Multiplicities of \boldsymbol{K}-types in principal series

Alessandra Pantano
joint work with Dan Barbasch

MIT, March 2007

INTRODUCTION/MOTIVATION

Introduction

find the unitary dual of $\operatorname{split} G_{\mathbb{R}}$
discuss unitarity of
Langlands quotients of principal series
$J_{P}(\delta, \nu) \rightsquigarrow P=M A N$
signature of some
Hermitian operators

$$
A_{\mu}(\delta, \nu)
$$

$$
\mu \in \widehat{K}, \delta \in \widehat{M}, \nu \in a_{\mathbb{C}}^{*}
$$

The intertwining operator $A_{\mu}(\delta, \nu)$ acts on $\operatorname{Hom}_{M}(\delta, \mu)$.

PROBLEM Understand the representation of $W(\delta)(=$ the stabilizer of δ in W) on the space $\operatorname{Hom}_{M}(\delta, \mu), \forall \delta \in \widehat{M}, \mu \in \widehat{K}$.

Spherical unitary dual

\Uparrow
candidates: $J(\nu)_{\mathbb{R}}$
$J(\nu)_{\mathbb{R}}$ unitary \Leftrightarrow
$A_{\mu}(\nu) \geq 0, \forall \mu \in \widehat{K}$
candidates: $J(\nu)_{\mathbb{Q}_{p}}$

$$
\begin{gathered}
J(\nu)_{\mathbb{Q}_{p}} \text { unitary } \Leftrightarrow \\
A_{\psi}(\nu) \geq 0, \forall \psi \in \widehat{W}_{\text {relev }}
\end{gathered}
$$

Non-spherical unitary dual

Two projects

```
BIG PROJECT
```

Find an inductive algorithm
to compute
the $W(\delta)$-representation
$\operatorname{Hom}_{M}(\delta, \mu)$

Find an inductive algorithm
to compute
$\operatorname{dim}\left[\operatorname{Hom}_{M}(\boldsymbol{\delta}, \boldsymbol{\mu})\right]$$\quad \rightarrow$ today

Plan of the talk

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

PART 1

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

Notation

- W a real reductive Lie group \leftarrow split group
- \boldsymbol{K} the maximal compact subgroup of G
- K-types the irreducible representations of K

$$
\mu=\sum a_{j} \omega_{j}, \text { with } a_{j} \geq 0 \text { and } \omega \text { fundamental }
$$

- θ a Cartan involution on \mathfrak{g}
- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ the Cartan decomposition of \mathfrak{g}
- \mathfrak{a} a maximal abelian subspace of $\mathfrak{p}, A=\exp (\mathfrak{a})$
- $M=Z_{K}(\mathfrak{a}) \leftarrow$ finite subgroup of K
- $P=M A N$ a minimal parabolic subgroup of G

Minimal Principal Series

parameters $\begin{cases}P=M A N & \text { minimal parabolic subgroup of } G \\ \left(\delta, V^{\delta}\right) & \text { irreducible representation of } M \\ \nu: \mathfrak{a} \rightarrow \mathbb{C} & \text { dominant character of } A\end{cases}$
principal series $I_{P}(\delta, \nu)=\operatorname{Ind}_{M A N}^{G}(\delta \otimes \nu \otimes \operatorname{triv})$
G acts by left translation on the space of functions
$\left\{F: G \rightarrow V^{\delta}:\left.F\right|_{K} \in L^{2}, F(x \operatorname{man})=e^{-(\nu+\rho) \log (a)} \delta(m)^{-1} F(x), \forall\right.$ man $\left.\in P\right\}$

PART 2

- Standard Notation
- Multiplicities of \boldsymbol{K}-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

Multiplicities of K-types in Principal Series

```
Which irreducible representations }\mu\mathrm{ of K
appear in the principal series I}\mp@subsup{I}{P}{(}\delta,\nu)\mathrm{ ,
and with what multiplicities?
```


