
COMPOSITION FACTORS FOR THE GRADED HECKE

ALGEBRA

Let G be a connected simple complex Lie group with Lie algebra g, h a
Cartan subalgebra, ∆+ = ∆+(g, h) a choice of positive roots corresponding
to the Borel subalgebra b ⊃ h. Let W denote the Weyl group.

We recall the algorithm in [Lu1] and [Lu2] in a combinatorial language.
The abbreviation (Lu) stands for the definitions in [Lu2], while (Co) for the
combinatorics. We are concerned for now only with the case of the graded
Hecke algebra with equal parameters.

1. Ingredients

We fix a semisimple element χ ∈ h such that χ is the middle element of
a Lie triple in g. We can choose χ such that w0χ = −χ. (For example, by
writing χ from the weighted Dynkin diagram.) The goal is to compute the
matrix of multiplicities for the modules of the Hecke algebra with central
(“infinitesimal”) character χ. Let υ denote an indeterminate, which in the
end will be specialized to υ = 1.

1.1. The element χ induces a grading on the Lie algebra g, by its ad-action:

gn = {x ∈ g : [χ, x] = nx}. (1.1.1)

If p is any subalgebra of g, we denote similarly pn = gn ∩ p. We also define

rn(R) = {α ∈ R : 〈α, χ〉 = n}, for any subset of roots R, and (1.1.2)

rn(w) = rn(∆) ∩ (w−1 · ∆+), for any element w ∈ W.

1.2. Define

G(χ) = {g ∈ G : Ad(g)χ = χ}, W (χ) = {w ∈ W : wχ = χ}, (1.2.1)

B(χ) = G(χ)-orbits in {b′ : b′ Borel subalgebra with χ ∈ b′}.

The space in which the constructions take place is K(χ), defined as

(Lu) : K(χ) = Q(υ)-vector space with basis B(χ),

(Co) : K(χ) = Q(υ)-vector space with basis W/W (χ). (1.2.2)

The space K(χ) is has an involution

β : K(χ) → K(χ), determined by β(υ) = υ−1. (1.2.3)
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2 COMPOSITION FACTORS...

1.3. One defines the space (B × B)(χ):

(Lu) : (B × B)(χ) = G(χ)-orbits on {(b′, b′′) : χ ∈ b′ ∩ b′′} (under the diagonal action),
(1.3.1)

(Co) : (B × B)(χ) = (W × W )/W (χ) (where W (χ) is regarded as the diagonal subgroup),

and a function τ : (B×B)(χ) → Z as in the following. For a Borel subalgebra
b′, let u′ denote the unipotent radical. Then

(Lu) : τ((b′, b′′)) = −dim
u′0 + u′′0
u′0 ∩ u′′0

+ dim
u′2 + u′′2
u′2 ∩ u′′2

,

(Co) : τ((w1, w2)) = #(r2(w1) ∨ r2(w2)) − #(r0(w1) ∨ r0(w2)), (1.3.2)

where ∨ denotes the “union minus intersection” set operator.
The space K(χ) has a second involution which associates to each Borel

subalgebra, the opposite Borel subalgebra. On cosets, this is induced by

σ(w) = w0 · w. (1.3.3)

Set

c = #r2(∆) − #r0(∆). (1.3.4)

Lemma.

(a) The map τ in definition (Co) of (1.3.2) is well-defined, i.e.

τ((w1w,w2w)) = τ((w1, w2)), for any w ∈ W (χ).

(b) Since w0χ = −χ, τ((w1, w2)) = τ((w1w0, w2w0)), for every (w1, w2).
(c) For any w1, w2 ∈ W ,

τ((w1, w2)) + τ((σ(w1), w2)) = c.

(So it is independent of w1, w2).

