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This paper is expository. It is a mild generalization of the Kac classifi-
cation of real forms of a simple Lie group to strong real forms. The basic
reference for strong real forms in this language is [1]. For the Kac classi-
fication we follow [6]. There is also a treatment in [3], in slightly different
terms.

1 Real forms and strong real forms

Let G be a reductive algebraic group. We will occasionally identify algebraic
groups with their complex points. We have the standard exact sequence

(1.1) 1 → Int(G) → Aut(G) → Out(G) → 1

where Int(G) ≃ G/Z(G) is the group of inner automorphisms of G, Aut(G)
is the automorphims of G, and Out(G) = Aut(G)/Int(G).

Definition 1.2 1. A real form of G is an equivalence class of involutions
in Aut(G), where equivalence is by conjugation by G, i.e. the action of
Int(G).

2. A traditional real form of G is an equivalence class of involutions, where
equivalence is by the action of Aut(G).

The real form defined by θ has a maximal compact subgroup whose com-
plexification is K = Gθ.
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Remark 1.3 A real forms are also defined by an antiholomorphic involution
σ of G(C), i.e. G(R) = G(C)σ. Given θ choose an antiholomorphic involution
σ0 so that θσ0 = σ0θ and G(R)σ0 is compact. Then the real form defined by
θ is given by σ = θσ0. See [4, Section VI.2].

We say two involutions θ, θ′ ∈ Aut(G) are inner to each other, or in the
same inner class, if they have the same image in Out(G). Such a class is
determined by an involution γ ∈ Out(G), and we refer this inner class as the
real forms of (G, γ).

We will work entirely in a fixed inner class, so fix an involution γ ∈
Out(G).

Fix a splitting datum for the exact sequence (1.1). This is a set (H,B, {Xα})
consisting of a Cartan subgroup H, a Borel subgroup B containing H, and
a set of simple root vectors. This induces a splitting Out(G) → Aut(G) of
(1.1), and we let θ be the image of γ in Aut(G). Thus θ is an involution of
G, it corresponds to the “most compact” real form in the given inner class.
We let K = Gθ.

Remark 1.4 Suppose G is simple and simply connected. It does not nec-
essarily follow that K is simply connected; it is not simply connected if and
only if the real form G = G(R) of G corresponding to K has a non-linear
cover. Since θ is the most compact inner form of (G, γ) K has a chance to be
simply connected. In fact this holds unless G = SL(2n + 1), in which case
K = SO(2n+ 1) and π1(K) = Z/2Z. This exception is due to the fact that
∆θ (cf. Lemma B.1) is not reduced in this case. See the table in Section 3.1.

For most of these notes G will be semisimple, or even simple. Let ∆ =
∆(G,H) be the root system of H in G, and let D = D(∆) be the Dynkin
diagram of ∆. A choice of splitting datum induces an isomorphism

(1.5) Out(g) ≃ Aut(D)

Furthermore Out(G) ⊂ Out(g), with equality if G is simply connected or
adjoint. Thus γ is given by an involution of D.

Let
GΓ = G⋊ 〈δ〉

where δ2 = 1 and δgδ−1 = θ(g).
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Definition 1.6 A strong real form of (G, γ) is an equivalence class of ele-
ments x ∈ GΓ, satisfying x 6∈ G, and x2 ∈ Z(G), where equivalence is by
conjugation by G.

The map x → θx = int(x) is a surjection from the strong real forms of
(G, γ) to the real forms of (G, γ). Let

HΓ = H ⋊ 〈δ〉 ⊂ GΓ.

Let T be the identity component of Hθ, and A be the identity component of
H−θ = {h ∈ H | θ(h) = h−1}. Then H = TA. Let

T Γ = T × 〈δ〉 ⊂ HΓ.

Remark 1.7 We may write

(1.8) H ≃ C∗a × C∗b × (C∗ × C∗)c

where θ acts trivially on the first a factors, by inverse on the next b, and
θ(z, w) = (w, z) on each of the last c terms. Note that if b 6= 0 then T is a
proper subset of Hθ. This happens, for example, in SO(3, 1).

A key observation is that every element of Hδ is conjugate to an element
of Tδ, since A acts by conjugation on Hδ by multiplication by A. That is
for a ∈ A, h ∈ H, a(hδ)a−1 = ah(δa−1δ)δ = ahθ(a−1)δ = a2hδ. Since A is
connected every element has a square root, so this gives multiplication by an
arbitary element of A. Therefore taδ is conjugate to tδ ∈ Tδ. (In fact we
could replace T with H/A = T/T ∩ A, see ?.)