A reformulation of this problem

The multiplicity of a K-type μ in $I_{P}(\delta, \nu)$ is defined by

$$
m\left(\mu, I_{P}(\delta, \nu)\right)=\operatorname{dim}\left[\operatorname{Hom}_{K}\left(\mu, \operatorname{Res}_{K} I_{P}(\delta, \nu)\right)\right]
$$

By Frobenius reciprocity, it is independent of the parameter ν :

$$
m\left(\mu, I_{P}(\delta, \nu)\right)=m(\delta, \mu)=\operatorname{dim}\left[\operatorname{Hom}_{M}\left(\delta, \operatorname{Res}_{M} \mu\right)\right]
$$

\Rightarrow We need to study the restriction of K-types to M

PART 3

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

The example of $S L(2, \mathbb{R})$

- $G=S L(2, \mathbb{R}), K=S O(2, \mathbb{R}), M=\left\{ \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\} \simeq \mathbb{Z}_{2}$
- $\widehat{K}=\mathbb{Z}, \widehat{M}=\{$ trivial, sign $\}$
- $\operatorname{Res}_{M}\left(\mu_{n}\right)= \begin{cases}\text { trivial } & \text { if } n \text { is even } \\ \text { sign } & \text { if } n \text { is odd }\end{cases}$

$$
\Rightarrow m\left(\mu_{2 l}, I_{P}(\delta, \nu)\right)= \begin{cases}1 & \text { if } \delta \text { is trivial } \\ 0 & \text { if } \delta \text { is sign }\end{cases}
$$

and $m\left(\mu_{2 l+1}, I_{P}(\delta, \nu)\right)= \begin{cases}0 & \text { if } \delta \text { is trivial } \\ 1 & \text { if } \delta \text { is sign }\end{cases}$

The example of $S L(3, \mathbb{R})$

- $G=S L(3, \mathbb{R}), K=S O(3, \mathbb{R})$
- $M=\left\{\operatorname{diag}\left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right): \epsilon_{i}= \pm 1, \Pi \epsilon_{i}=1\right\} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$
- $\widehat{K}=\left\{\mathcal{H}_{n}\right\}_{n \in \mathbb{N}}=\{p(x, y, z)$: harmonic, homos. of degree n$\}$
- $\widehat{M}=\{$ triv \otimes riv, triv $\otimes \operatorname{sign}$, sign $\otimes \operatorname{triv}, \operatorname{sign} \otimes \operatorname{sign}\}$
- $\left.\mathcal{H}_{2 l}\right|_{M}=[t r \otimes t r]^{l+1} \oplus[t r \otimes \operatorname{sign}]^{l} \oplus[\operatorname{sign} \otimes t r]^{l} \oplus\left[\operatorname{sign} \otimes \operatorname{sign}^{l}{ }^{l}\right.$

$$
\Rightarrow m\left(\mathcal{H}_{2 l}, I_{P}(\delta, \nu)\right)= \begin{cases}l+1 & \text { if } \delta=\operatorname{tr} \otimes \operatorname{tr} \\ l & \text { otherwise }\end{cases}
$$

There are similar formulas for $\mathcal{H}_{2 l+1}$

Non-linear groups

Suppose that

- \mathbb{G} : a simple, connected and simply connected real reductive algebraic group
- G : the split real form of \mathbb{G}
- \widetilde{G} : the (unique) two-fold cover of G
then
\widetilde{G} is non-linear and \widetilde{M} is non-abelian

PART 4

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know about $\widetilde{M} \ldots$)
- An inductive algorithm to compute multiplicities
- Generalization

Notation

For each root α, we can choose a Lie algebra homomorphism

$$
\phi_{\alpha}: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{g}
$$

such that

$$
\boxed{Z_{\alpha}}=\phi_{\alpha}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \in \mathfrak{t}=\operatorname{Lie}(K)
$$

Exponentiating ϕ_{α}, we obtain

$$
\Phi_{\alpha}: S L(2, \mathbb{R}) \rightarrow G \quad \widetilde{\Phi}_{\alpha}: \widetilde{S L}(2, \mathbb{R}) \rightarrow \widetilde{G}
$$

Definition: α is metlapectic if $\widetilde{\Phi}_{\alpha}$ does not factor to $S L(2, \mathbb{R})$.
If G is not of type G_{2}, then metaplectic \Leftrightarrow long, if G is of type G_{2}, then all roots are metaplectic.

