Strong real forms and the Kac classification

Jeffrey Adams

October 21, 2005

This paper is expository. It is a mild generalization of the Kac classification of real forms of a simple Lie group to *strong* real forms. The basic reference for strong real forms in this language is [1]. For the Kac classification we follow [6]. There is also a treatment in [3], in slightly different terms.

1 Real forms and strong real forms

Let G be a reductive algebraic group. We will occasionally identify algebraic groups with their complex points. We have the standard exact sequence

(1.1)
$$1 \to \operatorname{Int}(G) \to \operatorname{Aut}(G) \to \operatorname{Out}(G) \to 1$$

where $\operatorname{Int}(G) \simeq G/Z(G)$ is the group of inner automorphisms of G, $\operatorname{Aut}(G)$ is the automorphims of G, and $\operatorname{Out}(G) = \operatorname{Aut}(G)/\operatorname{Int}(G)$.

- **Definition 1.2** 1. A real form of G is an equivalence class of involutions in Aut(G), where equivalence is by conjugation by G, i.e. the action of Int(G).
 - 2. A traditional real form of G is an equivalence class of involutions, where equivalence is by the action of Aut(G).

The real form defined by θ has a maximal compact subgroup whose complexification is $K = G^{\theta}$. **Remark 1.3** A real forms are also defined by an antiholomorphic involution σ of $G(\mathbb{C})$, i.e. $G(\mathbb{R}) = G(\mathbb{C})^{\sigma}$. Given θ choose an antiholomorphic involution σ_0 so that $\theta \sigma_0 = \sigma_0 \theta$ and $G(\mathbb{R})_0^{\sigma}$ is compact. Then the real form defined by θ is given by $\sigma = \theta \sigma_0$. See [4, Section VI.2].

We say two involutions $\theta, \theta' \in \operatorname{Aut}(G)$ are inner to each other, or in the same inner class, if they have the same image in $\operatorname{Out}(G)$. Such a class is determined by an involution $\gamma \in \operatorname{Out}(G)$, and we refer this inner class as the real forms of (G, γ) .

We will work entirely in a fixed inner class, so fix an involution $\gamma \in Out(G)$.

Fix a splitting datum for the exact sequence (1.1). This is a set $(H, B, \{X_{\alpha}\})$ consisting of a Cartan subgroup H, a Borel subgroup B containing H, and a set of simple root vectors. This induces a splitting $Out(G) \to Aut(G)$ of (1.1), and we let θ be the image of γ in Aut(G). Thus θ is an involution of G, it corresponds to the "most compact" real form in the given inner class. We let $K = G^{\theta}$.

Remark 1.4 Suppose G is simple and simply connected. It does not necessarily follow that K is simply connected; it is not simply connected if and only if the real form $G = G(\mathbb{R})$ of G corresponding to K has a non-linear cover. Since θ is the most compact inner form of (G, γ) K has a chance to be simply connected. In fact this holds unless G = SL(2n + 1), in which case K = SO(2n + 1) and $\pi_1(K) = \mathbb{Z}/2\mathbb{Z}$. This exception is due to the fact that Δ_{θ} (cf. Lemma B.1) is not reduced in this case. See the table in Section 3.1.

For most of these notes G will be semisimple, or even simple. Let $\Delta = \Delta(G, H)$ be the root system of H in G, and let $D = D(\Delta)$ be the Dynkin diagram of Δ . A choice of splitting datum induces an isomorphism

(1.5)
$$\operatorname{Out}(\mathfrak{g}) \simeq \operatorname{Aut}(D)$$

Furthermore $\operatorname{Out}(G) \subset \operatorname{Out}(\mathfrak{g})$, with equality if G is simply connected or adjoint. Thus γ is given by an involution of D.

Let

$$G^{\Gamma} = G \rtimes \langle \delta \rangle$$

where $\delta^2 = 1$ and $\delta g \delta^{-1} = \theta(g)$.

Definition 1.6 A strong real form of (G, γ) is an equivalence class of elements $x \in G^{\Gamma}$, satisfying $x \notin G$, and $x^2 \in Z(G)$, where equivalence is by conjugation by G.

The map $x \to \theta_x = int(x)$ is a surjection from the strong real forms of (G, γ) to the real forms of (G, γ) . Let

$$H^{\Gamma} = H \rtimes \langle \delta \rangle \subset G^{\Gamma}.$$

Let T be the identity component of H^{θ} , and A be the identity component of $H^{-\theta} = \{h \in H \mid \theta(h) = h^{-1}\}$. Then H = TA. Let

$$T^{\Gamma} = T \times \langle \delta \rangle \subset H^{\Gamma}.$$

Remark 1.7 We may write

(1.8)
$$H \simeq \mathbb{C}^{*a} \times \mathbb{C}^{*b} \times (\mathbb{C}^* \times \mathbb{C}^*)^c$$

where θ acts trivially on the first *a* factors, by inverse on the next *b*, and $\theta(z, w) = (w, z)$ on each of the last *c* terms. Note that if $b \neq 0$ then *T* is a proper subset of H^{θ} . This happens, for example, in SO(3, 1).

A key observation is that every element of $H\delta$ is conjugate to an element of $T\delta$, since A acts by conjugation on $H\delta$ by multiplication by A. That is for $a \in A, h \in H$, $a(h\delta)a^{-1} = ah(\delta a^{-1}\delta)\delta = ah\theta(a^{-1})\delta = a^2h\delta$. Since A is connected every element has a square root, so this gives multiplication by an arbitrary element of A. Therefore $ta\delta$ is conjugate to $t\delta \in T\delta$. (In fact we could replace T with $H/A = T/T \cap A$, see ?.)

Lemma 1.9 Suppose $x \in G\delta$ is a semi-simple element (i.e. $x = g\delta$ with $g \in G$ semisimple). Then x is G-conjugate to an element of $T\delta$.

