Strong real forms and the Kac classification

Jeffrey Adams

October 21, 2005

This paper is expository. It is a mild generalization of the Kac classification of real forms of a simple Lie group to strong real forms. The basic reference for strong real forms in this language is [1]. For the Kac classification we follow [6]. There is also a treatment in [3], in slightly different terms.

1 Real forms and strong real forms

Let G be a reductive algebraic group. We will occasionally identify algebraic groups with their complex points. We have the standard exact sequence

$$
\begin{equation*}
1 \rightarrow \operatorname{Int}(G) \rightarrow \operatorname{Aut}(G) \rightarrow \operatorname{Out}(G) \rightarrow 1 \tag{1.1}
\end{equation*}
$$

where $\operatorname{Int}(G) \simeq G / Z(G)$ is the group of inner automorphisms of G, $\operatorname{Aut}(G)$ is the automorphims of G, and $\operatorname{Out}(G)=\operatorname{Aut}(G) / \operatorname{Int}(G)$.

Definition 1.2 1. A real form of G is an equivalence class of involutions in $\operatorname{Aut}(G)$, where equivalence is by conjugation by G, i.e. the action of $\operatorname{Int}(G)$.
2. A traditional real form of G is an equivalence class of involutions, where equivalence is by the action of $\operatorname{Aut}(G)$.

The real form defined by θ has a maximal compact subgroup whose complexification is $K=G^{\theta}$.

Remark 1.3 A real forms are also defined by an antiholomorphic involution σ of $G(\mathbb{C})$, i.e. $G(\mathbb{R})=G(\mathbb{C})^{\sigma}$. Given θ choose an antiholomorphic involution σ_{0} so that $\theta \sigma_{0}=\sigma_{0} \theta$ and $G(\mathbb{R})_{0}^{\sigma}$ is compact. Then the real form defined by θ is given by $\sigma=\theta \sigma_{0}$. See [4, Section VI.2].

We say two involutions $\theta, \theta^{\prime} \in \operatorname{Aut}(G)$ are inner to each other, or in the same inner class, if they have the same image in $\operatorname{Out}(G)$. Such a class is determined by an involution $\gamma \in \operatorname{Out}(G)$, and we refer this inner class as the real forms of (G, γ).

We will work entirely in a fixed inner class, so fix an involution $\gamma \in$ Out (G).

Fix a splitting datum for the exact sequence (1.1). This is a set $\left(H, B,\left\{X_{\alpha}\right\}\right)$ consisting of a Cartan subgroup H, a Borel subgroup B containing H, and a set of simple root vectors. This induces a splitting $\operatorname{Out}(G) \rightarrow \operatorname{Aut}(G)$ of (1.1), and we let θ be the image of γ in $\operatorname{Aut}(G)$. Thus θ is an involution of G, it corresponds to the "most compact" real form in the given inner class. We let $K=G^{\theta}$.

Remark 1.4 Suppose G is simple and simply connected. It does not necessarily follow that K is simply connected; it is not simply connected if and only if the real form $G=G(\mathbb{R})$ of G corresponding to K has a non-linear cover. Since θ is the most compact inner form of $(G, \gamma) K$ has a chance to be simply connected. In fact this holds unless $G=S L(2 n+1)$, in which case $K=S O(2 n+1)$ and $\pi_{1}(K)=\mathbb{Z} / 2 \mathbb{Z}$. This exception is due to the fact that Δ_{θ} (cf. Lemma B.1) is not reduced in this case. See the table in Section 3.1.

For most of these notes G will be semisimple, or even simple. Let $\Delta=$ $\Delta(G, H)$ be the root system of H in G, and let $D=D(\Delta)$ be the Dynkin diagram of Δ. A choice of splitting datum induces an isomorphism

$$
\begin{equation*}
\operatorname{Out}(\mathfrak{g}) \simeq \operatorname{Aut}(D) \tag{1.5}
\end{equation*}
$$

Furthermore $\operatorname{Out}(G) \subset \operatorname{Out}(\mathfrak{g})$, with equality if G is simply connected or adjoint. Thus γ is given by an involution of D.

Let

$$
G^{\Gamma}=G \rtimes\langle\delta\rangle
$$

where $\delta^{2}=1$ and $\delta g \delta^{-1}=\theta(g)$.

