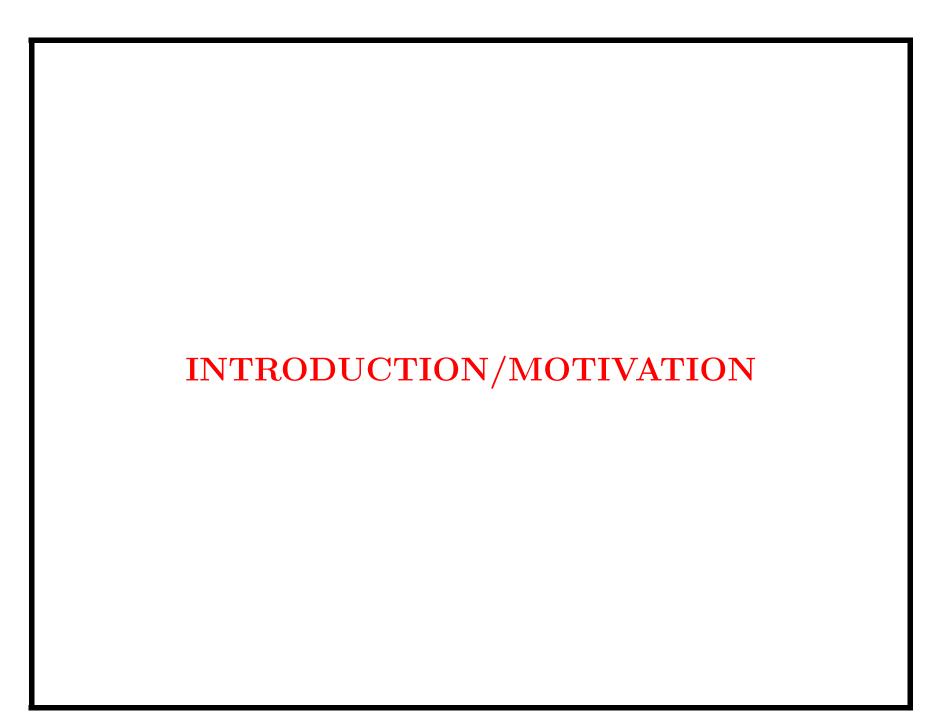
Multiplicities of K-types in principal series

Alessandra Pantano $joint\ work\ with\ Dan\ Barbasch$

MIT, March 2007



Introduction

find the unitary dual of split $G_{\mathbb{R}}$

discuss unitarity of Langlands quotients of principal series $J_P(\delta, \nu) \rightsquigarrow P = MAN$

signature of some Hermitian operators $A_{\mu}(\delta, \nu)$ $\mu \in \widehat{K}, \delta \in \widehat{M}, \nu \in a_{\mathbb{C}}^{*}$

The intertwining operator $A_{\mu}(\delta, \nu)$ acts on $\mathbf{Hom}_{\mathbf{M}}(\delta, \mu)$.

PROBLEM Understand the representation of $W(\delta)$ (= the stabilizer of δ in W) on the space $\mathbf{Hom}_{M}(\delta, \mu)$, $\forall \delta \in \widehat{M}$, $\mu \in \widehat{K}$.

Spherical unitary dual

spherical unitary dual of split $G(\mathbb{R})$?

use spherical petite K-types to prove that $J(\nu)_{\mathbb{R}} \text{ unit.} \Rightarrow J(\nu)_{\mathbb{Q}_p} \text{ unit.}$ $\xrightarrow{Barbasch-Vogan}$

spherical unitary dual of split $G(\mathbb{Q}_p)$

candidates: $J(\nu)_{\mathbb{R}}$

1

candidates: $J(\nu)_{\mathbb{Q}_p}$

$$J(\nu)_{\mathbb{R}}$$
 unitary \Leftrightarrow

$$A_{\mu}(\nu) \ge 0, \, \forall \mu \in \widehat{K}$$

 $J(\nu)_{\mathbb{Q}_p}$ unitary \Leftrightarrow $A_{\psi}(\nu) \geq 0, \forall \psi \in \widehat{W}_{relev}$

Non-spherical unitary dual

non-spher. unitary dual of split $G_{\mathbb{R}}$

use non-spherical petite K-types to investigate whether $J^{G}(\delta,\nu)$ unit $\Rightarrow J^{G_0(\delta)}(\nu_0)$ unit Barbasch-Pantano

spherical unitary dual of split $G_0(\delta)$

candidates: $J^G(\boldsymbol{\delta}, \nu)$ \leadsto define G_0^{δ} candidates: $J^{G_0^{\delta}}(\nu_0)$

$$J^{G}(\delta, \nu)$$
 unitary $J^{G_0^{\delta}}(\nu_0)$ unitary $\Leftrightarrow \boxed{A_{\mu}(\delta, \nu)} \geq 0 \longrightarrow \boxed{\operatorname{Hom}_{M}(\delta, \nu)} \longleftarrow \Leftrightarrow \boxed{A_{\psi}(\nu)} \geq 0$ $\forall \mu \in \widehat{K}$ $\forall \psi \in \widehat{W_0}$ relevan

$$J^{G_0^{\delta}}(\nu_0)$$
 unitary
 $\Leftrightarrow \boxed{A_{\psi}(\nu)} \ge 0$
 $\forall \psi \in \widehat{W}_0$ relevant

Two projects

BIG PROJECT

SMALL PROJECT

Find an inductive algorithm to compute the $W(\delta)$ -representation $\operatorname{\mathbf{Hom}}_{M}(\delta,\mu)$