Proof. Part (a) is immediate. For part (b), we note that rn(w) = r−n(w0w).
Then part (b) follows from [Lu2] by the fact that the definition (Lu) is
the same if one uses 2 or −2. Part (c) follows from the fact that rn(w1) ∩
rn(w0w1) = ∅, and rn(w1) ∪ rn(w0w1) = rn(∆). �

1.4. Let prj : (B × B)(χ) → B(χ), j = 1, 2 denote the projection onto the
j-th coordinate. One defines a symmetric bilinear form

( : ) : K(χ) ×K(χ) → Q(υ)
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by

(Lu) : e−1
χ · ([b′] : [b′′]) =

∑

Ω ∈ (B × B)(χ)
pr1Ω = [b′], pr2Ω = [b′′]

(−υ)τ(Ω),

(1.4.1)

(Co) : e−1
χ · ([w1] : [w2]) =

∑

[(w′,w′′)]∈pr−1

1
([w1])∩pr−1

2
([w2])

(−υ)τ((w′,w′′))

(1.4.2)

=
∑

w∈[w1]

(−υ)τ((w,w2) =
∑

w∈[w2]

(−υ)τ((w1,w)).

In these formulas, [•] denotes the class of an element • in B(χ), and similarly
in (B × B)(χ).

The factor eχ ∈ Q(v) is a normalization factor, and it depends only on χ.

If the choice is eχ = (1 − v2)− rk g, then we have the identity

β((β(ξ), β(ξ′))) = (−1)rk g(−v)2 rk g−c(σ(ξ) : ξ′), for all ξ, ξ′ ∈ K(χ).
(1.4.3)

In the following tables, for simplicity, we will take eχ = 1.

Example A1. Let α denote the simple root, α̌ the simple coroot, and s the
simple reflection, and consider χ = ρ̌ = α̌. Then W (χ) = W = {1, s}. The

bilinear form is

1 s

1 1 −υ
s −υ 1

.

In general, the bilinear form ( : ) is (very) degenerate. Let Rad denote
its radical.

Example A2. The simple roots are {ε1 − ε2, ε2 − ε3}, and let the simple
reflections be denoted by s1 and s2. Then W = {1, s1, s2, s1s2, s2s1, s1s2s1}.
We look at χ = ρ̌ = (2, 0,−2). The bilinear form is

1 s1s2s1 s1s2 s2s1 s1 s2

1 1 υ2 −υ −υ −υ −υ
s1s2s1 υ2 1 −υ −υ −υ −υ
s1s2 −υ −υ 1 υ2 υ2 1
s2s1 −υ −υ υ2 1 1 υ2

s1 −υ −υ υ2 1 1 υ2

s2 −υ −υ 1 υ2 υ2 1

.

In this case dim(Rad) = 2, and a basis is given by {s1 − s2s1, s2 − s1s2}.

Example C2, χ = (1,1). The simple roots are {ε1 − ε2, 2ε2}. We look
at χ = (1, 1), the middle nilpotent element of the nilpotent orbit (22) in
sp(4, C). Then W (χ) = {1, s1}, and W/W (χ) = {[1], [s2], [s1s2], [s2s1s2]}.
The bilinear form is
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[1] [s2] [s1s2] [s2s1s2]

[1] 1 + υ−2 −υ−1 − υ 1 + υ2 −υ − υ3

[s2] −υ−1 − υ 2 −2υ 1 + υ2

[s1s2] 1 + υ2 −2υ 2 −υ−1 − υ
[s2s1s2] −υ − υ3 1 + υ2 −υ−1 − υ 1 + υ−2

.

In this example, the form is nondegenerate.

Example C2, χ = (1,0). In this case, χ is the middle element of the
nilpotent orbit (211) in sp(4, C). Then W (χ) = {1, s2}, and W/W (χ) =
{[1], [s1s2s1], [s2s1], [s1]}. The bilinear form is

[1] [s1s2s1] [s2s1] [s1]

[1] 1 + υ−2 −υ−1 − υ −υ−1 − υ 1 + υ−2

[s1s2s1] −υ−1 − υ 1 + υ−2 1 + υ−2 −υ−1 − υ
[s2s1] −υ−1 − υ 1 + υ−2 1 + υ−2 −υ−1 − υ
[s1] 1 + υ−2 −υ−1 − υ −υ−1 − υ 1 + υ−2

.