Lemma 1.9 Suppose x ∈ Gδ is a semi-simple element (i.e. x = gδ with
g ∈ G semisimple). Then x is G-conjugate to an element of Tδ.

Proof. Write x = gδ and choose a Cartan subgroup H ′ containing g. Write
H ′ = T ′A′ as usual and g = ta accordingly. As above we may assume a = 1.
Since T is a Cartan subgroup of K we may choose k ∈ K so that ktk−1 ∈ T ,
and then k(tδ)k−1 ∈ Tδ.

Let W = NormG(H)/H. Then θ acts on W , and we let W θ be its fixed
points. Note that W θ acts naturally on T , A and T ∩ A.

Lemma 1.10

(1.11) W (K0, T ) ≃ W (G,H)θ
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Remark 1.12 In almost all cases K is connected, and T is a Cartan sub-
group of K. if K is not connected hen Hθ is a Cartan subgroup of K. In
this case Hθ = TZ(G), and W (K,Hθ) ≃ W (K0, T ). This is the case, for
example, if G = SO(2n) and K = S[O(2n− 1)×O(1)] ≃ O(2n− 1).

Remark 1.13 One consequence of Lemma 1.10 is this: if w ∈ W θ we may
choose a representative g ∈ NormG(H) of w to be in K.

Lemma 1.14 Suppose x, x′ ∈ Tδ are G-conjugate. Then there exists g ∈
NormG(Tδ) so that gxg−1 = x′.

Thus G-conjugacy of elements of Tδ is controlled by the group Wδ of the
next definition.

Definition 1.15

(1.16) Wδ = NormG(Tδ)/CentG(Tδ)

It is well known that CentG(T ) = H. Therefore NormK0(T ) ⊂ NormG(H)
and we obtain a map

W (K0, T ) →֒ W (G, T )

whose image is contained in W (G, T )θ.

Proposition 1.17

(1.18) Wδ ≃ W θ ⋉ (A ∩ T ).

The subgroup W θ is the stabilizer of δ in Wδ, and acts on T via its natural
action. The subgroup A ∩ T acts on Tδ by multiplication.

Proof. It is well known that CentG(T ) = H (every root α ∈ ∆(G,H)
is non-trivial on T , since there are no real roots). Therefore NormG(T ) =
NormG(H). Thus

(1.19)(a) NormG(Tδ) = {g ∈ NormG(H) | gδg−1 ∈ T}.

It is also clear that

(1.19)(b) CentG(T ) = {g ∈ H | gδg−1 = δ} = Hθ
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Therefore

(1.19)(c) Wδ = {g ∈ NormG(H) | gδg−1 ∈ T}/Hθ.

We also have

(1.19)(d) W θ = {g ∈ NormG(H) | gδg−1 ∈ H}/H

If gδg−1 = ta ∈ H, choose b ∈ H so that b2 = a. Then (bg)δ(bg)−1 = t ∈ T .
It follows that the natural map Wδ → W θ is a surjection. The kernel is

(1.20) {h = ta ∈ H | a2 ∈ T}/Hθ

Let A0 = {a ∈ A | a2 ∈ T}, so the kernel is

(1.21) TA0/H
θ = TA0/TA

θ = A0/A
θ.

Now the map a → a2 takes A0 onto A ∩ T and there is an exact sequence

(1.22) 1 → Aθ → A0 → A ∩ T → 1

Therefore A0/A
θ ≃ A ∩ T . See Remark 1.24.

Putting this together we have an exact sequence

(1.23) 1 → A ∩ T → Wδ → Wθ → 1

Define a splitting of (1.23) by taking w ∈ W θ to the unique preimage
in Wδ fixing δ. This exists by Lemma 1.10: given w ∈ W θ there exists
g ∈ NormK(H) ⊂ NormG(H) representing w. It is easy to see this is a well
defined splitting.

The action of W θ on Tδ is clear. For a ∈ A ∩ T choose b ∈ A0 so
that b2 = a. Then b(tδ)b−1 = btθ(b)−1δ = b2tδ = a(tδ), so A ∩ T acts by
multiplication.