Find an inductive algorithm

to compute

 $\dim[\operatorname{Hom}_M(\delta,\mu)]$

 $\rightarrow today$

Plan of the talk

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

PART 1

- Standard Notation
- \bullet Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

Notation

- |G| a real reductive Lie group $\leftarrow split group$
- |K| the maximal compact subgroup of G
- K-types the irreducible representations of K $\mu = \sum a_j \omega_j, \text{ with } a_j \geq 0 \text{ and } \omega \text{ fundamental}$
- θ a Cartan involution on \mathfrak{g}
- $|\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}|$ the Cartan decomposition of \mathfrak{g}
- \mathfrak{a} a maximal abelian subspace of \mathfrak{p} , $A = \exp(\mathfrak{a})$
- $| M = Z_K(\mathfrak{a}) | \leftarrow finite \ subgroup \ of \ K$
- |P = MAN| a minimal parabolic subgroup of G

Minimal Principal Series

$$\begin{array}{ll} \mathbf{parameters} & \begin{cases} P = MAN & \text{minimal parabolic subgroup of } G \\ (\delta, \, V^{\delta}) & \text{irreducible representation of } M \\ \nu \colon \mathfrak{a} \to \mathbb{C} & \text{dominant character of } A \\ \end{array}$$

principal series
$$I_{P}(\delta, \nu) = \operatorname{Ind}_{MAN}^{G}(\delta \otimes \nu \otimes triv)$$

 $G\ acts\ by\ left\ translation\ on\ the\ space\ of\ functions$ $\{F\colon G\to V^\delta\colon F\mid_K\in L^2,\ F(xman)=e^{-(\nu+\rho)log(a)}\delta(m)^{-1}F(x),\ \forall\, man\in P\}$

PART 2

• Standard Notation

ullet Multiplicities of K-types in principal series

• Some easy examples (linear case)

• Non-linear case (what we know...)

• An inductive algorithm to compute multiplicities

• Generalization

Multiplicities of K-types in Principal Series

Which irreducible representations μ of K appear in the principal series $I_P(\delta, \nu)$, and with what multiplicities?

A reformulation of this problem

The multiplicity of a K-type μ in $I_P(\delta, \nu)$ is defined by

$$m(\mu, I_P(\delta,
u)) = \dim \left[\operatorname{Hom}_K(\mu, \operatorname{Res}_K I_P(\delta,
u))
ight]$$

By Frobenius reciprocity, it is independent of the parameter ν :

$$m(\mu, I_P(\delta,
u)) = m(\delta, \mu) = \dim \left[\operatorname{Hom}_M(\delta, \operatorname{Res}_M \mu)
ight]$$

 \Rightarrow We need to study the restriction of K-types to M

PART 3

- Standard Notation
- \bullet Multiplicities of K-types in principal series
- ullet Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

The example of $SL(2,\mathbb{R})$

•
$$G = SL(2, \mathbb{R}), K = SO(2, \mathbb{R}), M = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} \simeq \mathbb{Z}_2$$

•
$$\widehat{K} = \mathbb{Z}$$
, $\widehat{M} = \{trivial, sign\}$

•
$$\operatorname{Res}_{M}(\mu_{n}) = \begin{cases} trivial & \text{if } n \text{ is even} \\ sign & \text{if } n \text{ is odd} \end{cases}$$

$$\Rightarrow egin{aligned} m(\mu_{2l},\,I_P(\delta,
u)) = egin{cases} 1 & ext{if δ is $trivial} \ 0 & ext{if δ is $sign$} \end{cases}$$

$$and \quad m(\mu_{2l+1}, I_P(\delta,
u)) = egin{cases} 0 & ext{if δ is $trivial} \ 1 & ext{if δ is $sign$} \end{cases}$$

The example of $SL(3,\mathbb{R})$

- $G = SL(3, \mathbb{R}), K = SO(3, \mathbb{R})$
- $M = \{ \operatorname{diag}(\epsilon_1, \epsilon_2, \epsilon_3) : \epsilon_i = \pm 1, \, \Pi \epsilon_i = 1 \} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$
- $\widehat{K} = \{\mathcal{H}_n\}_{n \in \mathbb{N}} = \{p(x, y, z) : \text{ harmonic, homog. of degree n}\}$
- $\widehat{M} = \{triv \otimes triv, triv \otimes sign, sign \otimes triv, sign \otimes sign\}$
- $\mathcal{H}_{2l} \mid_{M} = [tr \otimes tr]^{l+1} \oplus [tr \otimes sign]^{l} \oplus [sign \otimes tr]^{l} \oplus [sign \otimes sign]^{l}$

$$\Rightarrow egin{aligned} m(\mathcal{H}_{2l},\,I_P(\delta,
u)) = egin{cases} l+1 & ext{if } \delta = tr \otimes tr \ l & ext{otherwise} \end{cases}$$

There are similar formulas for \mathcal{H}_{2l+1}

Non-linear groups

Suppose that

- G: a simple, connected and simply connected real reductive algebraic group
- G: the split real form of \mathbb{G}
- \widetilde{G} : the (unique) two-fold cover of G

then

 \widetilde{G} is non-linear and \widetilde{M} is non-abelian

PART 4

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know about \widetilde{M} ...)
- An inductive algorithm to compute multiplicities
- Generalization

Notation

For each root α , we can choose a Lie algebra homomorphism

$$\phi_{\alpha} \colon \mathfrak{sl}(2,\mathbb{R}) \to \mathfrak{g}$$

such that

$$Z_{\alpha} = \phi_{\alpha} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathfrak{t} = \operatorname{Lie}(K).$$