Proof. Write $x = g\delta$ and choose a Cartan subgroup H' containing g. Write H' = T'A' as usual and g = ta accordingly. As above we may assume a = 1. Since T is a Cartan subgroup of K we may choose $k \in K$ so that $ktk^{-1} \in T$, and then $k(t\delta)k^{-1} \in T\delta$.

Let $W = \operatorname{Norm}_G(H)/H$. Then θ acts on W, and we let W^{θ} be its fixed points. Note that W^{θ} acts naturally on T, A and $T \cap A$.

Lemma 1.10

(1.11)
$$W(K^0, T) \simeq W(G, H)^{\theta}$$

Remark 1.12 In almost all cases K is connected, and T is a Cartan subgroup of K. if K is not connected hen H^{θ} is a Cartan subgroup of K. In this case $H^{\theta} = TZ(G)$, and $W(K, H^{\theta}) \simeq W(K^0, T)$. This is the case, for example, if G = SO(2n) and $K = S[O(2n-1) \times O(1)] \simeq O(2n-1)$.

Remark 1.13 One consequence of Lemma 1.10 is this: if $w \in W^{\theta}$ we may choose a representative $g \in \operatorname{Norm}_{G}(H)$ of w to be in K.

Lemma 1.14 Suppose $x, x' \in T\delta$ are *G*-conjugate. Then there exists $g \in Norm_G(T\delta)$ so that $gxg^{-1} = x'$.

Thus G-conjugacy of elements of $T\delta$ is controlled by the group W_{δ} of the next definition.

Definition 1.15

(1.16)
$$W_{\delta} = Norm_G(T\delta)/Cent_G(T\delta)$$

It is well known that $\operatorname{Cent}_G(T) = H$. Therefore $\operatorname{Norm}_{K^0}(T) \subset \operatorname{Norm}_G(H)$ and we obtain a map

$$W(K^0,T) \hookrightarrow W(G,T)$$

whose image is contained in $W(G,T)^{\theta}$.

Proposition 1.17

(1.18)
$$W_{\delta} \simeq W^{\theta} \ltimes (A \cap T).$$

The subgroup W^{θ} is the stabilizer of δ in W_{δ} , and acts on T via its natural action. The subgroup $A \cap T$ acts on $T\delta$ by multiplication.

Proof. It is well known that $\operatorname{Cent}_G(T) = H$ (every root $\alpha \in \Delta(G, H)$ is non-trivial on T, since there are no real roots). Therefore $\operatorname{Norm}_G(T) = \operatorname{Norm}_G(H)$. Thus

(1.19)(a)
$$\operatorname{Norm}_G(T\delta) = \{g \in \operatorname{Norm}_G(H) \mid g\delta g^{-1} \in T\}.$$

It is also clear that

(1.19)(b)
$$\operatorname{Cent}_{G}(T) = \{g \in H \mid g\delta g^{-1} = \delta\} = H^{\theta}$$

Therefore

(1.19)(c)
$$W_{\delta} = \{g \in \operatorname{Norm}_{G}(H) \mid g\delta g^{-1} \in T\}/H^{\theta}.$$

We also have

(1.19)(d)
$$W^{\theta} = \{g \in \operatorname{Norm}_{G}(H) \mid g\delta g^{-1} \in H\}/H$$

If $g\delta g^{-1} = ta \in H$, choose $b \in H$ so that $b^2 = a$. Then $(bg)\delta(bg)^{-1} = t \in T$. It follows that the natural map $W_{\delta} \to W^{\theta}$ is a surjection. The kernel is

(1.20)
$$\{h = ta \in H \mid a^2 \in T\}/H^{\theta}$$

Let $A_0 = \{a \in A \mid a^2 \in T\}$, so the kernel is

(1.21)
$$TA_0/H^{\theta} = TA_0/TA^{\theta} = A_0/A^{\theta}.$$

Now the map $a \to a^2$ takes A_0 onto $A \cap T$ and there is an exact sequence

$$(1.22) 1 \to A^{\theta} \to A_0 \to A \cap T \to 1$$

Therefore $A_0/A^{\theta} \simeq A \cap T$. See Remark 1.24.

Putting this together we have an exact sequence

$$(1.23) 1 \to A \cap T \to W_{\delta} \to W_{\theta} \to 1$$

Define a splitting of (1.23) by taking $w \in W^{\theta}$ to the unique preimage in W_{δ} fixing δ . This exists by Lemma 1.10: given $w \in W^{\theta}$ there exists $g \in \operatorname{Norm}_{K}(H) \subset \operatorname{Norm}_{G}(H)$ representing w. It is easy to see this is a well defined splitting.

The action of W^{θ} on $T\delta$ is clear. For $a \in A \cap T$ choose $b \in A_0$ so that $b^2 = a$. Then $b(t\delta)b^{-1} = bt\theta(b)^{-1}\delta = b^2t\delta = a(t\delta)$, so $A \cap T$ acts by multiplication.

Remark 1.24 With respect to the decomposition (1.8) we have

$$A_0 \simeq (\mathbb{Z}/2\mathbb{Z})^b \times (\mathbb{Z}/4\mathbb{Z})^c$$
$$A^{\theta} \simeq (\mathbb{Z}/2\mathbb{Z})^b \times (\mathbb{Z}/2\mathbb{Z})^c$$
$$A \cap T \simeq 1 \times (\mathbb{Z}/2\mathbb{Z})^c$$

where $\mathbb{Z}/4\mathbb{Z} = \{\pm(1,1), \pm(i,-i)\} \subset \mathbb{C}^* \times \mathbb{C}^*$. This makes (1.22) explicit.