More notation: $\widetilde{m}_{\alpha}=\exp _{\widetilde{G}}\left(\pi Z_{\alpha}\right)$ and $m_{\alpha}=\exp _{G}\left(\pi Z_{\alpha}\right)$

Structure of \widetilde{M}

- GENERATORS: $\left\{\widetilde{m}_{\alpha}\right\}_{\alpha \text { simple }}$
- RELATIONS: $\widetilde{m}_{\alpha}^{2}= \begin{cases}-I & \text { if } \alpha \text { is metaplectic } \\ +I & \text { otherwise }\end{cases}$

$$
\text { and }\left\{\widetilde{m}_{\alpha}, \widetilde{m}_{\beta}\right\}= \begin{cases}(-I)^{\langle\alpha, \breve{\beta}\rangle} & \text { if } \alpha \text { and } \beta \text { are both metaplectic } \\ +I & \text { otherwise } .\end{cases}
$$

- ELEMENTS: Choose an ordering of the simple roots. Every element of \widetilde{M} can be written uniquely in the form

$$
\varepsilon \widetilde{m}_{\alpha_{1}}^{n_{1}} \widetilde{m}_{\alpha_{2}}^{n_{2}} \ldots \widetilde{m}_{\alpha_{r}}^{n_{r}}
$$

with $\varepsilon= \pm 1$, and $n_{j}=0$ or 1 .

RELATIONS: $\widetilde{m}_{\alpha_{i}}^{2}=-I$ for all $i=1 \ldots 6$, and
$\left\{\widetilde{m}_{\alpha}, \widetilde{m}_{\beta}\right\}=(-I)^{\left\langle\alpha_{i}, \tilde{\alpha}_{j}\right\rangle}= \begin{cases}(-I) & \text { if } \alpha_{i} \text { and } \alpha_{j} \text { are adjacent } \\ (+I) & \text { otherwise. }\end{cases}$

CENTER: $Z(\widetilde{M})=\{ \pm I\} \simeq \mathbb{Z}_{2}$

Example: $\widetilde{M} \subset \widetilde{F}_{4}$

GENERATORS: $\left\{\widetilde{m}_{\alpha_{i}}\right\}_{i=1 \ldots 4}$

RELATIONS: $\widetilde{m}_{\alpha}^{2}= \begin{cases}-I & \text { if } \alpha \text { is long } \\ +I & \text { if } \alpha \text { is short }\end{cases}$
and $\left\{\widetilde{m}_{\alpha}, \widetilde{m}_{\beta}\right\}= \begin{cases}(-I) & \text { if } \alpha \text { and } \beta \text { are both long } \\ (+I) & \text { otherwise. }\end{cases}$

CENTER: $Z(\widetilde{M})=\left\langle-I, \widetilde{m}_{\alpha_{3}}, \widetilde{m}_{\alpha_{4}}\right\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Representations of \widetilde{M}

\widetilde{M} is a cover of the abelian group M. There is an exact sequence

$$
1 \rightarrow\{ \pm I\} \rightarrow \widetilde{M} \rightarrow M \rightarrow 1
$$

A repr. of \widetilde{M} is called genuine if $(-I)$ does not act trivially

- The non-genuine representations of \widetilde{M} have dim. 1 . They are determined by the value of $\delta\left(\widetilde{m}_{\alpha_{i}}\right)= \pm 1$
- The genuine repr.s of \widetilde{M} have $\operatorname{dim} . n=|\widetilde{M} / Z(\widetilde{M})|^{\frac{1}{2}}$. They are determined by the restriction to $Z(\widetilde{M})$

Every non-genuine representation is one-dimensional, and is determined by the 6 -upla $\left[\delta\left(\widetilde{m}_{\alpha_{1}}\right), \ldots, \delta\left(\widetilde{m}_{\alpha_{6}}\right)\right]$.
For $\delta\left(\widetilde{m}_{\alpha_{i}}\right)= \pm 1$, there are 2^{6} distinct non-genuine representations.