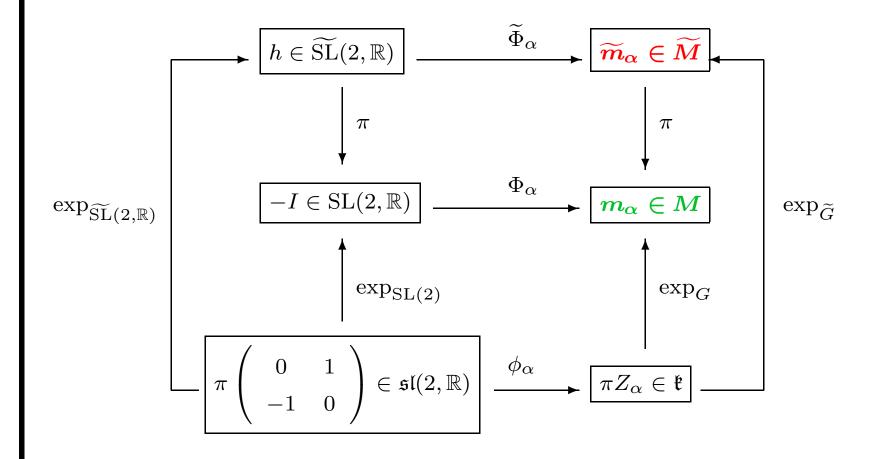
Exponentiating ϕ_{α} , we obtain

$$\Phi_{\alpha} \colon SL(2,\mathbb{R}) \to G \qquad \widetilde{\Phi}_{\alpha} \colon \widetilde{SL}(2,\mathbb{R}) \to \widetilde{G}.$$

<u>Definition</u>: α is **metlapectic** if $\widetilde{\Phi}_{\alpha}$ does not factor to $SL(2,\mathbb{R})$.

If G is not of type G_2 , then **metaplectic** \Leftrightarrow **long**, if G is of type G_2 , then all roots are metaplectic.

More notation: $\widetilde{m}_{\alpha} = \exp_{\widetilde{G}}(\pi Z_{\alpha})$ and $m_{\alpha} = \exp_{G}(\pi Z_{\alpha})$



Structure of \widetilde{M}

• GENERATORS: $\{\widetilde{m}_{\alpha}\}_{\alpha \text{ simple}}$

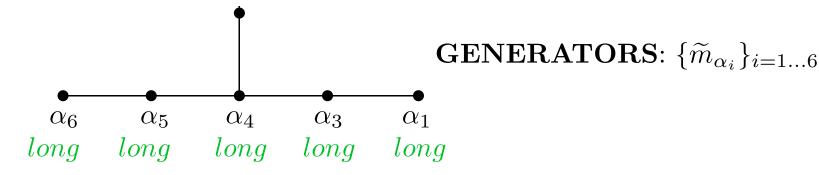
• **RELATIONS**: $\widetilde{m}_{\alpha}^{2} = \begin{cases} -I & \text{if } \alpha \text{ is metaplectic} \\ +I & \text{otherwise} \end{cases}$

and
$$\{\widetilde{m}_{\alpha}, \widetilde{m}_{\beta}\} = \begin{cases} (-I)^{\langle \alpha, \check{\beta} \rangle} & \text{if } \alpha \text{ and } \beta \text{ are both metaplectic} \\ +I & \text{otherwise.} \end{cases}$$

• **ELEMENTS**: Choose an ordering of the simple roots. Every element of \widetilde{M} can be written uniquely in the form

$$\varepsilon \widetilde{m}_{\alpha_1}^{n_1} \widetilde{m}_{\alpha_2}^{n_2} \dots \widetilde{m}_{\alpha_r}^{n_r}$$

with $\varepsilon = \pm 1$, and $n_i = 0$ or 1.



 α_2

RELATIONS: $\widetilde{m}_{\alpha_i}^2 = -I$ for all $i = 1 \dots 6$, and

$$\{\widetilde{m}_{\alpha}, \widetilde{m}_{\beta}\} = (-I)^{\langle \alpha_i, \check{\alpha_j} \rangle} = \begin{cases} (-I) & \text{if } \alpha_i \text{ and } \alpha_j \text{ are } adjacent \\ (+I) & \text{otherwise.} \end{cases}$$

CENTER: $Z(\widetilde{M}) = \{\pm I\} \simeq \mathbb{Z}_2$

Example: $\widetilde{M} \subset \widetilde{F}_4$

GENERATORS: $\{\widetilde{m}_{\alpha_i}\}_{i=1...4}$

RELATIONS:
$$\widetilde{m}_{\alpha}^{2} = \begin{cases} -I & \text{if } \alpha \text{ is long} \\ +I & \text{if } \alpha \text{ is short} \end{cases}$$

and
$$\{\widetilde{m}_{\alpha}, \widetilde{m}_{\beta}\} = \begin{cases} (-I) & \text{if } \alpha \text{ and } \beta \text{ are both long} \\ (+I) & \text{otherwise.} \end{cases}$$

CENTER:
$$Z(\widetilde{M}) = \langle -I, \widetilde{m}_{\alpha_3}, \widetilde{m}_{\alpha_4} \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$