In this case, the radical has a basis {−[1] + [s1], −[s1s2s1] + [s2s1]}.

Questions.

(1) What is the rank of ( : )? (The number of subquotients of the
principal series at χ counted with multiplicity maybe?)

(2) Is it possible to describe a basis of the radical Rad a priori? (From
[Lu2], Rad is preserved by the involution β.)

1.5. The space K(χ) has an obvious involution defined on cosets as follows.
If w0 denote the longest Weyl group element, then the involution is

γ : K(χ) → K(χ), γ([w]) = [w · w0], for all [w] ∈ W/W (χ). (1.5.1)

By lemma 1.3, ([w1] : [w2]) = (γ[w1] : γ[w2]). An immediate consequence is
that γ(Rad) = Rad.

1.6. Another basic ingredient of the algorithm is an induction map. Let
p be a parabolic subalgebra of g, such that χ ∈ p. Let p denote the Levi
component of p. One can define Kp(χ), Wp(χ) etc. similarly to the definitions
for g in the previous sections. Let proj : p → p denote the projection. The
parabolic p is not necessarily standard with respect to the fixed Borel b (and
choice of positive roots ∆+).

The induction is defined as

(Lu) : indg

p
: Bp(χ) → B(χ), indg

p
(b′) = proj−1(b′). (1.6.1)

To define the same map combinatorially, let up be the unipotent radical of
p. Then the roots in ∆(up) are a subset of ∆(g), but not necessarily of ∆+.
Let wp be a Weyl group of minimal length such that wp(∆(up)) ⊂ ∆+. Then

(Co) : indg

p
: Bp(χ) → B(χ), indg

p
([w]) = [w · w−1

p ]. (1.6.2)
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2. Bases

The goal is to construct two pairs of bases (Z+,U+) and (Z−,U−) for the
Grothendieck group of the graded Hecke algebra H at central character χ.

The definition is inductive. These four sets will be constructed in the
space K(χ). In the end, the change of bases matrix for the pair (Z+,U+)
(equivalently for (Z−,U−)) is the desired multiplicity matrix.

2.1. The standard modules with central character χ (and so the sets Z and
U) are parametrized by pairs (O, φ), where O is a nilpotent orbit in g and φ ∈

ÂAd(g)(O) is a representation which appears in Springer’s correspondence.
(Here Ad(g) denotes the adjoint group with Lie algebra g, and AAd(g)(O) is
the group of components of the centralizer in Ad(g) of an element e of O. )

We need a list of the nilpotent orbits O in g which restrict to G(χ)-orbits
in g2 (notation as in sections 1.1 and 1.2). Denote this list by E(χ).

The following procedure is not as in [Lu2], but although not elegant,
computationally may be equivalent. Let O be a nilpotent orbit, and fix a
Lie triple {e, h, f} ∈ g for it, with h ∈ h. Let z(e, h, f) denote the centralizer
of {e, h, f} in g. Consider a most general element ν ∈ h ∩ z(e, h, f). If

(Co) : there exists w ∈ W such that w(h + ν0) = χ for some ν0 as above,
(2.1.1)

then we add O to E(χ). In this case, we set s = w · h, and define a Levi
suabalgebra and two parabolic subalgebras as in [Lu2]. Let gn, rn(∆), n ∈ Z,
denote the similar eigenspaces for the ad(s)-action. The Levi subalgebra is

ls =
⊕

i

(gi ∩ gi), with roots ∆(ls) =
⊕

i

(ri(∆) ∩ ri(∆)). (2.1.2)

The two parabolic subalgebras are

ps,+ =
⊕

i≤j

(gi ∩ gj), with roots ∆(us,+) =
⊕

i<j

(ri(∆) ∩ rj(∆)), (2.1.3)

ps,− =
⊕

i≥j

(gi ∩ gj), with roots ∆(us,−) =
⊕

i>j

(ri(∆) ∩ rj(∆)).

Clearly ps,+ ∩ ps,− = ls.