The group $Z(\widetilde{M})$ has one genuine repr. χ_{g}, given by $\chi_{g}(-I)=-1$. Hence \widetilde{M} has only one genuine repr. δ_{g}. The dimension of δ_{g} is

$$
|\widetilde{M} / Z(\widetilde{M})|^{\frac{1}{2}}=\sqrt{2 \cdot 2^{6} / 2}=8
$$

To compute the character of δ_{g}, we use the fact $8 \delta_{g}=\operatorname{Ind}_{Z(\widetilde{M})}^{\widetilde{M}} \chi_{g}$.

PART 5

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

An inductive algorithm to compute multiplicities

INPUT OUTPUT

tensor product of W-orbits of \widetilde{M}-types

restriction to \widetilde{M} of fundamental
\widetilde{K}-types

"essentially" recovered

computed by hand

A VERY COOL FACT: in order to restrict \widetilde{K}-types to \widetilde{M}, we need very little information about the actual repr.s of \widetilde{M}

Computing the restriction of a \widetilde{K}-type μ to \widetilde{M}

(by induction on level and lexicographical order)

- μ embeds in a tensor product of fundamental representations
- we can write $\mu=\mu^{\prime}+\omega$, with ω fundamental and μ^{\prime} lower in the induction

$$
\mu^{\prime} \otimes \omega=\mu+(\text { lower terms })
$$

- The restriction of μ^{\prime} and ω to \widetilde{M} are known (by induction)
- The restriction of $\mu^{\prime} \otimes \omega$ to \widetilde{M} is computed using the table of tensor product of W-orbits of \widetilde{M}-types (base of induction)
- Equation ($\boldsymbol{\star}$) gives $\operatorname{Res}_{\widetilde{M}} \mu$ (by comparison)

An example

Let $\widetilde{G}=\widetilde{F}_{4}, \widetilde{K}=S P(1) \times S P(3)$ and $\mu=(0 \mid 200)$.

Restriction to \widetilde{M} gives:

$$
\underbrace{(0 \mid 100) \otimes(0 \mid 100)}_{\bar{\delta}_{6} \otimes \delta_{6}}=\underbrace{(0 \mid 200)}_{\square ?} \oplus \underbrace{(0 \mid 110)}_{2 \delta_{0} \oplus \bar{\delta}_{12}} \oplus \underbrace{(0 \mid 000)}_{\delta_{0}} .
$$

We know that $\bar{\delta}_{6} \otimes \bar{\delta}_{6}=3 \delta_{0} \oplus 3 \bar{\delta}_{3} \oplus 2 \bar{\delta}_{12}$. Hence

$$
\operatorname{Res}(0 \mid 200)=3 \bar{\delta}_{3} \oplus \bar{\delta}_{12}
$$

by comparison.

BASE OF INDUCTION
 for double covers of exceptional groups

The two-fold cover of E_{6}

- $\widetilde{G}=\widetilde{E}_{6}$
- $\widetilde{K}=S p(4)$

W-orbit of \widetilde{M}-types	dim.	$\begin{gathered} \text { fine } \\ \widetilde{\mathbb{K}} \text {-type } \end{gathered}$	W_{δ}^{0}	$W(\delta)$
δ_{1}	1	(0)	$W\left(E_{6}\right)$	$W\left(E_{6}\right)$
δ_{8}	8	w_{1}	$W\left(E_{6}\right)$	$W\left(E_{6}\right)$
$\bar{\delta}_{27}$	$27 \cdot 1$	w_{2}	$W\left(D_{5}\right)$	$W\left(D_{5}\right)$
$\bar{\delta}_{36}$	$36 \cdot 1$	$2 w_{1}$	$W\left(A_{5} A_{1}\right)$	$W\left(A_{5} A_{1}\right)$