Remark 1.24 With respect to the decomposition (1.8) we have

A0 ≃ (Z/2Z)b × (Z/4Z)c

Aθ ≃ (Z/2Z)b × (Z/2Z)c

A ∩ T ≃ 1× (Z/2Z)c

where Z/4Z = {±(1, 1),±(i,−i)} ⊂ C∗ × C∗. This makes (1.22) explicit.
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Proposition 1.25 The strong real forms of (G, γ) are are parametrized by
elements x of Tδ satisfying x2 ∈ Z, modulo the action of Wδ.

It is convenient to mod out by the translations in T ∩A; this amounts to
replacing T with H/A ≃ T/T ∩ A. Let

(1.26) T = T/T ∩ A, T
Γ
= T × 〈δ〉

Note that W θ acts on T . Also every element of T ∩ A has order 2, so the
condition x2 ∈ Z for x ∈ T is well defined. This gives:

Proposition 1.27 The strong real forms of (G, γ) are are parametrized by
elements x of Tδ satisfying x2 ∈ Z, modulo the action of W θ.

One advantage of Tδ over Tδ is that Z acts naturally on T , via the
isomorphism T ≃ H/A.

To compute the orbits of Wδ on Tδ we pass to the tangent space, in which
Wδ becomes an affine Weyl group. See the Appendix for some generalities
about affine root systems and Weyl groups.

2 Affine Weyl group and strong real forms

We are interested in computing the orbits of W θ acting on Tδ (Proposition
1.25).

Let π : E → Tδ be the tangent space of Tδ at δ. We recall a few
definitions from the Appendix. The space E is an affine space, with group
of translations t = Lie(T ). The space of affine linear functions E → E is
denoted Aff(E,E).

Definition 2.1 Suppose B is a subgroup of Aut(Tδ). Let B̃ be the lift of B
to Aff(E,E). That is

B̃ = {φ ∈ Aff(E,E) |φ factors to an element of B}.

From Proposition 1.27 we see:

Lemma 2.2 Strong real forms of G are parametrized by elements X of E

satisying π(X)2 ∈ Z modulo the action of W̃ θ.
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We consider the problem of finding a fundamental domain for the action

of W̃ θ on E, and return later to the question of finding the subset of X such
that π(X)2 ∈ Z.

We first suppose G is simply connected. From the Appendix (Definitions
B.7 and B.9 and Proposition B.12)

W̃ θ = Waff ≃ W θ ⋉ Lsc

(the last isomorphism depending on a choice of δ̃ lying over δ). Also Waff is
the affine Weyl group of the affine root system DAff. The underlying finite
root system is ∆θ.

There is a standard choice of a fundamental domain for the action of Waff

on E. Choose a set of simple roots α̃0, . . . , α̃n of ∆aff, and let

D = {e ∈ E | α̃i(e) ≥ 0, i = 0, . . . , n}.

If we choose δ̃ then we may identify E with V , and write α̃i = (αi, 0) (i =
1, . . . , n) and α̃0 = (α0, c). Let β = −α0; recall β is the highest long (resp.
short) root of ∆ if c = 1 (respectively c = 2). Then

D = {v ∈ V |αi(v) ≥ 0 (i = 1, . . . , n), β(v) ≤ c}.

If G is not simply connected then Waff ⊂ W̃ θ, and W̃ θ is an extended
affine Weyl group. Its fundamental domain will be a quotient of D by a
finite group.

Definition 2.3 Let

(2.4) L(G) = X∗(T/T ∩ A).

In particular we have

(2.5) L(G)/X∗(T ) ≃ T ∩ A

Lemma 2.6

L(G) = 〈
1

c

c−1∑

k=0

θk(γ∨) | γ ∈ X∗(H)〉

7



If c = 1, 2 we have

(2.7) L = {
1

2
(α∨ + θα∨) |α ∈ X∗(H} (c = 1, 2).

If G is simply connected then L(G) = Lsc (Definition B.9).

Lemma 2.8 Setting L = L(G) we have an exact sequence

(2.9)(a) 1 → L → W̃ θ → W θ → 1

Given δ̃ we obtain a splitting of (2.9)(a), so

(2.9)(b) W̃ θ ≃ W θ ⋉ L.

If G is simply connected then (2.9)(a-b) reduce to (B.13)(a-b).

To find a fundamental domain for W̃ θ we relate it to Waff.

Lemma 2.10 We have an exact sequence

(2.11) 1 → Waff → W̃ θ → L/Lsc → 1

Given δ̃ we obtain a splitting taking L/Lsc to the stabilizer of D. Thus

(2.12) W̃ θ ≃ Waff ⋊ L/Lsc

and L/Lsc acts as automorphisms of D.