Example A2. For χ = (2, 0,−2), E(χ) = {(111), (21), (3)}. We write:

O h + ν ν0 s

(111) (0, 0, 0) + (ν1, ν2,−ν1 − ν2) (2, 0) (0, 0, 0)
(21) (1,−1, 0) + (ν, ν,−2ν) 1 (1,−1, 0)
(3) (2, 0,−2) (2, 0,−2)

.

The parabolic subalgebras are given in this case by:



6 COMPOSITION FACTORS...

O s ∆(ls) ∆(us,+) ∆(us,−)

(111) (0, 0, 0) ∅ ∆−(A2) ∆+(A2)
(21) (1,−1, 0) {±(ε1 − ε2)} {−ε2 + ε3,−ε1 + ε3} {ε2 − ε3, ε1 − ε3}
(3) (2, 0,−2) ∆(A2) ∅ ∅

.

2.2. We retain the notation from the previous subsection. Consider O ∈
E(χ), and let ls, ps,+, ps,− be the subalgebras defined in (2.1.2) and (2.1.3).
The bases Z± and U± are partitioned

Z± = tO∈E(χ)Z±(O), U± = tO∈E(χ)U±(O). (2.2.1)

If ls = g, then O = Om is necessarily the unique maximal nilpotent orbit
in E(χ).

Assume that O 6= Om. Then ls is a proper Levi subalgebra of g. By
construction, there exists a Lie triple (e′, s, f ′) of O, such that (e′, s, f ′) ⊂ ls.
Let Ols denote the nilpotent orbit of e′ in ls. By induction, we can assume

that the bases Z ls
±(Ols) corresponding to central character s are constructed

for ls.
Then

Z+(O) = indg

p
s,+

(Z ls
+(Ols)), Z−(O) = indg

p
s,−

(Z ls
−(Ols)), (2.2.2)

where we identify ps,+
∼= ls, and ps,−

∼= ls.
We note that the elements in each set Z±(O) are parametrized by certain

representations of the group of components ÂAd(g)(χ, e).

Proposition ([Lu2],2.17). If O,O′ ∈ E(χ) with O 6= O′, and if (ξ, ξ′) ∈
Z+(O) ×Z+(O′) or (ξ, ξ′) ∈ Z−(O) ×Z−(O′), then

(ξ : ξ′) = 0. (2.2.3)

2.3. The construction of the bases Z+,U+, respectively Z−,U− is done in
parallel, so we will use the subscript ± for simplicity.

Let us denote

Z ′
± = Z± \ Z±(Om), U ′

± = U± \ U±(Om). (2.3.1)

The multiplicity matrix computed by the algorithm is matrix with coef-
ficients in Z[υ],

N =

(
N1,1 N1,2

N2,1 N2,2

)
, (2.3.2)

where

(1) N1,1 is an upper triangular matrix of size #Z ′
± × #Z ′

± with one on
the diagonal computed in equation (2.3.7),

(2) N1,2 is a matrix of size #Z ′
± × #Z±(Om) computed in equation

(2.4.4),
(3) N2,1 is the zero matrix of size #Z±(Om) × #Z ′

±,
(4) N2,2 is the identity matrix of size #Z±(Om) × #Z±(Om).



COMPOSITION FACTORS... 7

The sets Z ′
± are thus constructed by induction. One sets a partial ordering

≤ on Z ′
± coming from the closure ordering for nilpotent orbits. In this order,

the unique element in Z±(0) is the minimal element.
Now we explain the construction of U ′

±.
Define the matrices

M± = ((ξ : ξ′))ξ,ξ′∈Z′
±
. (2.3.3)

By proposition 2.2, these matrices are block-diagonal, with blocks of sizes
#Z±(O).

Lemma ([Lu2],1.11,3.7). The two matrices M+, M− are invertible.

