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the maxi

Notation '

a real reductive Lie group <« split group

mal compact subgroup of G

K-types | the irreducible representations of K

Iu:

g=¢dp|th

a| a maximal abelian subspace of p, | A = exp(a)

> a;w;, with a; > 0 and w fundamental

6| a Cartan involution on g

e Cartan decomposition of g

M = ZK(Cl)

— finite subgroup of K

P=MAN

a minimal parabolic subgroup of GG




Minimal Principal Series.

(P=MAN  minimal parabolic subgroup of G

parameters ¢ (§, V) irreducible representation of M

(via— C dominant character of A

principal series | Ip(8,v) |= Ind§, 4» (6 ® v @ triv)

G acts by left translation on the space of functions

(F: G- V% F|,.cL? F(zman) = e~ ¥+Plog(a)5(m)~1F(z), Vman € P}
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Multiplicities of K-types in Principal Series.

Which irreducible representations u of K
appear in the principal series Ip(d,v),

and with what multiplicities?




‘ A reformulation of this problem.

The multiplicity of a K-type u in Ip(d,v) is defined by

m(u, Ip(6,v)) = dim [Homg (u, ResgIp(d,v))]

By Frobenius reciprocity, it is independent of the parameter v:

(m(u, Ip(8,v)) = m (8, p) = dim [Hom s (5, Resprp)] |

= We need to study the restriction of K-types to M
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The example of SL(2,R) I

e G=SL(2,R), K=S0O(2,R), M =

—

o K — Z, M = {trivial, sign}

trivial if n is even
e Resys (Nn) —
sign if n is odd

1 if 0 is triveal
m(ﬂ2l9 IP(5? V)) — . . .
if 0 is sign

0 if d is trivial
m(p2i41, Ip(d,v)) = . .«
if 0 is sign




The example of SL(3,R) I

G = SL(3,R), K = SO(3,R)
M = {diag(61,62,63): €;, = :|:1, Hei = 1} ~ ZQ X ZQ

K = {Hn}nen = {p(z,y, z): harmonic, homog. of degree n}

—

M = {triv ® triv, triv ® sign, sign ® triv, sign ® sign}

Hoi |p= [tr @ tr]'T1 @ [tr ® sign]’ @ [sign @ tr]' @ [sign @ sign)]’

Il+1 ifd=trRtr
m(Hoy, Ip(d,v)) =

l otherwise

There are similar formulas for Hojyq




‘ Non-linear groups.

Suppose that

e (G: a simple, connected and simply connected real reductive

algebraic group

e (G: the split real form of G

~

e (G: the (unique) two-fold cover of G

then

( (= 1s non-linear and M 1is non—abelian]




‘ PART 4'

Standard Notation

Multiplicities of K-types in principal series

Some easy examples (linear case)

Non-linear case (what we know about M...)

An inductive algorithm to compute multiplicities

(Generalization




Notation .

For each root a, we can choose a Lie algebra homomorphism
o SI(2,R) — g
such that

0 1 |
Lo | = Qo € t = Lie(K).
-1 0

Exponentiating ¢, we obtain

~ —~— ~

O,: SL(2,R) = G  ®,: SL(2,R) — G.

Definition: « is metlapectic if ®,, does not factor to SL(2,R).

If G is not of type G5, then metaplectic < long,
if G is of type G4, then all roots are metaplectic.




More notation: m, = exps(wZ,) and m, = expg(7Z,)

h € SL(2,R)




Structure of M'

e GENERATORS: {mq }a simple

RELATIONS: 772 —I if o is metaplectic
i . ma —

+ 1 otherwise

o (—I)<O"B> if o and 3 are both metaplectic
and {mq,,mg} =
+1 otherwise.

e ELEMENTS: Choose an ordering of the simple roots. Every
element of M can be written uniquely in the form

—ny ~me o~
EMy: My ..M

with e = &1, and n; =0 or 1.




Example: M C EG I

long
85

I GENERATORS: {m., }i=1..6
o o o o

Qg Qs o7} a3 aq
long long long long Ilong

RELATIONS: m2 = —I foralli=1...6, and

. _ (—=1) if o; and «; are adjacent
(i g} = (~1)(o05) =
(+1) otherwise.

—~—

CENTER: Z(M) = {£I} ~ Z,




|Example: M C 1::’4 I

long long short short _
. . o GENERATORS: {mq, }i—1..4

a1 87%)) a3 8%

—I if o is long

RELATIONS: 2 =

+I if « is short

o if o and 3 are both long
and {mq,,mg} =
otherwise.

—~—

CENTER: Z(M) = (—1I, T, Ma,) ~ Zo X Ly X Lo




Representations of M I

M is a cover of the abelian group M. There is an exact sequence

1—>{:I:I}—>]T4/HM—>1.

[A repr. of M is called genuine if (—I) does not act triviallyj

e The non-genuine representations of M have dim. 1.

They are determined by the value of §(m,,) = +1

e The genuine repr.s of M have dim. n = |M/Z(M)|%
They are determined by the restriction to Z(M)

{genuine repr.s of M } < {genuine characters of Z (]T[/)}

)

s.t. Ind )\ = 79"

—

<_

A

A

s.t. Resd = \O"




‘Example: representations of M C EG I

0%

N_ M T2 S nNe . R
M ={Em3tm3?...mps:n; = 0,1}

—~—

Z(M) = {£I}

®
8754 (8% 3 8%]

Every non-genuine representation is one-dimensional, and is
determined by the 6-upla [§(ma,), ..., 0(Mag)]-
For §(me,) = +1, there are 2° distinct non-genuine representations.

—~—

The group Z (M) has one genuine repr. x,, given by x,(—1) = —1.