Representations of M

M is a cover of the abelian group M. There is an exact sequence

$$1 \to \{\pm I\} \to \widetilde{M} \to M \to 1.$$

A repr. of \widetilde{M} is called genuine if (-I) does not act trivially

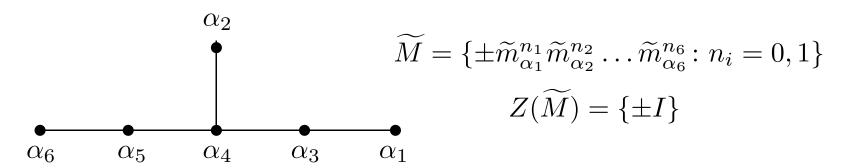
- The non-genuine representations of \widetilde{M} have dim. 1. They are determined by the value of $\delta(\widetilde{m}_{\alpha_i}) = \pm 1$
- The genuine repr.s of \widetilde{M} have dim. $n = |\widetilde{M}/Z(\widetilde{M})|^{\frac{1}{2}}$. They are determined by the restriction to $Z(\widetilde{M})$

$$\{\text{genuine repr.s of }\widetilde{M}\} \quad \leftrightarrow \quad \{\text{genuine characters of } Z(\widetilde{M})\}$$

$$\boxed{\delta} \quad \to \quad \boxed{\lambda} \text{ s.t. } \operatorname{Res} \delta = \lambda^{\oplus n}$$

$$\delta$$
 s.t. Ind $\lambda = \pi^{\oplus n} \leftarrow \lambda$

Example: representations of $\widetilde{M} \subset \widetilde{E}_6$



Every **non-genuine** representation is one-dimensional, and is determined by the 6-upla $[\delta(\widetilde{m}_{\alpha_1}), \ldots, \delta(\widetilde{m}_{\alpha_6})]$. For $\delta(\widetilde{m}_{\alpha_i}) = \pm 1$, there are 2^6 distinct non-genuine representations.

The group $Z(\widetilde{M})$ has one genuine repr. χ_g , given by $\chi_g(-I) = -1$. Hence \widetilde{M} has only one **genuine** repr. δ_g . The dimension of δ_g is

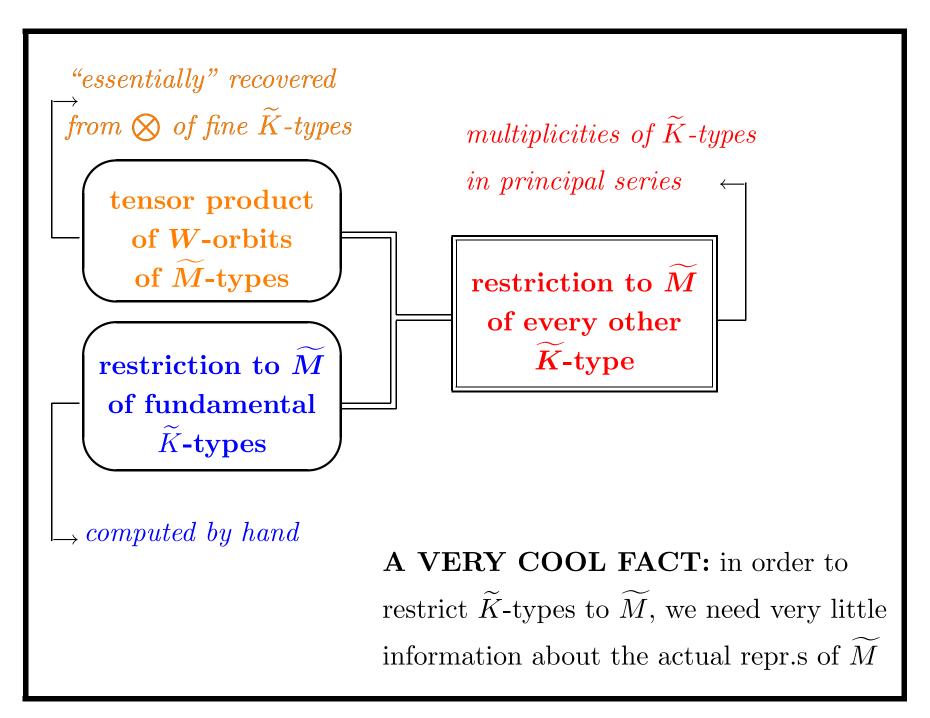
$$|\widetilde{M}/Z(\widetilde{M})|^{\frac{1}{2}} = \sqrt{2 \cdot 2^6/2} = 8.$$

To compute the character of δ_g , we use the fact $8\delta_g = \operatorname{Ind}_{Z(\widetilde{M})}^{\widetilde{M}} \chi_g$.

PART 5

- Standard Notation
- \bullet Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

An inductive algorithm to compute multiplicities **INPUT OUTPUT** tensor product of W-orbits of \widetilde{M} -types restriction to Mof every other \widetilde{K} -type restriction to \widetilde{M} of fundamental K-types



Computing the restriction of a \widetilde{K} -type μ to \widetilde{M}

(by induction on level and lexicographical order)

- \bullet μ embeds in a tensor product of fundamental representations
- we can write $\mu = \mu' + \omega$, with ω fundamental and μ' lower in the induction

$$\mu' \otimes \omega = \mu + (\text{lower terms})$$
 (\bigstar)

- The restriction of μ' and ω to \widetilde{M} are known (by induction)
- The restriction of $\mu' \otimes \omega$ to \widetilde{M} is computed using the table of tensor product of W-orbits of \widetilde{M} -types (base of induction)
- Equation (\bigstar) gives $\operatorname{Res}_{\widetilde{M}} \mu$ (by comparison)

An example

Let
$$\widetilde{G} = \widetilde{F}_4$$
, $\widetilde{K} = SP(1) \times SP(3)$ and $\mu = (0|200)$.