For every ξ ∈ Z ′
±, we find the vector

Vξ = (a′ξ,ξ′)ξ′∈Z′
±

= M−1
± · ((β(ξ), ξ′)ξ′∈Z′

±
. (2.3.4)

By lemma 1.13 in [Lu2], a′
ξ,ξ = 1, and a′ξ,ξ′ = 0 unless ξ′ ≤ ξ. Moreover,

from [Lu2], 1.14,

β(V T
ξ ) · Vξ′ =

{
1, if ξ = ξ′

0, if ξ 6= ξ′
, (2.3.5)

where V T denotes the transpose of V .

Proposition ([Lu2]). There exists a unique family {cξ,ξ′ : ξ, ξ′ ∈ Z ′
±}}

such that

(i) cξ,ξ = 1, cξ,ξ′ = 0 if ξ′ 6≤ ξ, and cξ,ξ′ ∈ υZ[υ] if ξ′ < ξ;

(ii) cξ,ξ′ =
∑

ξ′′∈Z′
±

β(cξ,ξ′′) a′ξ′′,ξ′ .

Set

µξ =
∑

ξ′∈Z′
±

cξ,ξ′ξ
′. (2.3.6)

Then U ′
± = {µξ : ξ ∈ Z ′

±}.

In other words, in the multiplicity matrix,

N1,1 = (cξ,ξ′)ξ,ξ′∈Z′
±
. (2.3.7)

2.4. It remains to explain the computation of the sets Z+(Om) and U+(Om).
(The other pair is computed in the obvious analogue way.)

Since K(χ) has a symmetric bilinear form, for every subspace W ⊂ K(χ),
we can define the orthogonal complement W⊥. Clearly, Rad ⊂ W⊥.

Let W+ be the subspace spanned by Z ′
+. In fact, Z+ is a basis of W+.

Define the projections Y+, respectively Y ⊥
+ of K(χ) onto W+, respectively

W⊥
+ . Explicitly, Y ⊥

+ (x) = x − Y+(x), where

Y+(x) =
∑

ξ∈Z′
+

ax,ξξ, and (ax,ξ)ξ∈Z′
+

= M−1
+ · ((x : ξ′))ξ′∈Z′

+
. (2.4.1)
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Proposition ([Lu2]). Let J− be defined by

J− = {ξ0 ∈ Z ′
− : Y ⊥

+ (µξ0) /∈ Rad}. (2.4.2)

The sets Z+(Om) and U+(Om) are then obtained as follows:

Z+(Om) = {ξ = Y ⊥
+ (µξ0) : ξ0 ∈ J−}, U+(Om) = {µξ = µξ0 : ξ0 ∈ J−}.

(2.4.3)

This concludes the construction of the bases. To complete the matrix of
multiplicities, one finds

N1,2 = (cξ,ξ′)ξ∈Z+(Om),ξ′∈Z′
+

= M−1
+ · ((µξ : ξ′′))ξ∈Z+(Om),ξ′′∈Z′

+
. (2.4.4)

2.5. In the example of A1, with χ = α̌, E(χ) = {(11), (2)}, Om = (2), and
the bases are

Z+ = {s, 1 + υ · s} Z− = {1, s + υ · 1}, (2.5.1)

U+ = {s, 1} U− = {1, s}.

The matrix of multiplicities is

N =

(
1 −υ
0 1

)
. (2.5.2)

In this case, the involution γ defined in section 1.5 preserves U+ and U−,
but reverses the order, and takes Z+ to Z− preserving the order.

Question. Can the Iwahori-Matsumoto involution be described combina-
torially?

Also, in view of the real case, a natural question is if the Jantzen filtration
conjecture holds in this setting as well. (One would need to consider N −1

instead, to define Lusztig polynomials). It is satisfied for A1: the principal
series X(ν), is reducible at ν = 1, (this corresponds to our χ) and the
intertwining operator is A((2), ν) = +1, A((11), ν) = 1−ν

1+ν
, so the filtration

has two levels, 0, 1, with multiplicity one on each level.