Proposition 1.25 The strong real forms of (G, γ) are are parametrized by elements x of $T\delta$ satisfying $x^2 \in Z$, modulo the action of W_{δ} .

It is convenient to mod out by the translations in $T \cap A$; this amounts to replacing T with $H/A \simeq T/T \cap A$. Let

(1.26)
$$\overline{T} = T/T \cap A, \quad \overline{T}^{\Gamma} = \overline{T} \times \langle \delta \rangle$$

Note that W^{θ} acts on \overline{T} . Also every element of $T \cap A$ has order 2, so the condition $x^2 \in Z$ for $x \in \overline{T}$ is well defined. This gives:

Proposition 1.27 The strong real forms of (G, γ) are are parametrized by elements x of $\overline{T}\delta$ satisfying $x^2 \in Z$, modulo the action of W^{θ} .

One advantage of $\overline{T}\delta$ over $T\delta$ is that Z acts naturally on \overline{T} , via the isomorphism $\overline{T} \simeq H/A$.

To compute the orbits of W_{δ} on $\overline{T}\delta$ we pass to the tangent space, in which W_{δ} becomes an affine Weyl group. See the Appendix for some generalities about affine root systems and Weyl groups.

2 Affine Weyl group and strong real forms

We are interested in computing the orbits of W^{θ} acting on $\overline{T}\delta$ (Proposition 1.25).

Let $\pi : E \to \overline{T}\delta$ be the tangent space of $\overline{T}\delta$ at δ . We recall a few definitions from the Appendix. The space E is an affine space, with group of translations $\mathfrak{t} = Lie(T)$. The space of affine linear functions $E \to E$ is denoted Aff(E, E).

Definition 2.1 Suppose B is a subgroup of $Aut(\overline{T}\delta)$. Let \widetilde{B} be the lift of B to Aff(E, E). That is

 $\widetilde{B} = \{ \phi \in Aff(E, E) \mid \phi \text{ factors to an element of } B \}.$

From Proposition 1.27 we see:

Lemma 2.2 Strong real forms of G are parametrized by elements X of E satisfying $\pi(X)^2 \in Z$ modulo the action of $\widetilde{W^{\theta}}$.

We consider the problem of finding a fundamental domain for the action of $\widetilde{W^{\theta}}$ on E, and return later to the question of finding the subset of X such that $\pi(X)^2 \in \mathbb{Z}$.

We first suppose G is simply connected. From the Appendix (Definitions B.7 and B.9 and Proposition B.12)

$$\widetilde{W^{\theta}} = W_{\text{aff}} \simeq W^{\theta} \ltimes L_{sc}$$

(the last isomorphism depending on a choice of δ lying over δ). Also W_{aff} is the affine Weyl group of the affine root system D_{Aff} . The underlying finite root system is Δ_{θ} .

There is a standard choice of a fundamental domain for the action of W_{aff} on E. Choose a set of simple roots $\tilde{\alpha}_0, \ldots, \tilde{\alpha}_n$ of Δ_{aff} , and let

$$\overline{\mathcal{D}} = \{ e \in E \mid \widetilde{\alpha}_i(e) \ge 0, i = 0, \dots, n \}.$$

If we choose $\tilde{\delta}$ then we may identify E with V, and write $\tilde{\alpha}_i = (\alpha_i, 0)$ $(i = 1, \ldots, n)$ and $\tilde{\alpha}_0 = (\alpha_0, c)$. Let $\beta = -\alpha_0$; recall β is the highest long (resp. short) root of Δ if c = 1 (respectively c = 2). Then

$$\overline{\mathcal{D}} = \{ v \in V \mid \alpha_i(v) \ge 0 \ (i = 1, \dots, n), \ \beta(v) \le c \}.$$

If G is not simply connected then $W_{\text{aff}} \subset \widetilde{W^{\theta}}$, and $\widetilde{W^{\theta}}$ is an *extended* affine Weyl group. Its fundamental domain will be a quotient of \mathcal{D} by a finite group.

Definition 2.3 Let

(2.4)
$$L(G) = X_*(T/T \cap A).$$

In particular we have

(2.5)
$$L(G)/X_*(T) \simeq T \cap A$$

Lemma 2.6

$$L(G) = \left\langle \frac{1}{c} \sum_{k=0}^{c-1} \theta^k(\gamma^{\vee}) \, | \, \gamma \in X_*(H) \right\rangle$$

If c = 1, 2 we have

(2.7)
$$L = \{ \frac{1}{2} (\alpha^{\vee} + \theta \alpha^{\vee}) \mid \alpha \in X_*(H) \} \quad (c = 1, 2).$$

If G is simply connected then $L(G) = L_{sc}$ (Definition B.9).

Lemma 2.8 Setting L = L(G) we have an exact sequence

(2.9)(a)
$$1 \to L \to \widetilde{W^{\theta}} \to W^{\theta} \to 1$$

Given $\widetilde{\delta}$ we obtain a splitting of (2.9)(a), so

(2.9)(b)
$$\widetilde{W^{\theta}} \simeq W^{\theta} \ltimes L.$$

If G is simply connected then (2.9)(a-b) reduce to (B.13)(a-b). To find a fundamental domain for $\widetilde{W^{\theta}}$ we relate it to W_{aff} .

Lemma 2.10 We have an exact sequence

(2.11)
$$1 \to W_{aff} \to \widetilde{W^{\theta}} \to L/L_{sc} \to 1$$

Given $\widetilde{\delta}$ we obtain a splitting taking L/L_{sc} to the stabilizer of \mathcal{D} . Thus

(2.12)
$$\overline{W^{\theta}} \simeq W_{aff} \rtimes L/L_{so}$$

and L/L_{sc} acts as automorphisms of \mathcal{D} .

Recall we are given (Δ, θ) , to which we have associated the affine root system Δ_{aff} , with Dynkin diagram D_{Aff} . See the Appendix.