$$\underbrace{(0|200)}_{\boldsymbol{\mu}} = \underbrace{(0|100)}_{\boldsymbol{\mu'}} + \underbrace{(0|100)}_{\boldsymbol{\omega}} \Rightarrow \boldsymbol{\mu} \hookrightarrow \boldsymbol{\mu'} \otimes \boldsymbol{\omega}$$

lower in induction

fundamental

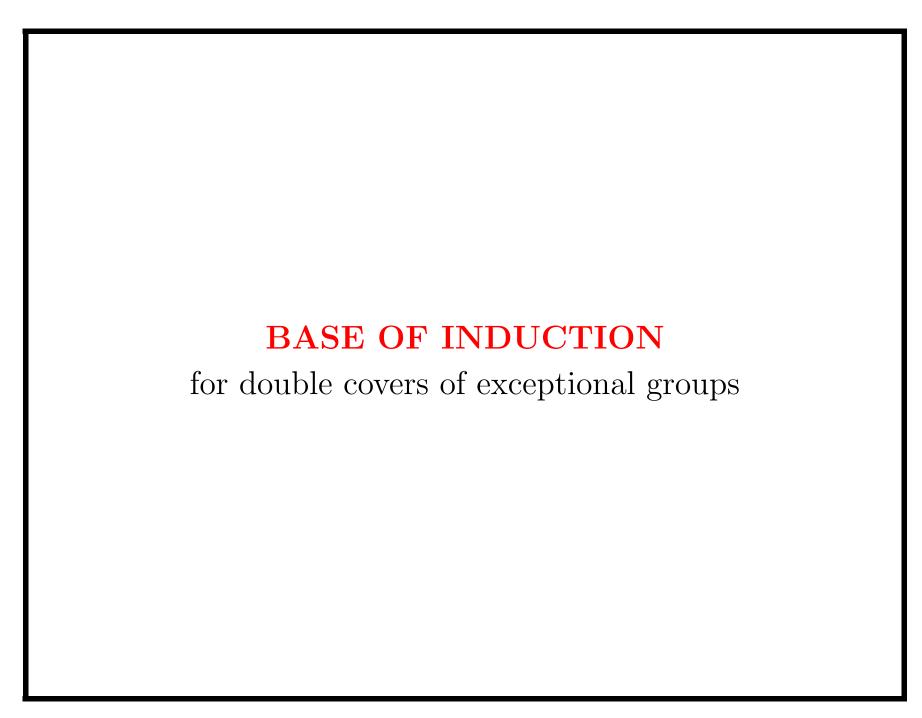
Restriction to \widetilde{M} gives:

$$\underbrace{(0|100)\otimes(0|100)}_{\bar{\delta}_6\otimes\bar{\delta}_6} = \underbrace{(0|200)}_{2\delta_0\oplus\bar{\delta}_{12}} \oplus \underbrace{(0|110)}_{\delta_0} \oplus \underbrace{(0|000)}_{\delta_0}.$$

We know that $\bar{\delta}_6 \otimes \bar{\delta}_6 = 3\delta_0 \oplus 3\bar{\delta}_3 \oplus 2\bar{\delta}_{12}$. Hence

$$Res(0|200) = 3\bar{\delta}_3 \oplus \bar{\delta}_{12}$$

by comparison.



The two-fold cover of E_6

•
$$\widetilde{G} = \widetilde{E}_6$$

•
$$\widetilde{G} = \widetilde{E}_6$$

• $\widetilde{K} = Sp(4)$

$W ext{-orbit of} \ \widetilde{M} ext{-types}$	dim.	$\widetilde{K} ext{-type}$	W^0_δ	$W(\delta)$
δ_1	1	(0)	$W(E_6)$	$W(E_6)$
δ_8	8	w_1	$W(E_6)$	$W(E_6)$
$ar{\delta}_{27}$	$27 \cdot 1$	w_2	$W(D_5)$	$W(D_5)$
$ar{\delta}_{36}$	$36 \cdot 1$	$2w_1$	$W(A_5A_1)$	$W(A_5A_1)$

fundam. \widetilde{K} -type	$\# \delta_1$	$\#\delta_8$	$\#ar{\delta}_{27}$	$\#ar{\delta}_{36}$
w_1	0	1	0	0
w_{2}	0	0	1	0
w_3	0	6	0	0
w_4	6	0	0	1

\otimes	δ_8	$ar{\delta}_{27}$	$ar{\delta}_{36}$
δ_8	$\delta_1 + \bar{\delta}_{27} + \bar{\delta}_{36}$	$27\delta_8$	$36\delta_8$
$ar{\delta}_{27}$	$27\delta_8$	$27\delta_1 + 10\bar{\delta}_{27} + 12\bar{\delta}_{36}$	$16\bar{\delta}_{27} + 15\bar{\delta}_{36}$
$ar{\delta}_{36}$	$36\delta_8$	$16\bar{\delta}_{27} + 15\bar{\delta}_{36}$	$36\delta_1 + 20\overline{\delta}_{27} + 20\overline{\delta}_{36}$