Definition 1.6 A strong real form of (G, γ) is an equivalence class of elements $x \in G^{\Gamma}$, satisfying $x \notin G$, and $x^{2} \in Z(G)$, where equivalence is by conjugation by G.

The map $x \rightarrow \theta_{x}=\operatorname{int}(x)$ is a surjection from the strong real forms of (G, γ) to the real forms of (G, γ). Let

$$
H^{\Gamma}=H \rtimes\langle\delta\rangle \subset G^{\Gamma}
$$

Let T be the identity component of H^{θ}, and A be the identity component of $H^{-\theta}=\left\{h \in H \mid \theta(h)=h^{-1}\right\}$. Then $H=T A$. Let

$$
T^{\Gamma}=T \times\langle\delta\rangle \subset H^{\Gamma}
$$

Remark 1.7 We may write

$$
\begin{equation*}
H \simeq \mathbb{C}^{* a} \times \mathbb{C}^{* b} \times\left(\mathbb{C}^{*} \times \mathbb{C}^{*}\right)^{c} \tag{1.8}
\end{equation*}
$$

where θ acts trivially on the first a factors, by inverse on the next b, and $\theta(z, w)=(w, z)$ on each of the last c terms. Note that if $b \neq 0$ then T is a proper subset of H^{θ}. This happens, for example, in $S O(3,1)$.

A key observation is that every element of $H \delta$ is conjugate to an element of $T \delta$, since A acts by conjugation on $H \delta$ by multiplication by A. That is for $a \in A, h \in H, a(h \delta) a^{-1}=a h\left(\delta a^{-1} \delta\right) \delta=a h \theta\left(a^{-1}\right) \delta=a^{2} h \delta$. Since A is connected every element has a square root, so this gives multiplication by an arbitary element of A. Therefore ta δ is conjugate to $t \delta \in T \delta$. (In fact we could replace T with $H / A=T / T \cap A$, see ?.)

Lemma 1.9 Suppose $x \in G \delta$ is a semi-simple element (i.e. $x=g \delta$ with $g \in G$ semisimple). Then x is G-conjugate to an element of $T \delta$.

Proof. Write $x=g \delta$ and choose a Cartan subgroup H^{\prime} containing g. Write $H^{\prime}=T^{\prime} A^{\prime}$ as usual and $g=t a$ accordingly. As above we may assume $a=1$. Since T is a Cartan subgroup of K we may choose $k \in K$ so that $k t k^{-1} \in T$, and then $k(t \delta) k^{-1} \in T \delta$.

Let $W=\operatorname{Norm}_{G}(H) / H$. Then θ acts on W, and we let W^{θ} be its fixed points. Note that W^{θ} acts naturally on T, A and $T \cap A$.

Lemma 1.10

$$
\begin{equation*}
W\left(K^{0}, T\right) \simeq W(G, H)^{\theta} \tag{1.11}
\end{equation*}
$$

Remark 1.12 In almost all cases K is connected, and T is a Cartan subgroup of K. if K is not connected hen H^{θ} is a Cartan subgroup of K. In this case $H^{\theta}=T Z(G)$, and $W\left(K, H^{\theta}\right) \simeq W\left(K^{0}, T\right)$. This is the case, for example, if $G=S O(2 n)$ and $K=S[O(2 n-1) \times O(1)] \simeq O(2 n-1)$.

Remark 1.13 One consequence of Lemma 1.10 is this: if $w \in W^{\theta}$ we may choose a representative $g \in \operatorname{Norm}_{G}(H)$ of w to be in K.

Lemma 1.14 Suppose $x, x^{\prime} \in T \delta$ are G-conjugate. Then there exists $g \in$ $\operatorname{Norm}_{G}(T \delta)$ so that $g x g^{-1}=x^{\prime}$.

Thus G-conjugacy of elements of $T \delta$ is controlled by the group W_{δ} of the next definition.

Definition 1.15

$$
\begin{equation*}
W_{\delta}=\operatorname{Norm}_{G}(T \delta) / \operatorname{Cent}_{G}(T \delta) \tag{1.16}
\end{equation*}
$$

It is well known that $\operatorname{Cent}_{G}(T)=H$. Therefore $\operatorname{Norm}_{K^{0}}(T) \subset \operatorname{Norm}_{G}(H)$ and we obtain a map

$$
W\left(K^{0}, T\right) \hookrightarrow W(G, T)
$$

whose image is contained in $W(G, T)^{\theta}$.