3. Examples

3.1. An example in sp(6). The central character is χ = (3, 1, 1), the
middle element of the nilpotent (4, 2). There are 10 orbits of G(χ) on P2. We
list the parametrization of these orbits, the dimensions, the corresponding
Levi subalgebras and the basis elements Z− and U−. The bases Z+ and U+

are obtained by multiplication by w0.
We encode the cosets W/W (χ) by the of W action on (3, 1, 1).
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s Levi ls Dim Z
−

(0, 0, 0) ±{ε2 − ε3} 0 1

v+v
−1 [3, 1, 1]

(1,−1, 0) ±{ε1 − ε2} 2 [1, 3, 1] + v[3, 1, 1]
(0, 0, 1) ±{2ε3} 2 [3, 1,−1] + v[3, 1, 1]

(1,−1, 1) ±{ε1 − ε2, 2ε3} 3 [1, 3,−1] + v[1, 3, 1] + v[3, 1,−1] + v2[3, 1, 1]
(0, 1, 1) ±{ε2 ± ε3, 2ε2, 2ε3} 3 1

v+v
−1 [3,−1,−1]− v[3, 1,−1]− v

v+v
−1 [3, 1, 1]

(0, 1, 1) 3 [3,−1, 1] + 1

v+v
−1 [3,−1,−1]− v

v+v
−1 [3, 1, 1]

(2, 0, 2) ±{ε1 − ε2, ε2 + ε3, ε1 + ε3} 4 [−1, 1, 3] + v[1, 3,−1] + v[3,−1, 1] + v2[3, 1,−1]
(3, 1, 0) ±{ε1 ± ε2, 2ε2, 2ε1} 4 [1,−3,−1] + v[1, 1, 3] + v[1, 3,−1] + v2[1, 3, 1]
(3, 1, 1) ∆ 5 1

v+v
−1 [−3,−1,−1]− v[−1, 1, 3]− v[1,−3,−1]

− v
2

v+v
−1 [3,−1,−1]− v2[1, 1, 3]− v2[1, 3,−1]

−v2[3,−1, 1]− v3[1, 3, 1]

(3, 1, 1) 5 [−3,−1, 1] + 1

v+v
−1 [−3,−1,−1] + v[−1, 1, 3] + v[1, 3, 1]

− v
2

v+v
−1 [3,−1,−1] + v2[1, 3,−1] + v2[3, 1, 1] + v3[3, 1,−1]

s U
−

(0, 0, 0) 1

v+v
−1 [3, 1, 1]

(1,−1, 0) [1, 3, 1] + 1

v+v
−1 [3, 1, 1]

(0, 0, 1) [3, 1,−1] + 1

v+v
−1 [3, 1, 1]

(1,−1, 1) [1, 3,−1]

(0, 1, 1) 1

v+v
−1 [3,−1,−1]

(0, 1, 1) [3,−1, 1] + 1

v+v
−1 [3,−1,−1]

(2, 0, 2) [−1, 1, 3]

(3, 1, 0) [1,−3,−1] + v[1, 1, 3] + v2[1, 3,−1] + v
2

v+v
−1 [1, 3, 1]

(3, 1, 1) 1

v+v
−1 [−3,−1,−1]

(3, 1, 1) [−3,−1, 1] + 1

v+v
−1 [−3,−1,−1]

The basis elements satisfy the conditions:

(1) (ξ : ξ′) = 0, when ξ, ξ′ ∈ Z correspond to distinct orbits.
(2) (ξ : ξ′) = 1 + vZ[v], when ξ, ξ′ ∈ Z correspond to the same orbit.
(3) the change of basis matrix is upper triangular (see below).
(4) µ − µ is an element of the radical of the bilinear form.
(5) Z (similarly U) is a basis for K/Rad.
(6) The elements in U+ which give the two tempered basis elements in

U− correspond to the orbits (0, 0, 0) and (0, 0, 1).