Lemma 2.13 The stabilizer of \mathcal{D} in the Euclidean group of E is isomorphic to the automorphism group of D_{Aff} .

Thus we have an action of L/L_{sc} on D_{Aff} . It behaves us to understand L/L_{sc} .

2.1 The group L/L_{sc}

From (B.11) we have

$$L/L_{sc} = \frac{\left\langle \left\{ \frac{1}{2} (\gamma^{\vee} + \theta \gamma^{\vee}) \mid \gamma^{\vee} \in X_*(H) \right\} \right\rangle}{\left\langle \left\{ \frac{1}{2} (\alpha^{\vee} + \theta \alpha^{\vee}) \mid \gamma^{\vee} \in R^{\vee} \right\} \right\rangle}$$

Let G_{sc} be the simply connected cover of G, with center $Z_{sc} = Z(G_{sc})$. We have an exact sequence

$$1 \to \pi_1 \to G_{sc} \to G \to 1$$

with $\pi_1 = \pi_1(G) \subset Z_{sc}$. Write $H_{sc} = T_{sc}A_{sc}$ for the Cartan subgroup in G_{sc} with image H.

Lemma 2.14

$$(2.15) L/L_{sc} \simeq \pi_1/\pi_1 \cap A_{sc}$$

Proof. A standard fact is that $\pi_1 \simeq X_*(H)/R^{\vee}$. The map $\gamma^{\vee} \to \frac{1}{2}(\gamma^{\vee} + \theta\gamma^{\vee})$ takes $X_*(H)$ onto L and factors to a surjection

$$\pi_1 \twoheadrightarrow L/L_{sc}$$
.

The kernel is

$$\{\gamma^{\vee} \in X_*(H) \,|\, (1+\theta)\gamma^{\vee} \in (1+\theta)R^{\vee}\}/R^{\vee}$$

If $(1+\theta)\gamma^{\vee} = (1+\theta)\mu^{\vee}$ for some $\mu^{\vee} \in R^{\vee}$ then $(1+\theta)(\gamma^{\vee}-\mu^{\vee}) = 0$. So we may replace the numerator with $\{\gamma^{\vee} \mid (1+\theta)\gamma^{\vee} = 0\}$. This says $\exp(2\pi i\gamma^{\vee}) \in A_{sc}$, so the kernel is $\pi_1 \cap A_{sc}$.

Remark 2.16 Note that

$$(1-\theta)\pi_1 \subset \pi_1 \cap A_{sc} \subset \pi_1^{-\theta}$$

and both inclusions may be proper. If G is adjoint then $\pi_1 = Z_{sc}$ and one can see $Z_{sc} \cap A_{sc} = (1 - \theta)Z_{sc}$, which gives

$$(2.17) L_{ad}/L_{sc} = Z_{sc}/(1-\theta)Z_{sc}$$

However it is not easy to describe $\pi_1 \cap A_{sc}$ in general.

Definition 2.18 Let

(2.19)
$$\pi_1^{\dagger} = \pi_1 / \pi_1 \cap A_{so}$$

Let $\tau : \pi_1^{\dagger} \to Aut(D_{Aff})$ be the action of π_1^{\dagger} on the affine Dynkin diagram via Lemmas 2.10, 2.13 and (2.15).

Here is another description of τ . First take G to be simply connected, so $Z = Z_{sc}$. Note that Z acts by left multiplication on $H\delta$ and therefore on $\overline{T}\delta$. Explicitly $z = ta \in Z$ acts on $\overline{T}\delta$ by multiplication by t. Although t, aare only defined up to $T \cap A$, this action is well defined on $\overline{T}\delta$. Clearly this action factors to $Z/Z \cap A$, lifts to an action on E, and induces actions of $Z/Z \cap A$ on \mathcal{D} and D_{Aff} .

Suppose $z = ta = \exp(2\pi i\gamma^{\vee})$ with $\gamma^{\vee} \in P^{\vee}$. Then $t = \exp(2\pi i\frac{1}{2}(\gamma^{\vee} + \theta\gamma^{\vee}))$, and it follows that under the isomorphism (2.15) L_{ad}/L_{sc} acts by translation on E.

Now drop the assumption that G is simply connected. Then $\pi_1(G) \subset Z_{sc}$ acts on \mathcal{D} and D_{Aff} by the preceding construction, and this action factors to an action of $\pi_1^{\dagger}(G)$.

Lemma 2.20 We may parametrize \overline{D} as $\{(a_0, \ldots, a_n)\}$ where $a_i \ge 0$ and

(2.21)
$$\sum_{i=0}^{n} n_i a_i = \frac{1}{c}.$$

Here (a_0, \ldots, a_n) corresponds to the element X of \mathcal{D} satisfying

$$\alpha_i(X) = a_i \quad (i = 1, \dots, n)$$

Lemma 2.22 Suppose (a_0, a_1, \ldots, a_n) satisfies (2.21), and let $X \in \mathcal{D}$ be the corresponding element. Then $x = \pi(X) \in \overline{T}\delta$ satisfies $x^m \in Z$ if and only if $ma_i \in \mathbb{Z}$ for all $i = 0, \ldots, n$.

Example 2.23 Take m = 1. We must take c = 1 and each $a_i = 0$ or 1. We conclude from (2.21) that Z is in bijection with the nodes of \widetilde{D} with label 1.

Given *m* choose integers b_i and let $a_i = b_i/m$ $(0 \le i \le n)$. Then (a_0, \ldots, a_n) corresponds to an element of \mathcal{D} if

$$(2.24) c\sum_{i=0}^{n} n_i b_i = m$$

To complete our classification of strong real forms we take m = 1 or 2.

Definition 2.25 A Kac diagram for (G, γ) is a subset S of D_{Aff} satisfying $c \sum_{i \in S} n_i \leq 2$.