Proposition 1.17

$$
\begin{equation*}
W_{\delta} \simeq W^{\theta} \ltimes(A \cap T) \tag{1.18}
\end{equation*}
$$

The subgroup W^{θ} is the stabilizer of δ in W_{δ}, and acts on T via its natural action. The subgroup $A \cap T$ acts on $T \delta$ by multiplication.

Proof. It is well known that $\operatorname{Cent}_{G}(T)=H$ (every root $\alpha \in \Delta(G, H)$ is non-trivial on T, since there are no real roots). Therefore $\operatorname{Norm}_{G}(T)=$ $\operatorname{Norm}_{G}(H)$. Thus

$$
\begin{equation*}
\operatorname{Norm}_{G}(T \delta)=\left\{g \in \operatorname{Norm}_{G}(H) \mid g \delta g^{-1} \in T\right\} \tag{1.19}
\end{equation*}
$$

It is also clear that

$$
\begin{equation*}
\operatorname{Cent}_{G}(T)=\left\{g \in H \mid g \delta g^{-1}=\delta\right\}=H^{\theta} \tag{1.19}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
W_{\delta}=\left\{g \in \operatorname{Norm}_{G}(H) \mid g \delta g^{-1} \in T\right\} / H^{\theta} . \tag{1.19}
\end{equation*}
$$

We also have

$$
\begin{equation*}
W^{\theta}=\left\{g \in \operatorname{Norm}_{G}(H) \mid g \delta g^{-1} \in H\right\} / H \tag{1.19}
\end{equation*}
$$

If $g \delta g^{-1}=t a \in H$, choose $b \in H$ so that $b^{2}=a$. Then $(b g) \delta(b g)^{-1}=t \in T$. It follows that the natural map $W_{\delta} \rightarrow W^{\theta}$ is a surjection. The kernel is

$$
\begin{equation*}
\left\{h=t a \in H \mid a^{2} \in T\right\} / H^{\theta} \tag{1.20}
\end{equation*}
$$

Let $A_{0}=\left\{a \in A \mid a^{2} \in T\right\}$, so the kernel is

$$
\begin{equation*}
T A_{0} / H^{\theta}=T A_{0} / T A^{\theta}=A_{0} / A^{\theta} . \tag{1.21}
\end{equation*}
$$

Now the map $a \rightarrow a^{2}$ takes A_{0} onto $A \cap T$ and there is an exact sequence

$$
\begin{equation*}
1 \rightarrow A^{\theta} \rightarrow A_{0} \rightarrow A \cap T \rightarrow 1 \tag{1.22}
\end{equation*}
$$

Therefore $A_{0} / A^{\theta} \simeq A \cap T$. See Remark 1.24.
Putting this together we have an exact sequence

$$
\begin{equation*}
1 \rightarrow A \cap T \rightarrow W_{\delta} \rightarrow W_{\theta} \rightarrow 1 \tag{1.23}
\end{equation*}
$$

Define a splitting of (1.23) by taking $w \in W^{\theta}$ to the unique preimage in W_{δ} fixing δ. This exists by Lemma 1.10: given $w \in W^{\theta}$ there exists $g \in \operatorname{Norm}_{K}(H) \subset \operatorname{Norm}_{G}(H)$ representing w. It is easy to see this is a well defined splitting.

The action of W^{θ} on $T \delta$ is clear. For $a \in A \cap T$ choose $b \in A_{0}$ so that $b^{2}=a$. Then $b(t \delta) b^{-1}=b t \theta(b)^{-1} \delta=b^{2} t \delta=a(t \delta)$, so $A \cap T$ acts by multiplication.

Remark 1.24 With respect to the decomposition (1.8) we have

$$
\begin{aligned}
A_{0} & \simeq(\mathbb{Z} / 2 \mathbb{Z})^{b} \times(\mathbb{Z} / 4 \mathbb{Z})^{c} \\
A^{\theta} & \simeq(\mathbb{Z} / 2 \mathbb{Z})^{b} \times(\mathbb{Z} / 2 \mathbb{Z})^{c} \\
A \cap T & \simeq 1 \times(\mathbb{Z} / 2 \mathbb{Z})^{c}
\end{aligned}
$$

where $\mathbb{Z} / 4 \mathbb{Z}=\{ \pm(1,1), \pm(i,-i)\} \subset \mathbb{C}^{*} \times \mathbb{C}^{*}$. This makes (1.22) explicit.