fundam. $\widetilde{\boldsymbol{K}}$-type	$\# \delta_{1}$	$\# \delta_{8}$	$\# \bar{\delta}_{27}$	$\# \bar{\delta}_{36}$
w_{1}	0	1	0	0
w_{2}	0	0	1	0
w_{3}	0	6	0	0
w_{4}	6	0	0	1

$\boldsymbol{\otimes}$	δ_{8}	$\bar{\delta}_{27}$	$\bar{\delta}_{36}$
δ_{8}	$\delta_{1}+\bar{\delta}_{27}+\bar{\delta}_{36}$	$27 \delta_{8}$	$36 \delta_{8}$
$\bar{\delta}_{27}$	$27 \delta_{8}$	$27 \delta_{1}+10 \bar{\delta}_{27}+12 \bar{\delta}_{36}$	$16 \bar{\delta}_{27}+15 \bar{\delta}_{36}$
$\bar{\delta}_{36}$	$36 \delta_{8}$	$16 \bar{\delta}_{27}+15 \bar{\delta}_{36}$	$36 \delta_{1}+20 \bar{\delta}_{27}+20 \bar{\delta}_{36}$

The two-fold cover of E_{8}

- $\widetilde{G}=\widetilde{E}_{8}$
- $\widetilde{K}=\operatorname{Spin}(16)$

W-orbit of $\widetilde{\boldsymbol{M}}$-types	dim.	fine \widetilde{K}-type	W_{δ}^{0}	$W(\delta)$
δ_{0}	1	(0)	$W\left(E_{8}\right)$	$W\left(E_{8}\right)$
δ_{16}	16	w_{1}	$W\left(E_{8}\right)$	$W\left(E_{8}\right)$
$\bar{\delta}_{120}$	$120 \cdot 1$	w_{2}	$W\left(E_{7} A_{1}\right)$	$W\left(E_{7} A_{1}\right)$
$\bar{\delta}_{135}$	$135 \cdot 1$	$2 w_{1}$	$W\left(D_{8}\right)$	$W\left(D_{8}\right)$

non-genuine fund. \widetilde{K}-type		$\# \delta_{0}$	$\# \bar{\delta}_{120}$	$\# \bar{\delta}_{135}$	genuine fund. \widetilde{K}-type	$\# \delta_{16}$
w_{2}		0	1	0	w_{1}	1
w_{4}		35	7	7	w_{3}	35
w_{6}		28	35	28	w_{5}	273
w_{8}		8	1	0	w_{7}	8
\otimes	δ_{16}		$\bar{\delta}_{120}$		$\bar{\delta}_{135}$	
δ_{16}	$\delta_{0}+\bar{\delta}_{120}+\bar{\delta}_{135}$		$120 \delta_{16}$		$135 \delta_{16}$	
$\bar{\delta}_{120}$	$120 \delta_{16}$		$\begin{gathered} 120 \delta_{0}+56 \bar{\delta}_{120} \\ +56 \bar{\delta}_{135} \end{gathered}$		$63 \bar{\delta}_{120}+64 \bar{\delta}_{135}$	
$\bar{\delta}_{135}$	$135 \delta_{16}$		$63 \bar{\delta}_{120}+64 \bar{\delta}_{135}$		$\begin{gathered} 135 \delta_{0}+72 \bar{\delta}_{120} \\ +70 \bar{\delta}_{135} \end{gathered}$	