The two-fold cover of E_8

•
$$\widetilde{G} = \widetilde{E}_8$$

•
$$\widetilde{G} = \widetilde{E}_8$$

• $\widetilde{K} = Spin(16)$

$W ext{-orbit of} \ \widetilde{M} ext{-types}$	dim.	$\widetilde{K} ext{-type}$	W^0_δ	$W(\delta)$
δ_0	1	(0)	$W(E_8)$	$W(E_8)$
δ_{16}	16	w_1	$W(E_8)$	$W(E_8)$
$ar{\delta}_{120}$	120 · 1	w_2	$W(E_7A_1)$	$W(E_7A_1)$
$ar{\delta}_{135}$	$135 \cdot 1$	$2w_1$	$W(D_8)$	$W(D_8)$

non-genuine fund. \widetilde{K} -type	$\#\delta_0$	$\#ar{\delta}_{120}$	$\#ar{\delta}_{135}$	ge:
w_{2}	0	1	0	
w_4	35	7	7	,
w_6	28	35	28	,
w_8	8	1	0	,

genuine fund. \widetilde{K} -type	$\#\delta_{16}$
w_1	1
w_3	35
w_5	273
w_7	8

\otimes	δ_{16}	$ar{\delta}_{120}$	$ar{\delta}_{135}$
δ_{16}	$\delta_0 + \bar{\delta}_{120} + \bar{\delta}_{135}$	$120\delta_{16}$	$135\delta_{16}$
$ar{\delta}_{120}$	$120\delta_{16}$	$120\delta_0 + 56\overline{\delta}_{120} + 56\overline{\delta}_{135}$	$63\bar{\delta}_{120} + 64\bar{\delta}_{135}$
$ar{\delta}_{135}$	$135\delta_{16}$	$63\bar{\delta}_{120} + 64\bar{\delta}_{135}$	$135\delta_0 + 72\bar{\delta}_{120} + 70\bar{\delta}_{135}$

The two-fold cover of F_4

$$\bullet \ \widetilde{G} = \widetilde{F}_4$$

•
$$\widetilde{G} = \widetilde{F}_4$$

• $\widetilde{K} = Sp(1) \times Sp(3)$

$W ext{-orbit of} \ \widetilde{M} ext{-types}$	dim.	$\widetilde{K} ext{-type}$	W^0_δ	$W(\delta)$
δ_0	1	(0 000)	$W(F_4)$	$W(F_4)$
δ_2	2	(1 000)	$W(F_4)$	$W(F_4)$
$ar{\delta}_3$	$3 \cdot 1$	(2 000)	$W(C_4)$	$W(C_4)$
$ar{\delta}_6$	$3 \cdot 2$	(0 100)	$W(B_4)$	$W(B_4)$
$ar{\delta}_{12}$	12 · 1	(1 100)	$W(B_3A_1)$	$W(B_3A_1)$

$egin{array}{c} ext{non-genuine} \ ext{fund.} \ \widetilde{K} ext{-types} \end{array}$	$\#\delta_0$	$\#ar{\delta}_3$	$\#ar{\delta}_{12}$
(0 000)	1	0	0
(0 110)	2	0	1

$egin{aligned} & ext{genuine} \ & ext{fund.} \ & \widetilde{K} ext{-types} \end{aligned}$	$\# \delta_2$	$\#ar{\delta}_6$
(1 000)	1	0
(0 100)	0	1
(0 111)	4	1

\otimes	δ_2	$ar{\delta}_3$	$ar{\delta}_6$	$ar{\delta}_{12}$
$oldsymbol{\delta_2}$	$\delta_0 + \bar{\delta}_3$	$3\delta_2$	$ar{\delta}_{12}$	$4ar{\delta}_6$
$ar{\delta}_3$	$3\delta_2$	$3\delta_0 + 2\bar{\delta}_3$	$3ar{\delta}_6$	$3ar{\delta}_{12}$
$ar{\delta}_6$	$ar{\delta}_{12}$	$3ar{\delta}_6$	$3\delta_0 + 3\bar{\delta}_3 + 2\bar{\delta}_{12}$	$12\delta_2 + 8\bar{\delta}_6$
$ar{\delta}_{12}$	$4ar{\delta}_6$	$3ar{\delta}_{12}$	$12\delta_2 + 8\bar{\delta}_6$	$12\delta_0 + 12\bar{\delta}_3 + 8\bar{\delta}_{12}$

The two-fold cover of E_7

$$\bullet \ \widetilde{G} = \widetilde{E}_7$$

•
$$\widetilde{G} = \widetilde{E}_7$$

• $\widetilde{K} = SU(8)$

$W ext{-orbit of} \ \widetilde{M} ext{-types}$	dim.	$\widetilde{K} ext{-type}$	W^0_δ	$W(\delta)$
δ_1	1	(0)	$W(E_7)$	$W(E_7)$
δ_8	8	w_1	$W(E_7)$	$W(E_7)$
δ_8^\star	8	w_7	$W(E_7)$	$W(E_7)$
$ar{\delta}_{28}$	28 · 1	w_2, w_6	$W(E_6)$	$W(E_6) \ltimes \mathbb{Z}_2$
$ar{\delta}_{36}$	$36 \cdot 1$	$2w_1, 2w_7$	$W(A_7)$	$W(A_7) \ltimes \mathbb{Z}_2$
$ar{\delta}_{63}$	63 · 1	$w_1 + w_7$	$W(D_6A_1)$	$W(D_6A_1)$

$\widetilde{K} ext{-types}$	$\# \delta_1$	$\#ar{\delta}_{28}$	$\#ar{\delta}_{36}$	$\#ar{\delta}_{63}$	$\#\delta_8$	$\#\delta_8^\star$
w_0	1	0	0	0	0	0
w_1	0	0	0	0	1	0
w_{2}	0	1	0	0	0	0
w_3	0	0	0	0	0	7
w_4	7	0	0	1	0	0
w_5	0	0	0	0	7	0
w_6	0	1	0	0	0	0
w_7	0	0	0	0	0	1