Recall we are given (∆, θ), to which we have associated the affine root
system ∆aff, with Dynkin diagram DAff. See the Appendix.

Lemma 2.13 The stabilizer of D in the Euclidean group of E is isomorphic
to the automorphism group of DAff.

Thus we have an action of L/Lsc on DAff. It behooves us to understand
L/Lsc.
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2.1 The group L/Lsc

From (B.11) we have

L/Lsc =
〈{1

2
(γ∨ + θγ∨) | γ∨ ∈ X∗(H)}〉

〈{1
2
(α∨ + θα∨) | γ∨ ∈ R∨}〉

Let Gsc be the simply connected cover of G, with center Zsc = Z(Gsc). We
have an exact sequence

1 → π1 → Gsc → G → 1

with π1 = π1(G) ⊂ Zsc. Write Hsc = TscAsc for the Cartan subgroup in Gsc

with image H.

Lemma 2.14

(2.15) L/Lsc ≃ π1/π1 ∩ Asc

Proof. A standard fact is that π1 ≃ X∗(H)/R∨. The map γ∨ → 1
2
(γ∨+θγ∨)

takes X∗(H) onto L and factors to a surjection

π1 ։ L/Lsc.

The kernel is

{γ∨ ∈ X∗(H) | (1 + θ)γ∨ ∈ (1 + θ)R∨}/R∨

If (1+θ)γ∨ = (1+θ)µ∨ for some µ∨ ∈ R∨ then (1+θ)(γ∨−µ∨) = 0. So we may
replace the numerator with {γ∨ | (1+θ)γ∨ = 0}. This says exp(2πiγ∨) ∈ Asc,
so the kernel is π1 ∩ Asc.

Remark 2.16 Note that

(1− θ)π1 ⊂ π1 ∩ Asc ⊂ π−θ
1

and both inclusions may be proper. If G is adjoint then π1 = Zsc and one
can see Zsc ∩ Asc = (1− θ)Zsc, which gives

(2.17) Lad/Lsc = Zsc/(1− θ)Zsc.

However it is not easy to describe π1 ∩ Asc in general.
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Definition 2.18 Let

(2.19) π†
1 = π1/π1 ∩ Asc

Let τ : π†
1 → Aut(DAff) be the action of π†

1 on the affine Dynkin diagram via
Lemmas 2.10, 2.13 and (2.15).

Here is another description of τ . First take G to be simply connected,
so Z = Zsc. Note that Z acts by left multiplication on Hδ and therefore on
Tδ. Explicitly z = ta ∈ Z acts on Tδ by multiplication by t. Although t, a
are only defined up to T ∩ A, this action is well defined on Tδ. Clearly this
action factors to Z/Z ∩ A, lifts to an action on E, and induces actions of
Z/Z ∩ A on D and DAff.

Suppose z = ta = exp(2πiγ∨) with γ∨ ∈ P∨. Then t = exp(2πi1
2
(γ∨ +

θγ∨)), and it follows that under the isomorphism (2.15) Lad/Lsc acts by
translation on E.

Now drop the assumption that G is simply connected. Then π1(G) ⊂ Zsc

acts on D and DAff by the preceding construction, and this action factors to
an action of π†

1(G).

Lemma 2.20 We may parametrize D as {(a0, . . . , an)} where ai ≥ 0 and

(2.21)
n∑

i=0

niai =
1

c
.

Here (a0, . . . , an) corresponds to the element X of D satisfying

αi(X) = ai (i = 1, . . . , n)

Lemma 2.22 Suppose (a0, a1, . . . , an) satisfies (2.21), and let X ∈ D be the
corresponding element. Then x = π(X) ∈ Tδ satisfies xm ∈ Z if and only if
mai ∈ Z for all i = 0, . . . , n.

Example 2.23 Take m = 1. We must take c = 1 and each ai = 0 or 1. We
conclude from (2.21) that Z is in bijection with the nodes of D̃ with label 1.

Given m choose integers bi and let ai = bi/m (0 ≤ i ≤ n). Then
(a0, . . . , an) corresponds to an element of D if
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(2.24) c

n∑

i=0

nibi = m

To complete our classification of strong real forms we take m = 1 or 2.

Definition 2.25 A Kac diagram for (G, γ) is a subset S of DAff satisfying
c
∑

i∈S ni ≤ 2.

Clearly |S| ≤ 2 and ni ≤ 2 for all i ∈ S.