The two-fold cover of F_{4}

- $\widetilde{G}=\widetilde{F}_{4}$
- $\widetilde{K}=S p(1) \times S p(3)$

W-orbit of \widetilde{M}-types	dim.	$\begin{aligned} & \text { fine } \\ & \widetilde{K} \text {-type } \end{aligned}$	W_{δ}^{0}	$W(\delta)$
δ_{0}	1	(0\|000)	$W\left(F_{4}\right)$	$W\left(F_{4}\right)$
δ_{2}	2	(1\|000)	$W\left(F_{4}\right)$	$W\left(F_{4}\right)$
$\bar{\delta}_{3}$	$3 \cdot 1$	(2\|000)	$W\left(C_{4}\right)$	$W\left(C_{4}\right)$
$\bar{\delta}_{6}$	$3 \cdot 2$	(0\|100)	$W\left(B_{4}\right)$	$W\left(B_{4}\right)$
$\bar{\delta}_{12}$	$12 \cdot 1$	(1\|100)	$W\left(B_{3} A_{1}\right)$	$W\left(B_{3} A_{1}\right)$

non-genuine fund. $\widetilde{\boldsymbol{K}}$-types	$\# \delta_{0}$	$\# \bar{\delta}_{3}$	$\# \bar{\delta}_{12}$
$(0 \mid 000)$	1	0	0
$(0 \mid 110)$	2	0	1

genuine fund. $\widetilde{\boldsymbol{K}}$-types	$\# \delta_{2}$	$\# \bar{\delta}_{6}$
$(1 \mid 000)$	1	0
$(0 \mid 100)$	0	1
$(0 \mid 111)$	4	1

$\boldsymbol{\otimes}$	δ_{2}	$\bar{\delta}_{3}$	$\bar{\delta}_{6}$	$\bar{\delta}_{12}$
δ_{2}	$\delta_{0}+\bar{\delta}_{3}$	$3 \delta_{2}$	$\bar{\delta}_{12}$	$4 \bar{\delta}_{6}$
$\bar{\delta}_{3}$	$3 \delta_{2}$	$3 \delta_{0}+2 \bar{\delta}_{3}$	$3 \bar{\delta}_{6}$	$3 \bar{\delta}_{12}$
$\bar{\delta}_{6}$	$\bar{\delta}_{12}$	$3 \bar{\delta}_{6}$	$3 \delta_{0}+3 \bar{\delta}_{3}+2 \bar{\delta}_{12}$	$12 \delta_{2}+8 \bar{\delta}_{6}$
$\bar{\delta}_{12}$	$4 \bar{\delta}_{6}$	$3 \bar{\delta}_{12}$	$12 \delta_{2}+8 \bar{\delta}_{6}$	$12 \delta_{0}+12 \bar{\delta}_{3}+8 \bar{\delta}_{12}$

The two-fold cover of E_{7}

- $\widetilde{G}=\widetilde{E}_{7}$
- $\widetilde{K}=S U(8)$

| \boldsymbol{W}-orbit of
 $\widetilde{\boldsymbol{M}}$-types | dim. | fine |
| :---: | :---: | :---: | :---: | :---: |
| $\widetilde{\boldsymbol{K}}$-type | | |$\quad W_{\delta}^{0}$ W (δ)

fundamental $\widetilde{\boldsymbol{K}}$-types	$\# \delta_{1}$	$\# \bar{\delta}_{28}$	$\# \bar{\delta}_{36}$	$\# \bar{\delta}_{63}$	$\# \delta_{8}$	$\# \delta_{8}^{\star}$
w_{0}	1	0	0	0	0	0
w_{1}	0	0	0	0	1	0
w_{2}	0	1	0	0	0	0
w_{3}	0	0	0	0	0	7
w_{4}	7	0	0	1	0	0
w_{5}	0	0	0	0	7	0
w_{6}	0	1	0	0	0	0
w_{7}	0	0	0	0	0	1