\otimes	δ_8	δ_8^\star	$ar{\delta}_{28}$
δ_8	$\bar{\delta}_{28} + \bar{\delta}_{36}$	$\delta_1 + \bar{\delta}_{63}$	$28\delta_8^\star$
δ_8^\star	$\delta_1 + \bar{\delta}_{63}$	$\bar{\delta}_{28} + \bar{\delta}_{36}$	$28\delta_8$
$ar{\delta}_{28}$	$28\delta_8^{\star}$	$28\delta_8$	$28\delta_1 + 12\bar{\delta}_{63}$
$ar{\delta}_{36}$	$36\delta_8^{\star}$	$36\delta_8$	$16\bar{\delta}_{63}$
$ar{\delta}_{63}$	$63\delta_8$	$63\delta_8^{\star}$	$27\bar{\delta}_{28} + 28\bar{\delta}_{36}$

\otimes	$ar{\delta}_{36}$	$ar{\delta}_{63}$
δ_8	$36\delta_8^{\star}$	$63\delta_8$
δ_8^\star	$36\delta_8$	$63\delta_8^{\star}$
$ar{\delta}_{28}$	$16ar{\delta}_{63}$	$27\bar{\delta}_{28} + 28\bar{\delta}_{36}$
$ar{\delta}_{36}$	$36\delta_1 + 20\overline{\delta}_{63}$	$36\bar{\delta}_{28} + 35\bar{\delta}_{36}$
$ar{\delta}_{63}$	$36\bar{\delta}_{28} + 35\bar{\delta}_{36}$	$63\delta_1 + 62\bar{\delta}_{63}$

Restriction to M of the fundamental K-types

the example of \widetilde{E}_6

$$\widetilde{G} = \widetilde{E}_6$$

$$\widetilde{K} = Sp(4)$$

Fundamental \widetilde{K} -types: w_1, w_2, w_3, w_4

W-orbits of M-types: δ_1 , δ_8 , $\bar{\delta}_{27}$, and $\bar{\delta}_{36}$

- $\operatorname{Res}_{\widetilde{M}} w_1 = \delta_8$, and $\operatorname{Res}_{\widetilde{M}} w_2 = \delta_{27}$ (fine \widetilde{K} -types)
- w_3 is genuine, and has dimension 48, hence $\text{Res}(w_3) = 6\delta_8$
- $(w_4)^{\widetilde{M}}$ is the reflection repr. 6_p , because w_4 is the repr. of \widetilde{K} on \mathfrak{p} . For dimensional reasons, $\operatorname{Res}(w_4) = 6\delta_1 \oplus \bar{\delta}_{36}$.

Tensor product of W-orbits of M-types

some examples for \widetilde{E}_6

•
$$\delta_8 \otimes \delta_8 = \operatorname{Res}_{\widetilde{M}}[w_1 \otimes w_1] = \operatorname{Res}_{\widetilde{M}}[(0) \oplus w_2 \oplus 2w_1] = \delta_1 \oplus \overline{\delta}_{27} \oplus \overline{\delta}_{36}$$

•
$$\bar{\delta}_{36} \otimes \bar{\delta}_{36} = \operatorname{Res}_{\widetilde{M}}[(2w_1) \otimes (2w_1)] =$$

$$= \operatorname{Res}_{\widetilde{M}} \underbrace{\left[(0) \oplus w_2 \oplus (2w_1) \right]}_{fine \to \delta_0 \oplus \bar{\delta}_{27} \oplus \bar{\delta}_{36}} \oplus \operatorname{Res}_{\widetilde{M}} \underbrace{\left[(2w_2) \oplus (2w_1 + w_2) \oplus (4w_1) \right]}_{"new" \to \operatorname{Res}=?}$$

First, we compute $(2w_2)^{\widetilde{M}}$. Because $(2w_2) \hookrightarrow (w_2 \otimes w_2)$ and

$$(w_2 \otimes w_2)^{\widetilde{M}} = \operatorname{Ind}_{W(\delta_{27})}^{W(E_6)} \operatorname{Hom}_{\widetilde{M}}(\delta_{27}, w_2) = \operatorname{Ind}_{W(D_5)}^{W(E_6)}(5|0)$$

we can write:

$$(2w_2)^{\widetilde{M}} = \underbrace{(w_2 \otimes w_2)^{\widetilde{M}}}_{1_p \oplus 6_p \oplus 20_p} - \underbrace{(w_1 + w_3)^{\widetilde{M}}}_{\varnothing} - \underbrace{w_4^{\widetilde{M}}}_{6_p} - \underbrace{0^{\widetilde{M}}}_{1_p} = 20_p.$$

Similarly, we find $(4w_1)^{\widetilde{M}} = 15_q$. Then

$$\operatorname{Res}_{\widetilde{M}}(4w_1) = 15\delta_1 \oplus b\overline{\delta}_{27} \oplus c\overline{\delta}_{36}.$$