Clearly $|S| \leq 2$ and $n_i \leq 2$ for all $i \in S$.

Theorem 2.26 Fix G and an inner class γ of real forms. Let $c = order(\gamma)$. Let θ be the fundamental real form in the given inner class. Let Δ be the root system of G, Δ_{θ} the quotient of Δ by θ , and D_{Aff} the affine Dynkin diagram associated to Δ_{θ} .

The strong real forms of (G, γ) are parametrized by Kac diagrams for D_{Aff} , modulo the action of $\pi_1^{\dagger}(G)$ on D_{Aff} .

Suppose S is a Kac diagram corresponding to a real form, with (complexified) maximal compact subgroup K_S . Then the Dynkin diagram of K_s is obtained by by deleting the nodes of S from D_{Aff} .

For the usual classification of real forms see the next section.

For example, a compact group is given by m = 1, c = 1 and $S = \{i\}$ with $n_i = 1$.

Suppose m = 2. If c = 1, then $S = \{i\}$ with $n_i = 2$, or $S = \{i, j\}$ with $n_i = n_j = 1$. If c = 2 then $S = \{i\}$ with $n_i = 1$.

2.2 The Kac classification of real forms

The Kac classification of real forms of \mathfrak{g} amounts to taking G to be the adjoint group. In this case $\pi_1^{\dagger}(G) = Z_{sc}/(1-\theta)Z_{sc}$ (2.17). Recall (2.19) acts by τ on D_{Aff} (Definition 2.18).

Theorem 2.27 Traditional real forms of (\mathfrak{g}, γ) are parametrized by subsets S as in Theorem 2.26, modulo the action of $Aut(D_{Aff})$.

Real forms of (\mathfrak{g}, γ) are parametrized by subsets S modulo the action of $Z_{sc}/(1-\theta)Z_{sc}$.

Proof. The second statement is an immediate consequence of Theorem 2.26. The first follows from the following Lemma. ■

Remark 2.28 This also gives the classification for G either simply connected or adjoint. For general G equivalence will be by the subgroup stabilizing Z(G).

Lemma 2.29 We have a split exact sequence

$$1 \to \pi_1^{\dagger}(G) \to Aut(\mathcal{D}) \to Out(G) \to 1$$

or equivalently

$$1 \to \pi_1^{\dagger}(G) \to Aut(D_{Aff}) \to Aut(D_{\theta}) \to 1$$

Here D_{θ} is the Dynkin diagram of Δ_{θ} , the underlying finite root system of D_{Aff} . See the Appendix.

Remark 2.30 If $\theta = 1$ and G is simply connected this becomes

$$1 \to Z \to \operatorname{Aut}(D_{\operatorname{Aff}}) \to \operatorname{Aut}(D) \to 1$$

If $\theta \neq 1$ then $\operatorname{Aut}(D_{\theta}) = 1$ and we have

$$\pi_1^{\dagger} \simeq \operatorname{Aut}(D_{\operatorname{Aff}})$$

See [6, Exercise 15, page 217]. For an explicit formula for the map $Z \rightarrow \text{Aut}(D_{\text{Aff}})$ see [2, Chapter VI, §2.3, Proposition 6].

3 Simplified Kac Diagrams and Vogan Diagrams

If $\gamma \neq 1$ the classification of real forms via the Kac diagram is quite subtle, due to its use of the extended Dynkin diagram of Δ_{θ} , rather than that of Δ . Here is a version using the extended Dynkin diagram of Δ .

So fix (G, γ) with G simple and $\gamma \neq 1$. Choosing a splitting datum, in particular a Cartan subgroup H we obtain the fundamental automorphism θ of G as in Section 1. Write H = TA as usual.

For simplicity we assume G is adjoint, so strong real forms and real forms coincide. Suppose $\gamma \neq 1$. By Proposition 1.27 the real forms of (G, γ) are parametrized by elements $t \in T$ of order 2 (corresponding to $x = t\delta \in \overline{T}\delta$), modulo $T \cap A$ and conjugation by W^{θ} .

On the other hand the real forms of (G, 1) are parametrized by elements of H of order 2, modulo conjugation by G. If two elements of t are conjugate by W then they are necessarily conjugate by W^{θ} . If S is the Kac diagram of a real form of (G, 1), then the corresponding element h is in T if and only if S is θ -invariant. This gives a surjective map from

 θ – invariant Kac diagrams for $(G, 1) \rightarrow$ strong real forms of (G, γ)

This map is not injective: on the left hand side equivalence is by the action of W^{θ} , and on the right by W^{θ} and $A \cap T$. It turns out that if we require that S is pointwise fixed by θ then we get a bijection.

Proposition 3.1 Given (G, γ) let D_{Aff} be the extended Dynkin diagram of $\Delta = \Delta(G, H)$. Then real forms of (G, γ) are parametrized by Kac diagrams S for which each node of S is fixed by θ , modulo $Aut(D_{Aff})$. That is, S is a set of θ -fixed nodes of D_{Aff} , such that $c \sum_{i \in S} n_i \leq 2$.

To be honest there is some case-by-case checking here. One point is this. Suppose α is a complex root, and $n_{\alpha} = 1$. Then $S = \{\alpha, \theta\alpha\}$ defines an element t of T of order 2, and a real form of (G, 1). It also defines a real form of (G, γ) , but this one is obtained from another set S which is pointwise fixed.