The change of basis matrix from Z to U (this is the one computed by the
algorithm) is:
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


1 −v2 −v2 (v + v3) −v3 v −(v2 + v4) −v4 −v5 v3

0 1 0 −v 0 0 v2 v2 v3 −v
0 0 1 −v v 0 v2 v2 v3 0
0 0 0 1 0 0 −v −v −v2 0
0 0 0 0 1 0 v 0 v2 0
0 0 0 0 0 1 −v 0 0 v2

0 0 0 0 0 0 1 0 v −v
0 0 0 0 0 0 0 1 v 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




Just for the record, the change of basis matrix from U to Z is




1 v2 v2 −v + v3 0 −v −v2 −v2 v3 0
0 1 0 v 0 0 0 0 0 v
0 0 1 v −v 0 v2 0 0 v3

0 0 0 1 0 0 v v −v2 v2

0 0 0 0 1 0 −v 0 0 −v2

0 0 0 0 0 1 v 0 −v2 0
0 0 0 0 0 0 1 0 −v v
0 0 0 0 0 0 0 1 −v 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




3.2. An example in sp(4). Consider χ = (1, 1), the middle element of the
nilpotent orbit (2, 2) in sp(4). There are 3 orbits:

s Levi Dim Z−

(0, 0) ±{ε1 − ε2} 0 v
1+v2 [1, 1]

(0, 1) ±{2ε2} 2 [1,−1] + v[1, 1]

(1, 1) g 3 v
1+v2 [−1,−1] − v[1,−1] − v2

1+v2 [1, 1]

(1, 1) 3 [−1, 1] + v
1+v2 [−1,−1] − v2

1+v2 [1, 1]

s U−

(0, 0) v
1+v2 [1, 1]

(0, 1) [1,−1] + v
1+v2 [1, 1]

(1, 1) v
1+v2 [−1,−1]

(1, 1) [−1, 1] + v
1+v2 [−1,−1]

The change of basis matrix is




1 −v2 −v3 v
0 1 v 0
0 0 1 0
0 0 0 1


.
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3.3. An example in F4. The following represents the matrix for χ =
(3, 1, 1, 1), the middle element of the nilpotent F4(a3) (component group S4

in F4) (19 × 19 upper uni-triangular matrix). There are 12 orbits and 19
local systems. The last 4 columns, 15− 19 correspond to 4 local systems on
the dense orbit (that is to the tempered modules). The dimensions of the
orbits corresponding to the columns are (the columns corresponding to the
same orbit are grouped together):

(0, 4, 6, 6︸︷︷︸, 7, 7, 8, 8︸︷︷︸, 8, 9, 10, 10, 10︸ ︷︷ ︸, 11, 11︸ ︷︷ ︸, 12, 12, 12, 12︸ ︷︷ ︸).

Columns 1 − 8:




1 −v2 − v4 −v2 − v4 − v6 v2 + v4 −v − 2v3 − 2v5 − v7 v5 + v7 v4 + v6 + v8 v6

1 v2 v + v3 −v3 −v2 − v4 −v2

1 v −v −v2

1 −v
1 −v

1
1

1




Columns 9 − 13:




v4 + v6 + v8 −v3 − v5 − v7 − v9 v2 + v4 + 2v6 + v8 + v10 −v8 − v10 v4 + 2v6 + v8

−v4 v + v3 + v5 −v2 − v4 − v6 v4 + v6 −v2 − v4

−v2 v3 −v2 − v4 v4 −v2

v2 v2 v2

−v v2 −v − v3 v3 −v
−v2 v + v3 −v3 v
−v v2 −v2

−v −v2

1 v2

1 −v v
1

1
1




Columns 14 − 19:
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


v5 + 2v7 + 2v9 + v11 −v3 − v5 − v7 − v9 v12 −v8 − v10 −v6 − v8 − v10 v6

−v3 − 2v5 − v7 v5 −v8 v6 v4 + v6

−2v3 − v5 v3 −v6 v4 v2 + v4

v3 −v − v3 −v4 v2

−2v2 − v4 v2 −v5 v3 v3

v2 + v4 −v2 v5 −v3 −v
v + v3 v4 −v2

v + v3 −v − v3 v4 −v2 − v4 −v2 v2

−v2 −v3

v −v v2 −v2

−v −v2 v2

v −v2

1 v −v −v
1 v −v

1
1

1
1




.
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