Theorem 2.26 Fix G and an inner class γ of real forms. Let c = order(γ).
Let θ be the fundamental real form in the given inner class. Let ∆ be the root
system of G, ∆θ the quotient of ∆ by θ, and DAff the affine Dynkin diagram
associated to ∆θ.

The strong real forms of (G, γ) are parametrized by Kac diagrams for
DAff, modulo the action of π†

1(G) on DAff.
Suppose S is a Kac diagram corresponding to a real form, with (com-

plexified) maximal compact subgroup KS. Then the Dynkin diagram of Ks is
obtained by by deleting the nodes of S from DAff.

For the usual classification of real forms see the next section.
For example, a compact group is given by m = 1, c = 1 and S = {i} with

ni = 1.
Suppose m = 2. If c = 1, then S = {i} with ni = 2, or S = {i, j} with

ni = nj = 1. If c = 2 then S = {i} with ni = 1.

2.2 The Kac classification of real forms

The Kac classification of real forms of g amounts to taking G to be the
adjoint group. In this case π†

1(G) = Zsc/(1− θ)Zsc (2.17). Recall (2.19) acts
by τ on DAff (Definition 2.18).

Theorem 2.27 Traditional real forms of (g, γ) are parametrized by subsets
S as in Theorem 2.26, modulo the action of Aut(DAff).

Real forms of (g, γ) are parametrized by subsets S modulo the action of
Zsc/(1− θ)Zsc.
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Proof. The second statement is an immediate consequence of Theorem 2.26.
The first follows from the following Lemma.

Remark 2.28 This also gives the classification for G either simply con-
nected or adjoint. For general G equivalence will be by the subgroup stabi-
lizing Z(G).

Lemma 2.29 We have a split exact sequence

1 → π†
1(G) → Aut(D) → Out(G) → 1

or equivalently

1 → π†
1(G) → Aut(DAff) → Aut(Dθ) → 1

Here Dθ is the Dynkin diagram of ∆θ, the underlying finite root system
of DAff. See the Appendix.

Remark 2.30 If θ = 1 and G is simply connected this becomes

1 → Z → Aut(DAff) → Aut(D) → 1

If θ 6= 1 then Aut(Dθ) = 1 and we have

π†
1 ≃ Aut(DAff)

See [6, Exercise 15, page 217]. For an explicit formula for the map Z →
Aut(DAff) see [2, Chapter VI, §2.3, Proposition 6].

3 Simplified Kac Diagrams and Vogan Dia-

grams

If γ 6= 1 the classification of real forms via the Kac diagram is quite subtle,
due to its use of the extended Dynkin diagram of ∆θ, rather than that of ∆.
Here is a version using the extended Dynkin diagram of ∆.

So fix (G, γ) with G simple and γ 6= 1. Choosing a splitting datum, in
particular a Cartan subgroup H we obtain the fundamental automorphism
θ of G as in Section 1. Write H = TA as usual.
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For simplicity we assume G is adjoint, so strong real forms and real forms
coincide. Suppose γ 6= 1. By Proposition 1.27 the real forms of (G, γ) are
parametrized by elements t ∈ T of order 2 (corresponding to x = tδ ∈ Tδ),
modulo T ∩ A and conjugation by W θ.

On the other hand the real forms of (G, 1) are parametrized by elements
of H of order 2, modulo conjugation by G. If two elements of t are conjugate
by W then they are necessarily conjugate by W θ. If S is the Kac diagram of
a real form of (G, 1), then the corresponding element h is in T if and only if
S is θ-invariant. This gives a surjective map from

θ − invariant Kac diagrams for (G, 1) → strong real forms of (G, γ)

This map is not injective: on the left hand side equivalence is by the
action of W θ, and on the right by W θ and A ∩ T . It turns out that if we
require that S is pointwise fixed by θ then we get a bijection.

Proposition 3.1 Given (G, γ) let DAff be the extended Dynkin diagram of
∆ = ∆(G,H). Then real forms of (G, γ) are parametrized by Kac diagrams
S for which each node of S is fixed by θ, modulo Aut(DAff). That is, S is a
set of θ-fixed nodes of DAff, such that c

∑
i∈S ni ≤ 2.

To be honest there is some case-by-case checking here. One point is this.
Suppose α is a complex root, and nα = 1. Then S = {α, θα} defines an
element t of T of order 2, and a real form of (G, 1). It also defines a real
form of (G, γ), but this one is obtained from another set S which is pointwise
fixed.