$\boldsymbol{\otimes}$	δ_{8}	δ_{8}^{\star}	$\bar{\delta}_{28}$
δ_{8}	$\bar{\delta}_{28}+\bar{\delta}_{36}$	$\delta_{1}+\bar{\delta}_{63}$	$28 \delta_{8}^{\star}$
δ_{8}^{\star}	$\delta_{1}+\bar{\delta}_{63}$	$\bar{\delta}_{28}+\bar{\delta}_{36}$	$28 \delta_{8}$
$\bar{\delta}_{28}$	$28 \delta_{8}^{\star}$	$28 \delta_{8}$	$28 \delta_{1}+12 \bar{\delta}_{63}$
$\bar{\delta}_{36}$	$36 \delta_{8}^{\star}$	$36 \delta_{8}$	$16 \bar{\delta}_{63}$
$\bar{\delta}_{63}$	$63 \delta_{8}$	$63 \delta_{8}^{\star}$	$27 \bar{\delta}_{28}+28 \bar{\delta}_{36}$

$\boldsymbol{\otimes}$	$\bar{\delta}_{36}$	$\bar{\delta}_{63}$
δ_{8}	$36 \delta_{8}^{\star}$	$63 \delta_{8}$
δ_{8}^{\star}	$36 \delta_{8}$	$63 \delta_{8}^{\star}$
$\bar{\delta}_{28}$	$16 \bar{\delta}_{63}$	$27 \bar{\delta}_{28}+28 \bar{\delta}_{36}$
$\bar{\delta}_{36}$	$36 \delta_{1}+20 \bar{\delta}_{63}$	$36 \bar{\delta}_{28}+35 \bar{\delta}_{36}$
$\bar{\delta}_{63}$	$36 \bar{\delta}_{28}+35 \bar{\delta}_{36}$	$63 \delta_{1}+62 \bar{\delta}_{63}$

Restriction to \widetilde{M} of the fundamental \widetilde{K}-types

the example of \widetilde{E}_{6}
$\widetilde{G}=\widetilde{E}_{6}$
$\widetilde{K}=S p(4)$
Fundamental \widetilde{K}-types: $w_{1}, w_{2}, w_{3}, w_{4}$
W-orbits of \widetilde{M}-types: $\delta_{1}, \delta_{8}, \bar{\delta}_{27}$, and $\bar{\delta}_{36}$

- $\operatorname{Res}_{\widetilde{M}} w_{1}=\delta_{8}$, and $\operatorname{Res}_{\widetilde{M}} w_{2}=\delta_{27}$ (fine \widetilde{K}-types)
- w_{3} is genuine, and has dimension 48, hence $\operatorname{Res}\left(w_{3}\right)=6 \delta_{8}$
- $\left(w_{4}\right)^{\widetilde{M}}$ is the reflection repr. 6_{p}, because w_{4} is the repr. of \widetilde{K} on \mathfrak{p}. For dimensional reasons, $\operatorname{Res}\left(w_{4}\right)=6 \delta_{1} \oplus \bar{\delta}_{36}$.

Tensor product of W-orbits of \widetilde{M}-types

some examples for \widetilde{E}_{6}

- $\delta_{8} \otimes \delta_{8}=\operatorname{Res}_{\widetilde{M}}\left[w_{1} \otimes w_{1}\right]=\operatorname{Res}_{\widetilde{M}}\left[(0) \oplus w_{2} \oplus 2 w_{1}\right]=\delta_{1} \oplus \bar{\delta}_{27} \oplus \bar{\delta}_{36}$
- $\bar{\delta}_{36} \otimes \bar{\delta}_{36}=\operatorname{Res}_{\widetilde{M}}\left[\left(2 w_{1}\right) \otimes\left(2 w_{1}\right)\right]=$

$$
=\operatorname{Res}_{\widetilde{M}}^{\widetilde{ }} \underbrace{\left[(0) \oplus w_{2} \oplus\left(2 w_{1}\right)\right]}_{\text {fine } \rightarrow \delta_{0} \oplus \bar{\delta}_{27} \oplus \bar{\delta}_{36}} \oplus \operatorname{Res}_{\widetilde{M}} \underbrace{\left[\left(2 w_{2}\right) \oplus\left(2 w_{1}+w_{2}\right) \oplus\left(4 w_{1}\right)\right]}_{" \text { new" } \rightarrow \text { Res=? }}
$$