3.1 Vogan Diagrams

We continue to assume (G, γ) and H have been fixed, and θ is the fundamental real form of G. Let D be the Dykin diagram of G. Suppose θ' is a real form of (G, γ) and B is a θ -stable Borel subgroup of G containing H. Associated to this data is a *Vogan Diagram*: color each of the θ -fixed nodes of D black if the cooresponding imaginary root is non-compact, and white otherwise. See [4, Section VI.8]. Alternatively, let S be the subset (of black nodes) of the θ -fixed nodes of D. This gives a map from real forms of (G, γ) to Vogan diagrams. This map is not injective: it depends on the choice of B. If we choose B to be the "Borel de Siebenthal" choice [4, Theorem 6.96], i.e. for which at most one simple root is non-compact, then we get a set \mathcal{S} with at most one element.

The is closely related to the simplified Kac diagram. Here is the precise statement.

Proposition 3.2 Suppose S is a modified Kac diagram of a real form. If S contains a node with label 1 we may assume (via the action of Z_{sc}) this is the affine node. Deleting this node we obtain a subset of the finite Dynkin diagram. This is the Vogan diagram of the real form.

Conversely suppose S is a Vogan diagram with at most one node, corresponding to a real form of G. Also assume it satisfies the condition in the last line of [4, Theorem 6.96]; equivalently the label on this node is ≤ 2 . If S is empty this is the compact form. Suppose $S = \{i\}$. The Kac diagram of this real form is $S \cup \{0\}$ if $n_i = 1$, and S if $n_i = 1$.

Remark 3.3 One of the subtleties of the Vogan diagram is that we do not need a diagram $S = \{i\}$ if $n_i \geq 3$. The fact that such Kac diagram is not needed is explained by (2.24).

Appendix: Affine root systems and Weyl groups

Let V be a real vector space of dimension n and E an affine space with translations V. That is V acts simply transitively on E, written $v, e \to v + e$. A function If E, E' are affine spaces a function $f : E \to E'$ is said to be *affine* if there exists a linear function $df : V \to V'$ such that

(A.1)
$$f(v+e) = df(v) + f(e) \text{ for all } v \in V, e \in E.$$

In particular if E' is one dimensional we say f is an affine linear functional. In this case $df: V \to \mathbb{R}$, i.e. $df \in V^*$. We say df is the differential of f. The set Aff(E) of all affine linear functionals is a vector space of dimension n+1. The map $f \to df$ is a linear map from Aff(E) to V^* , and this gives an exact sequence

(A.2)
$$0 \to \mathbb{R} \to \operatorname{Aff}(E) \to V^* \to 0.$$

The first inclusion takes $x \in \mathbb{R}$ to the constant function $f_x(e) = x$ for all $e \in E$; this satisfies df = 0.

Choose an element $e_0 \in E$. This gives an isomorphism $V \simeq E$ via $v \to v + e_0$. For $\lambda \in V^*$ let $s(\lambda)(v + e_0) = \lambda(v)$. This defines a splitting of (A.2):

Lemma A.3 Given e_0 we obtain an isomorphism

(A.4)(a)
$$Aff(E) \simeq V^* \oplus \mathbb{R}$$

According to this decomposition we write $f \in Aff(E)$ as

(A.4)(b)
$$f = (\lambda, c)$$

We make the isomorphism (A.4)(a) explicit. In one direction $f \in \text{Aff}(E)$ goes to $\lambda = df$ and $c = f(e_0)$. For the other direction (λ, c) goes to $f \in \text{Aff}(E)$ defined by $f(v + e_0) = \lambda(v) + c$.

We now assume V is equipped with a positive definite non-degenerate symmetric form (,), and identify V and V^{*}. In particular we may identify df with an element of V. Define (,) on Aff(V) by

$$(f,g) = (df, dg)$$

and for $f \in Aff(E)$ not a constant function let

$$f^{\vee} = \frac{2f}{(f,f)}.$$

The affine reflection $s_f: V \to V$ is

$$s_f(v) = v - f^{\vee}(v)df$$
$$= v - f(v)(df)^{\vee}$$
$$= v - \frac{2f(v)}{(f,f)}df$$

Definition A.5 (Macdonald [5]) An affine root system on E is a subset S of Aff(E) satisfying

1. S spans Aff(E), and the elements of S are non-constant functions,

- 2. $s_{\alpha}(\beta) \in S$ for all $\alpha, \beta \in S$,
- 3. $\langle \alpha^{\vee}, \beta \rangle \in \mathbb{Z}$ for all $\alpha, \beta \in S$,
- 4. The Weyl group W = W(S) is the group generated by the reflections $\{s_{\alpha} \mid \alpha \in S\}$. We require that W acts properly on V.

The Weyl group W(S) is an affine Weyl group. The notions of simple roots $\Pi(S)$ and Dynkin diagram D(S) are similar to those for classical root systems. Also the dual S^{\vee} of S defined in the obvious way is an affine root system, with Dynkin diagram $D(S^{\vee}) = D(S)^{\vee}$. Here the dual of a Dynkin diagram means the same diagram with arrows reversed, as usual.

Choose a base point e_0 in E and write elements of Aff(E) as (λ, c) as in Lemma A.3.

Suppose $\Delta \subset V$ is a classical (not necessarily reduced) root system. If Δ is simply laced we say each root is long. Let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots. For each *i* let $\tilde{\alpha}_i = (\alpha_i, 0)$, and let $\tilde{\alpha}_0 = (-\beta, 1)$ where β is the highest root. Note that β is long. Then $\{\tilde{\alpha}_0, \ldots, \tilde{\alpha}_n\}$ is a set of simple roots of an affine root system denoted $\tilde{\Delta}$.

Let $D = D(\Delta)$ be the Dynkin diagram of Δ . Let D be the extended Dynkin diagram of D, i.e. obtained by adjoining $-\beta$ where β is the highest root. Then the Dynkin diagram of $\widetilde{\Delta}$ is the extended Dynkin diagram of Δ , i.e.

$$D(\widetilde{\Delta}) = D(\Delta)$$

We will use Δ (resp. S) to denote a typical classical (resp. affine) root system.