Comparing dimensions, we find that 35 = 3b + 4c hence c = 2, 5 or

8. We also notice that $c = \dim[\operatorname{Hom}_{\widetilde{M}}(\delta_{36}, 4w_1)]$. Because

$$\operatorname{Ind}_{W(A_5A_1)}^{W(E_6)} \operatorname{Hom}_{\widetilde{M}}(\delta_{36}, 4w_1) = (2w_1 \otimes 4w_1)^{\widetilde{M}} \supseteq (4w_1)^{\widetilde{M}} = 15_q$$

the $W(A_5A_1)$ -representation $\operatorname{Hom}_{\widetilde{M}}(\delta_{36}, 4w_1)$ is a submodule of

$$\operatorname{Res}_{W(A_5A_1)}^{W(E_6)}[15_q] = \underbrace{[(33) \otimes (11)]}_{\dim.5} \oplus \underbrace{[(42) \otimes (2)]}_{\dim.9} \oplus \underbrace{[(6) \otimes (2)]}_{\dim.1}.$$

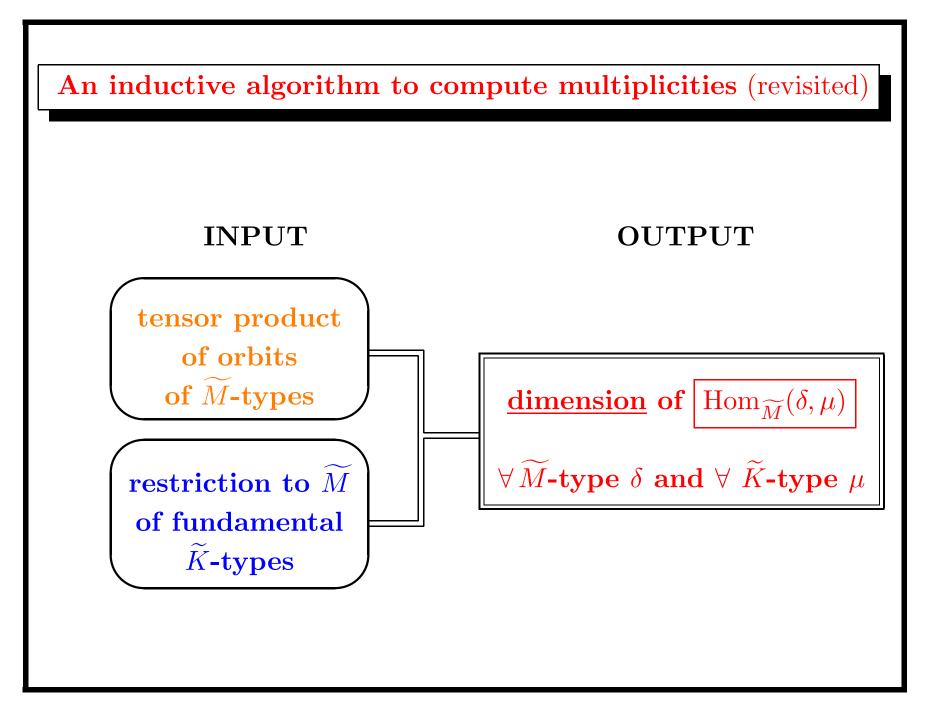
Hence c = 5, and $\operatorname{Res}_{\widetilde{M}}(4w_1) = 15\delta_1 \oplus 5\overline{\delta}_{27} \oplus 5\overline{\delta}_{36}$.

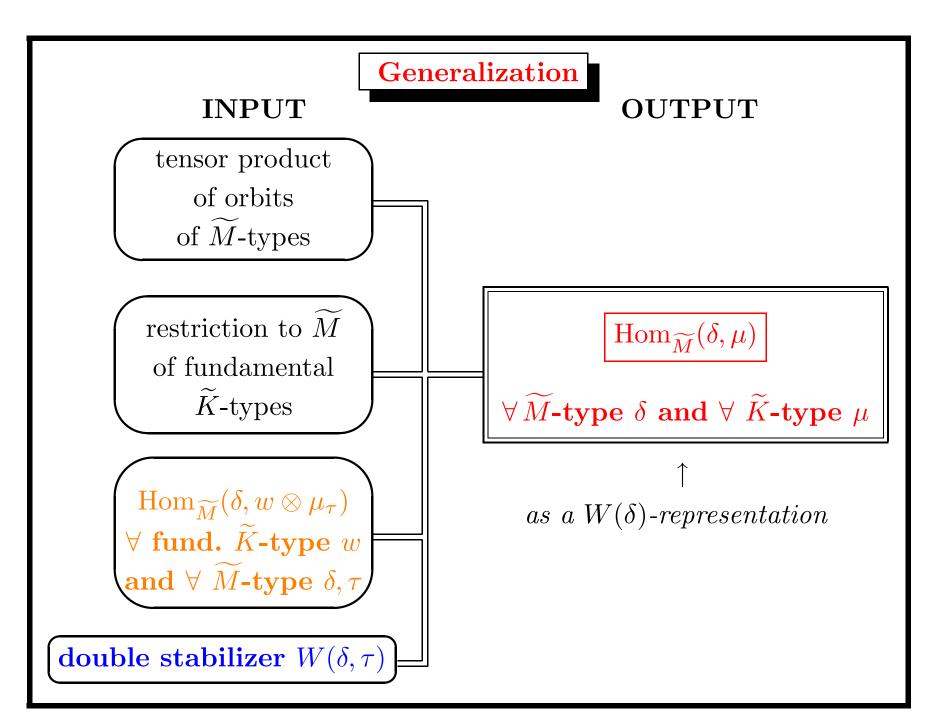
The restrictions of $(2w_1 + w_2)$ and $(2w_2)$ are computed similarly. Then

$$\bar{\delta}_{36} \otimes \bar{\delta}_{36} = 36\delta_1 \oplus 20\bar{\delta}_{27} \oplus 20\bar{\delta}_{36}.$$

PART 6

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization





DETAILS coming soon	