3.1 Vogan Diagrams

We continue to assume (G, γ) and H have been fixed, and θ is the funda-
mental real form of G. Let D be the Dykin diagram of G. Suppose θ′ is a
real form of (G, γ) and B is a θ-stable Borel subgroup of G containing H.
Associated to this data is a Vogan Diagram: color each of the θ-fixed nodes
of D black if the cooresponding imaginary root is non-compact, and white
otherwise. See [4, Section VI.8]. Alternatively, let S be the subset (of black
nodes) of the θ-fixed nodes of D. This gives a map from real forms of (G, γ)
to Vogan diagrams. This map is not injective: it depends on the choice of
B. If we choose B to be the “Borel de Siebenthal” choice [4, Theorem 6.96],

13



i.e. for which at most one simple root is non-compact, then we get a set S
with at most one element.

The is closely related to the simplified Kac diagram. Here is the precise
statement.

Proposition 3.2 Suppose S is a modified Kac diagram of a real form. If S
contains a node with label 1 we may assume (via the action of Zsc) this is
the affine node. Deleting this node we obtain a subset of the finite Dynkin
diagram. This is the Vogan diagram of the real form.

Conversely suppose S is a Vogan diagram with at most one node, corre-
sponding to a real form of G. Also assume it satisfies the condition in the
last line of [4, Thoerem6.96]; equivalently the label on this node is ≤ 2. If S
is empty this is the compact form. Suppose S = {i}. The Kac diagram of
this real form is S ∪ {0} if ni = 1, and S if ni = 1.

Remark 3.3 One of the subtleties of the Vogan diagram is that we do not
need a diagram S = {i} if ni ≥ 3. The fact that such Kac diagram is not
needed is explained by (2.24).

Appendix: Affine root systems andWeyl groups

Let V be a real vector space of dimension n and E an affine space with
translations V . That is V acts simply transitively on E, written v, e → v+e.
A function If E,E ′ are affine spaces a function f : E → E ′ is said to be affine
if there exists a linear function df : V → V ′ such that

(A.1) f(v + e) = df(v) + f(e) for all v ∈ V, e ∈ E.

In particular if E ′ is one dimensional we say f is an affine linear functional.
In this case df : V → R, i.e. df ∈ V ∗. We say df is the differential of f . The
set Aff(E) of all affine linear functionals is a vector space of dimension n+1.
The map f → df is a linear map from Aff(E) to V ∗, and this gives an exact
sequence

(A.2) 0 → R → Aff(E) → V ∗ → 0.
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The first inclusion takes x ∈ R to the constant function fx(e) = x for all
e ∈ E; this satisfies df = 0.

Choose an element e0 ∈ E. This gives an isomorphism V ≃ E via
v → v + e0. For λ ∈ V ∗ let s(λ)(v + e0) = λ(v). This defines a splitting of
(A.2):

Lemma A.3 Given e0 we obtain an isomorphism

(A.4)(a) Aff(E) ≃ V ∗ ⊕ R

According to this decomposition we write f ∈ Aff(E) as

(A.4)(b) f = (λ, c).

We make the isomorphism (A.4)(a) explicit. In one direction f ∈ Aff(E)
goes to λ = df and c = f(e0). For the other direction (λ, c) goes to f ∈ Aff(E)
defined by f(v + e0) = λ(v) + c.

We now assume V is equipped with a positive definite non-degenerate
symmetric form (, ), and identify V and V ∗. In particular we may identify
df with an element of V . Define (, ) on Aff(V ) by

(f, g) = (df, dg)

and for f ∈ Aff(E) not a constant function let

f∨ =
2f

(f, f)
.

The affine reflection sf : V → V is

sf (v) = v − f∨(v)df

= v − f(v)(df)∨

= v −
2f(v)

(f, f)
df

Definition A.5 (Macdonald [5]) An affine root system on E is a subset
S of Aff(E) satisfying

1. S spans Aff(E), and the elements of S are non-constant functions,
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2. sα(β) ∈ S for all α, β ∈ S,

3. 〈α∨, β〉 ∈ Z for all α, β ∈ S,

4. The Weyl group W = W (S) is the group generated by the reflections
{sα |α ∈ S}. We require that W acts properly on V .