Suppose Δ is a classical root system with Dykin diagram $D = D(\Delta)$. Let and $S = \widetilde{\Delta}$, so $D(S) = \widetilde{D}$. Then $S^{\vee} = (\widetilde{\Delta})^{\vee}$ is also an affine root system, with Dynkin diagram $D(S^{\vee}) = (\widetilde{D})^{\vee}$. If Δ is not simply laced then it is not necessarily the case that $(\widetilde{\Delta})^{\vee} = (\widetilde{\Delta}^{\vee})$ or $(\widetilde{D})^{\vee} = (\widetilde{D}^{\vee})$. Note that \widetilde{D} is obtained from D by adding a long root, so $(\widetilde{D})^{\vee}$ has an extra short root. On the other hand (\widetilde{D}^{\vee}) is obtained from D^{\vee} by adding an extra long root.

Theorem A.6 (Macdonald [5]) Every reduced, irreducible affine root system is equivalent to either $\widetilde{\Delta}$ or $(\widetilde{\Delta})^{\vee}$ where Δ is a classical (not necessarily reduced) root system.

Remark A.7 A remarkable fact is that every reduced, irreducible affine root system is also obtained from a classical root system and involution, as discussed in the next section.

Affine root system and Weyl group associated to (Δ, θ)

Let Δ be an irreducible root system, and θ an automorphism of Δ preserving a set of simple roots. Thus θ corresponds to an automorphism of the Dynkin diagram $D = D(\Delta)$ of Δ . Let $c \in \{1, 2, 3\}$ be the order of δ . Associated to (Δ, θ) is an affine root system, which we now describe.

The quotient Δ/θ is naturally a root system [7], which we denote Δ_{θ} . Here are the possibilities with $\theta \neq 1$. We list the finite root systems Δ, Δ_{θ} , the names of the affine root system according to [5] and [6], the simply connected group G with root system Δ , the real form of G corresponding to θ , and G^{θ} .

Δ	Δ_{θ}	$\Delta_{\rm aff}$	$\Delta_{\rm aff}$	G	$G(\mathbb{R})$	K
A_{2n}	BC_n	$\widetilde{BC_n}$	$A_{2n}^{(2)}$	SL(2n+1)	$SL(2n+1,\mathbb{R})$	SO(2n+1)
A_{2n-1}	C_n	\widetilde{B}_n^\vee	$A_{2n-1}^{(2)}$	SL(2n)	$SL(n,\mathbb{H})$	Sp(n)
D_n	B_n	\widetilde{C}_n^\vee	$D_n^{(2)}$	Spin(2n)	Spin(2n-1,1)	Spin(2n-1)
E_6R	F_4	$\widetilde{F_4}^{\vee}$	$E_{6}^{(2)}$	E_6	$E_6(F_4)$	F_4
$D_4, \theta^3 = 1$	G_2	$\widetilde{G_2}^{\vee}$	$D_4^{(3)}$	Spin(8)		G_2

As in section 1 there is an algebraic group G, and splitting data $(H, B, \{X_{\alpha}\})$ so that $\Delta = \Delta(G, H)$, and θ may be viewed as an automorphism of G preserving the splitting data. (For these purposes we may as well take G simply connected.) Then $T = H^{\theta}$ acts on \mathfrak{g} , and the set of roots $\Delta(G, T) \subset \mathfrak{t}^*$ is a (possibly reduced) root system.

The following Lemma is more or less immediate.

Lemma B.1 Restriction from H to T defines isomorphisms

 $\Delta(G,T) \simeq \Delta_{\theta}$

and

 $W^{\theta} \simeq W(\Delta_{\theta}).$

Also $\Delta(K,T)$ is the reduced root system of Δ_{θ} (obtained by taking only the shorter of two roots $\alpha, 2\alpha$) and $W(K,T) \simeq W(\Delta_{\theta})$. See Remark 1.4.

Now T^{Γ} acts on the complex Lie algebra \mathfrak{g} of G. Let $\Delta(G, T^{\Gamma})$ be the set of roots, i.e. we have a root space decomposition

$$\mathfrak{g} = \sum_{\alpha \in \Delta(G, T^{\Gamma})} \mathfrak{g}_{\alpha}.$$

Clearly restriction from T^{Γ} to T is a surjection $\Delta(G, T^{\Gamma}) \to \Delta(G, T)$.

If c = 1 this is simply $\Delta(G, T)$. For simplicity assume c = 2. Then $\Delta(G, T^{\Gamma})$ may be thought of as a $\mathbb{Z}/2\mathbb{Z}$ -graded root system. That is a character α of T^{Γ} is a pair (α_0, ϵ) with $\alpha_0 \in \Delta(G, T) \simeq \Delta_{\theta}$ and $\epsilon = \pm 1$, where $\alpha_0 = \alpha|_T$ and $\epsilon = \alpha(\delta)$. We can define the reflection associated to $\alpha \in \Delta(G, T^{\Gamma})$ in the usual way, preserving $\Delta(G, T^{\Gamma})$. To be precise, if $\alpha = (\alpha_0, \epsilon)$ and $\beta = (\beta_0, \delta)$ then

(B.2)
$$s_{\alpha}(\beta) = (s_{\alpha_0}(\beta_0), \epsilon \delta(-1)^{\langle \beta, \alpha^{\vee} \rangle}).$$

Let $\pi : E \to T\delta$ be the universal cover. Then E is an affine space with translations $\mathfrak{t} = \text{Lie}(\mathfrak{t})$.