Proposition 1.25 The strong real forms of (G, γ) are are parametrized by elements x of $T \delta$ satisfying $x^{2} \in Z$, modulo the action of W_{δ}.

It is convenient to mod out by the translations in $T \cap A$; this amounts to replacing T with $H / A \simeq T / T \cap A$. Let

$$
\begin{equation*}
\bar{T}=T / T \cap A, \quad \bar{T}^{\Gamma}=\bar{T} \times\langle\delta\rangle \tag{1.26}
\end{equation*}
$$

Note that W^{θ} acts on \bar{T}. Also every element of $T \cap A$ has order 2, so the condition $x^{2} \in Z$ for $x \in \bar{T}$ is well defined. This gives:

Proposition 1.27 The strong real forms of (G, γ) are are parametrized by elements x of $\bar{T} \delta$ satisfying $x^{2} \in Z$, modulo the action of W^{θ}.

One advantage of $\bar{T} \delta$ over $T \delta$ is that Z acts naturally on \bar{T}, via the isomorphism $\bar{T} \simeq H / A$.

To compute the orbits of W_{δ} on $\bar{T} \delta$ we pass to the tangent space, in which W_{δ} becomes an affine Weyl group. See the Appendix for some generalities about affine root systems and Weyl groups.

2 Affine Weyl group and strong real forms

We are interested in computing the orbits of W^{θ} acting on $\bar{T} \delta$ (Proposition 1.25).

Let $\pi: E \rightarrow \bar{T} \delta$ be the tangent space of $\bar{T} \delta$ at δ. We recall a few definitions from the Appendix. The space E is an affine space, with group of translations $\mathfrak{t}=\operatorname{Lie}(T)$. The space of affine linear functions $E \rightarrow E$ is denoted $\operatorname{Aff}(E, E)$.

Definition 2.1 Suppose B is a subgroup of $\operatorname{Aut}(\bar{T} \delta)$. Let \widetilde{B} be the lift of B to $\operatorname{Aff}(E, E)$. That is

$$
\widetilde{B}=\{\phi \in \operatorname{Aff}(E, E) \mid \phi \text { factors to an element of } B\} .
$$

From Proposition 1.27 we see:
Lemma 2.2 Strong real forms of G are parametrized by elements X of E satisying $\pi(X)^{2} \in Z$ modulo the action of $\widetilde{W^{\theta}}$.

We consider the problem of finding a fundamental domain for the action of $\widetilde{W^{\theta}}$ on E, and return later to the question of finding the subset of X such that $\pi(X)^{2} \in Z$.

We first suppose G is simply connected. From the Appendix (Definitions B. 7 and B. 9 and Proposition B.12)

$$
\widetilde{W^{\theta}}=W_{\mathrm{aff}} \simeq W^{\theta} \ltimes L_{s c}
$$

(the last isomorphism depending on a choice of $\widetilde{\delta}$ lying over δ). Also $W_{\text {aff }}$ is the affine Weyl group of the affine root system $D_{\text {Aff }}$. The underlying finite root system is Δ_{θ}.

There is a standard choice of a fundamental domain for the action of $W_{\text {aff }}$ on E. Choose a set of simple roots $\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{n}$ of $\Delta_{\text {aff }}$, and let

$$
\overline{\mathcal{D}}=\left\{e \in E \mid \widetilde{\alpha}_{i}(e) \geq 0, i=0, \ldots, n\right\} .
$$

If we choose $\widetilde{\delta}$ then we may identify E with V, and write $\widetilde{\alpha}_{i}=\left(\alpha_{i}, 0\right)(i=$ $1, \ldots, n)$ and $\widetilde{\alpha}_{0}=\left(\alpha_{0}, c\right)$. Let $\beta=-\alpha_{0}$; recall β is the highest long (resp. short) root of Δ if $c=1$ (respectively $c=2$). Then

$$
\overline{\mathcal{D}}=\left\{v \in V \mid \alpha_{i}(v) \geq 0(i=1, \ldots, n), \beta(v) \leq c\right\}
$$

If G is not simply connected then $W_{\text {aff }} \subset \widetilde{W^{\theta}}$, and $\widetilde{W^{\theta}}$ is an extended affine Weyl group. Its fundamental domain will be a quotient of \mathcal{D} by a finite group.