Hence M has only one genuine repr. d,. The dimension of ¢, is

M /Z(M)|2 = \/2-26/2 = 8.

To compute the character of d,, we use the fact 80, = Ind™

Z (M) X9
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An inductive algorithm to compute multiplicities I

8 )

ouTPUT

N J
4 )

restriction to M

restriction to M

of every other
K-type

of fundamental

\ K-types )




multiplicities of K -types

in principal series

restriction to M

. ~ of every other
restriction to M K-type
of fundamental

\_ K-types )

_, computed by hand
A VERY COOL FACT: in order to

restrict K -types to M , we need very little

information about the actual repr.s of M




Computing the restriction of a [N(-type 1 to ]\7'

(by induction on level and lexicographical order)

1t embeds in a tensor product of fundamental representations

we can write u = p' + w, with w fundamental and p' lower in

the induction

p' ®w = p+ (lower terms) (%)

The restriction of i/ and w to M are known (by induction)

The restriction of ¢’ ® w to M is computed using the table of

tensor product of W-orbits of M -types (base of induction)

Equation () gives Res77 o (by comparison)




An example I

Let G = Fy, K = SP(1) x SP(3) and p = (0[200).

(0]200) = (0]100) +  (0]100) = pop Qu
N—— —— N——

/

v v w

lower in induction fundamental

Restriction to M gives:

(0/100) @ (0]100) = (0]200) & (0[110) & (0]000) .

\ . 7 \ . 7 \ .

~~ "

5606 9 200®d12 d0

We know that dg ® 0 = 399 D 303 @ 2612. Hence
Res(0/200) = 383 ® 519

by comparison.




BASE OF INDUCTION

for double covers of exceptional groups




‘ The two-fold cover of Eg I

W -orbit of
M -types




fundam.

f{/-type

08 da7 36

81 + ba7 + 036 2705 3605
2705 2781 + 10627 + 12636 16097 + 15936
36 dg 16097 + 15036 3681 + 20997 + 20036




‘ The two-fold cover of Ex I

® é — E’g
o K = Spin(16)

W-orbit of
M -types




non-genuine genuine

fund. K -type fund. K -type

0

7
28

0

516 5120 5135
8o + 0120 + 135 120016 135016
12080 + 568120

120616 ) 630120 + 640135
+560135

13560 + 720120

135 516 635120 + 645135 -
+700135




The two-fold cover of F)

W -orbit of




genuine

fund.

non-genuine

fund. _
K-types

K -types

6
512
306
390 + 303 + 2019 1285 + 835
1285 + 835 1250 + 1265 + 8612




‘ The two-fold cover of E- I

W-orbit of
M -types




fundamental




16043

536

563

3607

6305

3605

6352

16043

27855 + 28036

36401 + 20063

36025 + 3503

36055 + 35036

6361 + 62043

2861 + 12043

27055 + 28036




‘ Restriction to M of the fundamental K -types'

the example of E(}

G = Eg

K = Sp(4)

Fundamental K- types: wi, wa, W3, Wy
W-orbits of M- types: 01, dg, do7, and Jsg

o Resyrwi = dg, and Resyrwa = a7 (fine [?-types)

e ws is genuine, and has dimension 48, hence Res(ws) = 65

o (wq)™ is the reflection repr. 6,, because wy is the repr. of K
on p. For dimensional reasons, Res(wy) = 657 @ 3.




Tensor product of W-orbits of M -types'

some examples fO?“ EG
58 ®58 = RGSM[’LUl ®w1] — RGSMKO) D wao @le] = (51 @527@536
536 &) 536 = RGSM[(Q’LUl) X (le)] =

— RQSM\[(O) b wo b (2w1)]j@Rele(2w2) D (le + ’UJQ) D (4w1 )l

TV TV
fine — 0o@d27D 036 “new’’ — Res="

First, we compute (2w2)]\7. Because (2wsz) — (wg ® we) and

—_

(w2 ® wa)™ = Indyy (5™ Hom (027, ws) = Indyy (%) (5/0)

we can write:

(2w2)™ = (wy ® w2)™ — (w1 +ws)™ — w
1p@6::@20p




—_

Similarly, we find (4w;)™ = 15,. Then
RGSM(4’LU1> = 1501 P b527 D 6536.

Comparing dimensions, we find that 35 = 3b + 4c hence ¢ = 2, 5 or
8. We also notice that ¢ = dim|[Hom;(d36,4w1)]. Because

o~ o~

Indggiggl) HomM(536,4w1) = 2w ® 4w1)M ) (4w1)M

the W (AsA;)-representation Homz7(d36,4w1) is a submodule of

Resyy (0,154 = [(33) @ (11)] @ [(42) @ (2)] @ [(6) ® (2)]

\ 7 A
~ ~ ~

dim .5 dim .9 dim .1

Hence ¢ = 5, and Resz7(4w;) = 1561 @ 5397 B 5ds36.
The restrictions of (2w; + ws) and (2ws) are computed similarly.
Then

036 ® 036 = 3651 B 20057 B 20036.
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An inductive algorithm to compute multiplicities (revisited)

ouTPUT

8 )

\_ - dimension of | Homz7(4, i)

4 )

restriction to M VM-type 0 and V K-type p

of fundamental

\ K-types )




‘ Generalization '

INPUT ouTPUT

tensor product )
of orbits

of M. -types )

\

restriction to M Hom (4, 1)

of fundamental

K-types Y, V]/\\J/-type 0 and V IN(-type L4

4 N\ i

as a W (6)-representation

N /

[double stabilizer W (5, 7)

~
J




DETAILS

.. coming soon...