Suppose λ is a character of $T^{\Gamma} \to \mathbb{C}^*$. Note that λ is determined by its restriction to $T\delta$. By the property of covering spaces λ lifts to a family of functions $\tilde{\lambda} : E \to \mathbb{C}$ satisfying

$$\lambda(\pi(X)) = e^{2\pi i \tilde{\lambda}(X)}$$

i.e. $d\lambda = d\lambda$, where the left hand side is in the sense of (A.1) and the right is the ordinary differential of λ . We say λ lies over λ . Any two such functions differ by constant.

Definition B.3 The affine root system Δ_{aff} associated to (Δ, θ) is the set of affine functions in Aff(E) lying over $\Delta(G, T^{\Gamma})$.

Note that the underlying finite root system, i.e. the differentials of all affine roots is $\Delta(G,T) \simeq \Delta_{\theta}$, i.e.

$$d: \Delta_{\operatorname{aff}} \twoheadrightarrow \Delta_{\theta}$$

The following Lemma is an immediate consequence of the fact that $\Delta(G, T^{\Gamma})$ is a root system in the sense of (B.2).

Lemma B.4 Δ_{aff} is an affine root system.

To be explicit, choose $\widetilde{\delta} \in E$ with $\pi(\widetilde{\delta}) = \delta$. Suppose $\alpha \in \widehat{T^{\Gamma}}$. To avoid excessive notation we write α for the differential of α restricted to T, rather than $d\alpha$. Then in the decomposition of Lemma A.3 we may write the set of $\widetilde{\alpha}$ lying over α as

$$\{(\alpha, c) \mid e^{2\pi i c} = \alpha(\delta)\}$$

In particular note that the set of roots lying over α is

$$\{(\alpha, c) \mid c \in \mathbb{Z}\}$$
 if $\alpha(\delta) = 1$

or

$$\{(\alpha, c) \mid c \in \mathbb{Z} + \frac{1}{2}\}$$
 if $\alpha(\delta) = -1$

Similarly if δ has order 3 then $c \in \mathbb{Z} + \frac{1}{3}$ or $\mathbb{Z} + \frac{2}{3}$. For $\alpha \in \Delta_{\theta}$ let $c_{\alpha} = 1$ if α is long, or $\frac{1}{c}$ if α is short, where $c = \operatorname{order}(\theta)$.

Proposition B.5 Let Δ_{aff} be the affine root system associated to (Δ, θ) , and let $c = order(\theta) \in \{1, 2, 3\}$. Then

$$\Delta_{aff} = \{(\alpha, x) \mid x \in c_{\alpha}\mathbb{Z}\}$$

Proposition B.6 Fix a set $\alpha_1, \ldots, \alpha_n$ of simple roots of Δ_{θ} . For each *i* let $\widetilde{\alpha}_i = (\alpha_i, 0)$. Let β be the highest (long) root of $\Delta = \Delta_{\theta}$ if c = 1 or the highest short root otherwise. Let

$$\widetilde{\alpha}_0 = (-\beta, \frac{1}{c}).$$

Then $\{\widetilde{\alpha}_0, \widetilde{\alpha}_1, \ldots, \widetilde{\alpha}_n\}$ is a set of simple roots of Δ_{aff} .

Definition B.7 The affine Weyl group associated to (Δ, θ) is the subgroup of Aff(E, E) generated by the affine reflections $s_{\widetilde{\alpha}}$ for $\widetilde{\alpha} \in \Delta_{aff}$. Alternatively,

(B.8) $W_{aff} = \{ \phi \in Aff(E, E) \mid \phi \text{ factors to an element of } W(\Delta_{\theta}) = W^{\theta} \}.$

We now describe W_{aff} .

Definition B.9 Let

(B.10)
$$L_{sc} = \langle \frac{1}{c} \sum_{k=0}^{c-1} \theta^k(\alpha^{\vee}) \, | \, \alpha \in \Delta \rangle$$

We are primarily interested in c = 1, 2, in which case:

(B.11)
$$L_{sc} = \{\frac{1}{2}(\alpha^{\vee} + \theta \alpha^{\vee}) \mid \alpha \in \Delta\}$$

Proposition B.12 The lattice L_{sc} is the set of translations in W_{aff} . There is an exact sequence

(B.13)(a)
$$0 \to L_{sc} \to W_{aff} \to W^{\theta} \to 1$$

If we choose an element $\tilde{\delta} \in E$ lying over δ we obtain a splitting of (1.18), taking W^{θ} to the the stabilizer in Aff(E) of $\tilde{\delta}$, i.e.

(B.13)(b)
$$W_{aff} \simeq W^{\theta} \ltimes L_{sc}$$

We give a few details of the map $p: W_{\text{aff}} \to W_{\delta}$. Suppose $\alpha \in \Delta_{\theta}$ and $x \in \mathbb{Z}$. Then

$$p(s_{(\alpha,x)}) = s_{\alpha}$$

Suppose c = 2, $\alpha \in \Delta_{\theta}$ is a short root and $x \in \mathbb{Z} + \frac{1}{2}$. Then $m_{\alpha} = \alpha^{\vee}(-1) \in T \cap A$ and

$$p(s_{(\alpha,x)}) = s_{\alpha}m_{\alpha}$$

and

$$p(t_{\frac{1}{2}\alpha^{\vee}}) = m_{\alpha}$$

where $t_{\frac{1}{2}\alpha^{\vee}} \in W_{\text{aff}}$ is translation by $\frac{1}{2}\alpha^{\vee}$.

References

- [1] J. Adams. *Lifting of characters*, volume 101 of *Progress in mathematics*. Birkhäuser, Boston, Basel, Berlin, 1991.
- [2] N. Bourbaki. Groupes et Algèbres de Lie, volume Chapitres 4,5 and 6 of Éléments de Mathématique. Masson, New York, 1981.
- [3] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.

- [4] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 2002.
- [5] I. G. Macdonald. Affine Hecke algebras and orthogonal polynomials, volume 157 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.
- [6] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.
- [7] Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968.