Definition 2.3 Let

$$
\begin{equation*}
L(G)=X_{*}(T / T \cap A) \tag{2.4}
\end{equation*}
$$

In particular we have

$$
\begin{equation*}
L(G) / X_{*}(T) \simeq T \cap A \tag{2.5}
\end{equation*}
$$

Lemma 2.6

$$
L(G)=\left\langle\left.\frac{1}{c} \sum_{k=0}^{c-1} \theta^{k}\left(\gamma^{\vee}\right) \right\rvert\, \gamma \in X_{*}(H)\right\rangle
$$

If $c=1,2$ we have

$$
\begin{equation*}
L=\left\{\left.\frac{1}{2}\left(\alpha^{\vee}+\theta \alpha^{\vee}\right) \right\rvert\, \alpha \in X_{*}(H\} \quad(c=1,2) .\right. \tag{2.7}
\end{equation*}
$$

If G is simply connected then $L(G)=L_{s c}$ (Definition B.9).
Lemma 2.8 Setting $L=L(G)$ we have an exact sequence

$$
\begin{equation*}
1 \rightarrow L \rightarrow \widetilde{W^{\theta}} \rightarrow W^{\theta} \rightarrow 1 \tag{2.9}
\end{equation*}
$$

Given $\widetilde{\delta}$ we obtain a splitting of (2.9)(a), so

$$
\begin{equation*}
\widetilde{W^{\theta}} \simeq W^{\theta} \ltimes L \tag{2.9}
\end{equation*}
$$

If G is simply connected then $(2.9)(\mathrm{a}-\mathrm{b})$ reduce to $(\mathrm{B} .13)(\mathrm{a}-\mathrm{b})$.
To find a fundamental domain for $\widetilde{W^{\theta}}$ we relate it to $W_{\text {aff }}$.
Lemma 2.10 We have an exact sequence

$$
\begin{equation*}
1 \rightarrow W_{a f f} \rightarrow \widetilde{W^{\theta}} \rightarrow L / L_{s c} \rightarrow 1 \tag{2.11}
\end{equation*}
$$

Given $\widetilde{\delta}$ we obtain a splitting taking $L / L_{s c}$ to the stabilizer of \mathcal{D}. Thus

$$
\begin{equation*}
\widetilde{W^{\theta}} \simeq W_{a f f} \rtimes L / L_{s c} \tag{2.12}
\end{equation*}
$$

and $L / L_{s c}$ acts as automorphisms of \mathcal{D}.
Recall we are given (Δ, θ), to which we have associated the affine root system $\Delta_{\text {aff }}$, with Dynkin diagram $D_{\text {Aff }}$. See the Appendix.

Lemma 2.13 The stabilizer of \mathcal{D} in the Euclidean group of E is isomorphic to the automorphism group of $D_{\text {Aff. }}$.

Thus we have an action of $L / L_{s c}$ on $D_{\text {Aff }}$. It behooves us to understand $L / L_{s c}$.

2.1 The group $L / L_{s c}$

From (B.11) we have

$$
L / L_{s c}=\frac{\left\langle\left\{\left.\frac{1}{2}\left(\gamma^{\vee}+\theta \gamma^{\vee}\right) \right\rvert\, \gamma^{\vee} \in X_{*}(H)\right\}\right\rangle}{\left\langle\left\{\left.\frac{1}{2}\left(\alpha^{\vee}+\theta \alpha^{\vee}\right) \right\rvert\, \gamma^{\vee} \in R^{\vee}\right\}\right\rangle}
$$

Let $G_{s c}$ be the simply connected cover of G, with center $Z_{s c}=Z\left(G_{s c}\right)$. We have an exact sequence

$$
1 \rightarrow \pi_{1} \rightarrow G_{s c} \rightarrow G \rightarrow 1
$$

with $\pi_{1}=\pi_{1}(G) \subset Z_{s c}$. Write $H_{s c}=T_{s c} A_{s c}$ for the Cartan subgroup in $G_{s c}$ with image H.