The Weyl group W (S) is an affine Weyl group. The notions of simple
roots Π(S) and Dynkin diagram D(S) are simlar to those for classical root
systems. Also the dual S∨ of S defined in the obvious way is an affine root
system, with Dynkin diagram D(S∨) = D(S)∨. Here the dual of a Dynkin
diagram means the same diagram with arrows reversed, as usual.

Choose a base point e0 in E and write elements of Aff(E) as (λ, c) as in
Lemma A.3.

Suppose ∆ ⊂ V is a classical (not necessarily reduced) root system. If ∆
is simply laced we say each root is long. Let Π = {α1, . . . , αn} be a set of
simple roots. For each i let α̃i = (αi, 0), and let α̃0 = (−β, 1) where β is the
highest root. Note that β is long. Then {α̃0, . . . , α̃n} is a set of simple roots

of an affine root system denoted ∆̃.
Let D = D(∆) be the Dynkin diagram of ∆. Let D̃ be the extended

Dynkin diagram of D, i.e. obtained by adjoining −β where β is the highest
root. Then the Dynkin diagram of ∆̃ is the extended Dynkin diagram of ∆,
i.e.

D(∆̃) = D̃(∆).

We will use ∆ (resp. S) to denote a typical classical (resp. affine) root
system.

Suppose ∆ is a classical root system with Dykin diagram D = D(∆). Let

and S = ∆̃, so D(S) = D̃. Then S∨ = (∆̃)∨ is also an affine root system,

with Dynkin diagram D(S∨) = (D̃)∨. If ∆ is not simply laced then it is

not necessarily the case that (∆̃)∨ = (̃∆∨) or (D̃)∨ = (̃D∨). Note that D̃ is

obtained from D by adding a long root, so (D̃)∨ has an extra short root. On

the other hand (̃D∨) is obtained from D∨ by adding an extra long root.

Theorem A.6 (Macdonald [5]) Every reduced, irreducible affine root sys-

tem is equivalent to either ∆̃ or (∆̃)∨ where ∆ is a classical (not necessarily
reduced) root system.
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Remark A.7 A remarkable fact is that every reduced, irreducible affine
root system is also obtained from a classical root system and involution, as
discussed in the next section.

Affine root system and Weyl group associated

to (∆, θ)

Let ∆ be an irreducible root system, and θ an automorphism of ∆ preserving
a set of simple roots. Thus θ corresponds to an automorphism of the Dynkin
diagram D = D(∆) of ∆. Let c ∈ {1, 2, 3} be the order of δ. Associated to
(∆, θ) is an affine root system, which we now describe.

The quotient ∆/θ is naturally a root system [7], which we denote ∆θ. Here
are the possibilities with θ 6= 1. We list the finite root systems ∆,∆θ, the
names of the affine root system according to [5] and [6], the simply connected
group G with root system ∆, the real form of G corresponding to θ, and Gθ.

∆ ∆θ ∆aff ∆aff G G(R) K

A2n BCn B̃Cn A
(2)
2n SL(2n+ 1) SL(2n+ 1,R) SO(2n+ 1)

A2n−1 Cn B̃∨
n A

(2)
2n−1 SL(2n) SL(n,H) Sp(n)

Dn Bn C̃∨
n D

(2)
n Spin(2n) Spin(2n− 1, 1) Spin(2n− 1)

E6R F4 F̃4

∨
E

(2)
6 E6 E6(F4) F4

D4, θ3 = 1 G2 G̃2

∨
D

(3)
4 Spin(8) G2

As in section 1 there is an algebraic groupG, and splitting data (H,B, {Xα})
so that ∆ = ∆(G,H), and θ may be viewed as an automorphism of G pre-
serving the splitting data. (For these purposes we may as well take G simply
connected.) Then T = Hθ acts on g, and the set of roots ∆(G, T ) ⊂ t∗ is a
(possibly reduced) root system.

The following Lemma is more or less immediate.

Lemma B.1 Restriction from H to T defines isomorphisms

∆(G, T ) ≃ ∆θ

and
W θ ≃ W (∆θ).
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Also ∆(K,T ) is the reduced root system of ∆θ (obtained by taking only the
shorter of two roots α, 2α) and W (K,T ) ≃ W (∆θ). See Remark 1.4.

Now T Γ acts on the complex Lie algebra g of G. Let ∆(G, T Γ) be the set
of roots, i.e. we have a root space decomposition

g =
∑

α∈∆(G,TΓ)

gα.

