Omega)$ LKT's are

(4.1)
$$\begin{cases} (a,b), a \ge b \ge \frac{5}{2}; a \ge \frac{5}{2}, b \le -\frac{1}{2}; \\ a \ge \frac{1}{2}, b \le -\frac{5}{2}; b \le a \le -\frac{5}{2} \\ -b = a \ge \frac{3}{2}; \\ a \ge \frac{5}{2}, b = \frac{5}{2}, \frac{3}{2}, \frac{1}{2}, -\frac{1}{2} \\ a = \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}; \\ (\frac{3}{2}, \frac{1}{2}), (-\frac{1}{2}, -\frac{3}{2}), \pm (\frac{1}{2}, \frac{1}{2}) \end{cases}$$

By the above propositions, there is a unique ω -regular unitary representation containing each of these LKT's. We are left with the following LKT's

(4.2)
$$\left\{ \begin{array}{c} (-b+1,b), b \leq -\frac{1}{2}; (a,-a-1), a \geq \frac{1}{2}; \\ \pm \left(\frac{3}{2}, \frac{3}{2}\right); \left(\frac{1}{2}, -\frac{1}{2}\right) \end{array} \right\}$$

Using *PDOI*, one shows that any ω -regular representation with one of these LKT's must be non-unitary...except for the K-type $\mu = (\frac{1}{2}, -\frac{1}{2})$ and infinitessimal character $\phi = \gamma^{\omega}$. Up to contragredients, there is a unique such representation, the LKT constituent of a (non-pseudospherical) principal series. We call this representation Mystery (this reflects the long time it took us to figure out how to determine that it is non-unitary). Here one

needs to calculate the intertwining operator; then one can check that the form changes signs on the K-type $\left(-\frac{1}{2},-\frac{3}{2}\right)$.

- (3) Let n = 3. Then similar (considering many more cases than in the previous case) arguments take care of the reps with $A_{\mathfrak{q}}(\Omega) LKT$'s, and PDOI rules out all representations except:
 - (a) Three representations with LKT $(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$ and infinitesimal character γ^{ω} ; we call these Mystery representations as well; here we use the same technique as for Mystery of Mp(4), but we have to work harder; the signature of the form is negative on $\left(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right)$ in two of them; for the third we have to go to $\left(\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}\right)$;
 - (b) One representation with $LKT\left(\frac{5}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and infinitesimal character γ^{ω} ; this is a representation of the form $\mathcal{R}_{\mathfrak{q}}\left(\lambda \otimes Y\right)$ and Y a pseudospherical principal series with inf char $(\frac{5}{2}, \frac{1}{2})$; a "Pothole" representation. Here we show that in Y, the form is negative on the K-type $\left(\frac{1}{2},-\frac{3}{2}\right)$; this K-type survives in the Bottom Layer, so the our Pothole representation is non-unitary as well;
 - (c) A family of representations with LKT $\left(a, \frac{3}{2}, \frac{1}{2}\right)$, $a \geq \frac{7}{2}$, and infinitesimal character $(a-1,\frac{3}{2},\frac{1}{2})$; these are representations of the form $\mathcal{R}_{\mathfrak{q}}(\lambda \otimes Mystery)$ in the good range, which we call "Pseudo- $A_{\mathfrak{q}}(\Omega)$'s". Since the K-type of Mystery for Mp(4) which detects non-unitarity survives in the Bottom Layer, our "Pseudo- $A_{\mathfrak{q}}(\Omega)$'s" are proved to be non-unitary.

5. Outlook

Here is our strategy for proving the general case:

- (1) Prove Propositions 3 and 4 in general (almost done).
- (2) Identify all ω -regular representations which are not $A_{\mathfrak{q}}(\Omega)$'s and for which the PDOI, applied to the LKT, does not detect non-unitarity. This includes the following families of representations:
 - (a) Non-pseudospherical principal series with $LKT\left(\underbrace{\frac{1}{2},...,\frac{1}{2}}_{,-\frac{1}{2},...,-\frac{1}{2}},\underbrace{-\frac{1}{2},...,-\frac{1}{2}}_{,-\frac{1}{2},...,-\frac{1}{2}}\right)$

and infinitesimal character γ^{ω} ("Mystery" representations);

- (b) Pseudo- $A_{\mathfrak{q}}(\Omega)'s : \mathcal{R}_{\mathfrak{q}}(\lambda \otimes Mystery)$ in the good range;
- (c) 'Pothole' $A_{\mathfrak{q}}(\Omega)$'s: $X = \mathcal{R}_{\mathfrak{q}}(\lambda \otimes Y)$, where Y is a pseudospherical principal representation of Mp(2m) with infinitesimal character $\nu =$ $(\frac{1}{2}, \frac{3}{2}, ..., \widehat{x_i}, ..., \frac{m-1}{2}, \frac{m+1}{2})$ and $\widehat{x_i}$ means the i-th entry is deleted, and the infinitesimal character of X is γ^{ω} ;
- (d) Others, yet to be identified?
- (3) Prove that the representations in (2) are non-unitary, using techniques similar to the ones for the small cases.
- (4) Describe the LKT's of all remaining representations.
- (5) Use *PDOI* to show that any ω -regular representation with such a *LKT* is non-unitary.