Lemma 2.14

$$
\begin{equation*}
L / L_{s c} \simeq \pi_{1} / \pi_{1} \cap A_{s c} \tag{2.15}
\end{equation*}
$$

Proof. A standard fact is that $\pi_{1} \simeq X_{*}(H) / R^{\vee}$. The map $\gamma^{\vee} \rightarrow \frac{1}{2}\left(\gamma^{\vee}+\theta \gamma^{\vee}\right)$ takes $X_{*}(H)$ onto L and factors to a surjection

$$
\pi_{1} \rightarrow L / L_{s c}
$$

The kernel is

$$
\left\{\gamma^{\vee} \in X_{*}(H) \mid(1+\theta) \gamma^{\vee} \in(1+\theta) R^{\vee}\right\} / R^{\vee}
$$

If $(1+\theta) \gamma^{\vee}=(1+\theta) \mu^{\vee}$ for some $\mu^{\vee} \in R^{\vee}$ then $(1+\theta)\left(\gamma^{\vee}-\mu^{\vee}\right)=0$. So we may replace the numerator with $\left\{\gamma^{\vee} \mid(1+\theta) \gamma^{\vee}=0\right\}$. This says $\exp \left(2 \pi i \gamma^{\vee}\right) \in A_{s c}$, so the kernel is $\pi_{1} \cap A_{s c}$.

Remark 2.16 Note that

$$
(1-\theta) \pi_{1} \subset \pi_{1} \cap A_{s c} \subset \pi_{1}^{-\theta}
$$

and both inclusions may be proper. If G is adjoint then $\pi_{1}=Z_{s c}$ and one can see $Z_{s c} \cap A_{s c}=(1-\theta) Z_{s c}$, which gives

$$
\begin{equation*}
L_{a d} / L_{s c}=Z_{s c} /(1-\theta) Z_{s c} \tag{2.17}
\end{equation*}
$$

However it is not easy to describe $\pi_{1} \cap A_{s c}$ in general.

Definition 2.18 Let

$$
\begin{equation*}
\pi_{1}^{\dagger}=\pi_{1} / \pi_{1} \cap A_{s c} \tag{2.19}
\end{equation*}
$$

Let $\tau: \pi_{1}^{\dagger} \rightarrow A u t\left(D_{A f f}\right)$ be the action of π_{1}^{\dagger} on the affine Dynkin diagram via Lemmas 2.10, 2.13 and (2.15).

Here is another description of τ. First take G to be simply connected, so $Z=Z_{s c}$. Note that Z acts by left multiplication on $H \delta$ and therefore on $\bar{T} \delta$. Explicitly $z=t a \in Z$ acts on $\bar{T} \delta$ by multiplication by t. Although t, a are only defined up to $T \cap A$, this action is well defined on $\bar{T} \delta$. Clearly this action factors to $Z / Z \cap A$, lifts to an action on E, and induces actions of $Z / Z \cap A$ on \mathcal{D} and $D_{\text {Aff }}$.

Suppose $z=t a=\exp \left(2 \pi i \gamma^{\vee}\right)$ with $\gamma^{\vee} \in P^{\vee}$. Then $t=\exp \left(2 \pi i \frac{1}{2}\left(\gamma^{\vee}+\right.\right.$ $\left.\theta \gamma^{\vee}\right)$), and it follows that under the isomorphism (2.15) $L_{a d} / L_{s c}$ acts by translation on E.

Now drop the assumption that G is simply connected. Then $\pi_{1}(G) \subset Z_{\text {sc }}$ acts on \mathcal{D} and $D_{\text {Aff }}$ by the preceding construction, and this action factors to an action of $\pi_{1}^{\dagger}(G)$.

Lemma 2.20 We may parametrize \bar{D} as $\left\{\left(a_{0}, \ldots, a_{n}\right)\right\}$ where $a_{i} \geq 0$ and

$$
\begin{equation*}
\sum_{i=0}^{n} n_{i} a_{i}=\frac{1}{c} \tag{2.21}
\end{equation*}
$$

Here $\left(a_{0}, \ldots, a_{n}\right)$ corresponds to the element X of \mathcal{D} satisfying

$$
\alpha_{i}(X)=a_{i} \quad(i=1, \ldots, n)
$$

Lemma 2.22 Suppose $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ satisfies (2.21), and let $X \in \mathcal{D}$ be the corresponding element. Then $x=\pi(X) \in \bar{T} \delta$ satisfies $x^{m} \in Z$ if and only if $m a_{i} \in \mathbb{Z}$ for all $i=0, \ldots, n$.

Example 2.23 Take $m=1$. We must take $c=1$ and each $a_{i}=0$ or 1 . We conclude from (2.21) that Z is in bijection with the nodes of \widetilde{D} with label 1.