Clearly restriction from T Γ to T is a surjection ∆(G, T Γ) → ∆(G, T ).
If c = 1 this is simply ∆(G, T ). For simplicity assume c = 2. Then

∆(G, T Γ) may be thought of as a Z/2Z-graded root system. That is a
character α of T Γ is a pair (α0, ǫ) with α0 ∈ ∆(G, T ) ≃ ∆θ and ǫ = ±1,
where α0 = α|T and ǫ = α(δ). We can define the reflection associated
to α ∈ ∆(G, T Γ) in the usual way, preserving ∆(G, T Γ). To be precise, if
α = (α0, ǫ) and β = (β0, δ) then

(B.2) sα(β) = (sα0
(β0), ǫδ(−1)〈β,α

∨〉).

Let π : E → Tδ be the universal cover. Then E is an affine space with
translations t = Lie(t).

Suppose λ is a character of T Γ → C∗. Note that λ is determined by its
restriction to Tδ. By the property of covering spaces λ lifts to a family of
functions λ̃ : E → C satisfying

λ(π(X)) = e2πiλ̃(X)

i.e. dλ̃ = dλ, where the left hand side is in the sense of (A.1) and the right is

the ordinary differential of λ. We say λ̃ lies over λ. Any two such functions
differ by constant.

Definition B.3 The affine root system ∆aff associated to (∆, θ) is the set of
affine functions in Aff(E) lying over ∆(G, T Γ).

Note that the underlying finite root system, i.e. the differentials of all
affine roots is ∆(G, T ) ≃ ∆θ, i.e.

d : ∆aff ։ ∆θ

The following Lemma is an immediate consequence of the fact that ∆(G, T Γ)
is a root system in the sense of (B.2).
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Lemma B.4 ∆aff is an affine root system.

To be explicit, choose δ̃ ∈ E with π(δ̃) = δ. Suppose α ∈ T̂ Γ. To avoid
excessive notation we write α for the differential of α restricted to T , rather
than dα. Then in the decomposition of Lemma A.3 we may write the set of
α̃ lying over α as

{(α, c) | e2πic = α(δ)}

In particular note that the set of roots lying over α is

{(α, c) | c ∈ Z} if α(δ) = 1

or

{(α, c) | c ∈ Z+
1

2
} if α(δ) = −1

Similarly if δ has order 3 then c ∈ Z+ 1
3
or Z+ 2

3
.

For α ∈ ∆θ let cα = 1 if α is long, or 1
c
if α is short, where c = order(θ).

Proposition B.5 Let ∆aff be the affine root system associated to (∆, θ), and
let c = order(θ) ∈ {1, 2, 3}. Then

∆aff = {(α, x) | x ∈ cαZ}

Proposition B.6 Fix a set α1, . . . , αn of simple roots of ∆θ. For each i let
α̃i = (αi, 0). Let β be the highest (long) root of ∆ = ∆θ if c = 1 or the
highest short root otherwise. Let

α̃0 = (−β,
1

c
).

Then {α̃0, α̃1, . . . , α̃n} is a set of simple roots of ∆aff.

Definition B.7 The affine Weyl group associated to (∆, θ) is the subgroup
of Aff(E,E) generated by the affine reflections sα̃ for α̃ ∈ ∆aff. Alternatively,

(B.8) Waff = {φ ∈ Aff(E,E) |φ factors to an element of W (∆θ) = W θ}.

We now describe Waff.

Definition B.9 Let

(B.10) Lsc = 〈
1

c

c−1∑

k=0

θk(α∨) |α ∈ ∆〉
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We are primarily interested in c = 1, 2, in which case:

(B.11) Lsc = {
1

2
(α∨ + θα∨) |α ∈ ∆}

Proposition B.12 The lattice Lsc is the set of translations in Waff. There
is an exact sequence

(B.13)(a) 0 → Lsc → Waff → W θ → 1

If we choose an element δ̃ ∈ E lying over δ we obtain a splitting of (1.18),

taking W θ to the the stabilizer in Aff(E) of δ̃, i.e.

(B.13)(b) Waff ≃ W θ ⋉ Lsc

We give a few details of the map p : Waff → Wδ. Suppose α ∈ ∆θ and
x ∈ Z. Then

p(s(α,x)) = sα.

Suppose c = 2, α ∈ ∆θ is a short root and x ∈ Z+ 1
2
. Then mα = α∨(−1) ∈

T ∩ A and
p(s(α,x)) = sαmα

and
p(t 1

2
α∨) = mα.

where t 1

2
α∨ ∈ Waff is translation by 1

2
α∨.
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