First, we compute $\left(2 w_{2}\right)^{\widetilde{M}}$. Because $\left(2 w_{2}\right) \hookrightarrow\left(w_{2} \otimes w_{2}\right)$ and

$$
\left(w_{2} \otimes w_{2}\right)^{\widetilde{M}}=\operatorname{Ind}_{W\left(\delta_{27}\right)}^{W\left(E_{6}\right)} \operatorname{Hom}_{\widetilde{M}}\left(\delta_{27}, w_{2}\right)=\operatorname{Ind}_{W\left(D_{5}\right)}^{W\left(E_{6}\right)}(5 \mid 0)
$$

we can write:

$$
\left(2 w_{2}\right)^{\widetilde{M}}=\underbrace{\left(w_{2} \otimes w_{2}\right)^{\widetilde{M}}}_{1_{p} \oplus 6_{p} \oplus 20_{p}}-\underbrace{\left(w_{1}+w_{3}\right)^{\widetilde{M}}}_{\varnothing}-\underbrace{w_{4}^{\widetilde{M}}}_{6_{p}}-\underbrace{0^{\widetilde{M}}}_{1_{p}}=20_{p} .
$$

Similarly, we find $\left(4 w_{1}\right)^{\widetilde{M}}=15_{q}$. Then

$$
\operatorname{Res}_{\widetilde{M}}\left(4 w_{1}\right)=15 \delta_{1} \oplus b \bar{\delta}_{27} \oplus c \bar{\delta}_{36} .
$$

Comparing dimensions, we find that $35=3 b+4 c$ hence $c=2,5$ or 8. We also notice that $c=\operatorname{dim}\left[\operatorname{Hom}_{\widetilde{M}}\left(\delta_{36}, 4 w_{1}\right)\right]$. Because

$$
\operatorname{Ind}_{W\left(A_{5} A_{1}\right)}^{W\left(E_{6}\right)} \operatorname{Hom}_{\widetilde{M}}\left(\delta_{36}, 4 w_{1}\right)=\left(2 w_{1} \otimes 4 w_{1}\right)^{\widetilde{M}} \supseteq\left(4 w_{1}\right)^{\widetilde{M}}=15_{q}
$$

the $W\left(A_{5} A_{1}\right)$-representation $\operatorname{Hom}_{\widetilde{M}}\left(\delta_{36}, 4 w_{1}\right)$ is a submodule of

$$
\operatorname{Res}_{W\left(A_{5} A_{1}\right)}^{W\left(E_{6}\right)}\left[15_{q}\right]=\underbrace{[(33) \otimes(11)]}_{\operatorname{dim} .5} \oplus \underbrace{[(42) \otimes(2)]}_{\operatorname{dim} .9} \oplus \underbrace{[(6) \otimes(2)]}_{\operatorname{dim} .1} .
$$

Hence $c=5$, and $\operatorname{Res}_{\widetilde{M}}\left(4 w_{1}\right)=15 \delta_{1} \oplus 5 \bar{\delta}_{27} \oplus 5 \bar{\delta}_{36}$.
The restrictions of $\left(2 w_{1}+w_{2}\right)$ and $\left(2 w_{2}\right)$ are computed similarly. Then

$$
\bar{\delta}_{36} \otimes \bar{\delta}_{36}=36 \delta_{1} \oplus 20 \bar{\delta}_{27} \oplus 20 \bar{\delta}_{36}
$$

PART 6

- Standard Notation
- Multiplicities of K-types in principal series
- Some easy examples (linear case)
- Non-linear case (what we know...)
- An inductive algorithm to compute multiplicities
- Generalization

An inductive algorithm to compute multiplicities (revisited)

INPUT
 OUTPUT

Generalization

INPUT
OUTPUT

DETAILS
 ... coming soon...