Given m choose integers b_{i} and let $a_{i}=b_{i} / m(0 \leq i \leq n)$. Then $\left(a_{0}, \ldots, a_{n}\right)$ corresponds to an element of \mathcal{D} if

$$
\begin{equation*}
c \sum_{i=0}^{n} n_{i} b_{i}=m \tag{2.24}
\end{equation*}
$$

To complete our classification of strong real forms we take $m=1$ or 2 .
Definition 2.25 A Kac diagram for (G, γ) is a subset S of $D_{\text {Aff }}$ satisfying $c \sum_{i \in S} n_{i} \leq 2$.

Clearly $|S| \leq 2$ and $n_{i} \leq 2$ for all $i \in S$.
Theorem 2.26 Fix G and an inner class γ of real forms. Let $c=\operatorname{order}(\gamma)$. Let θ be the fundamental real form in the given inner class. Let Δ be the root system of G, Δ_{θ} the quotient of Δ by θ, and $D_{\text {Aff }}$ the affine Dynkin diagram associated to Δ_{θ}.

The strong real forms of (G, γ) are parametrized by Kac diagrams for $D_{\text {Aff }}$, modulo the action of $\pi_{1}^{\dagger}(G)$ on $D_{\text {Aff }}$.

Suppose S is a Kac diagram corresponding to a real form, with (complexified) maximal compact subgroup K_{S}. Then the Dynkin diagram of K_{s} is obtained by by deleting the nodes of S from $D_{\text {Aff. }}$.

For the usual classification of real forms see the next section.
For example, a compact group is given by $m=1, c=1$ and $S=\{i\}$ with $n_{i}=1$.

Suppose $m=2$. If $c=1$, then $S=\{i\}$ with $n_{i}=2$, or $S=\{i, j\}$ with $n_{i}=n_{j}=1$. If $c=2$ then $S=\{i\}$ with $n_{i}=1$.

2.2 The Kac classification of real forms

The Kac classification of real forms of \mathfrak{g} amounts to taking G to be the adjoint group. In this case $\pi_{1}^{\dagger}(G)=Z_{s c} /(1-\theta) Z_{s c}(2.17)$. Recall (2.19) acts by τ on $D_{\text {Aff }}$ (Definition 2.18).

Theorem 2.27 Traditional real forms of (\mathfrak{g}, γ) are parametrized by subsets S as in Theorem 2.26, modulo the action of $\operatorname{Aut}\left(D_{\text {Aff }}\right)$.

Real forms of (\mathfrak{g}, γ) are parametrized by subsets S modulo the action of $Z_{\text {sc }} /(1-\theta) Z_{s c}$.

Proof. The second statement is an immediate consequence of Theorem 2.26. The first follows from the following Lemma.

Remark 2.28 This also gives the classification for G either simply connected or adjoint. For general G equivalence will be by the subgroup stabilizing $Z(G)$.

Lemma 2.29 We have a split exact sequence

$$
1 \rightarrow \pi_{1}^{\dagger}(G) \rightarrow \operatorname{Aut}(\mathcal{D}) \rightarrow \operatorname{Out}(G) \rightarrow 1
$$

or equivalently

$$
1 \rightarrow \pi_{1}^{\dagger}(G) \rightarrow \operatorname{Aut}\left(D_{A f f}\right) \rightarrow \operatorname{Aut}\left(D_{\theta}\right) \rightarrow 1
$$

Here D_{θ} is the Dynkin diagram of Δ_{θ}, the underlying finite root system of $D_{\text {Aff. }}$. See the Appendix.

Remark 2.30 If $\theta=1$ and G is simply connected this becomes

$$
1 \rightarrow Z \rightarrow \operatorname{Aut}\left(D_{\mathrm{Aff}}\right) \rightarrow \operatorname{Aut}(D) \rightarrow 1
$$

If $\theta \neq 1$ then $\operatorname{Aut}\left(D_{\theta}\right)=1$ and we have

$$
\pi_{1}^{\dagger} \simeq \operatorname{Aut}\left(D_{\mathrm{Aff}}\right)
$$

See [6, Exercise 15, page 217]. For an explicit formula for the map $Z \rightarrow$ $\operatorname{Aut}\left(D_{\text {Aff }}\right)$ see [2, Chapter VI, $\S 2.3$, Proposition 6].

3 Simplified Kac Diagrams and Vogan Diagrams

If $\gamma \neq 1$ the classification of real forms via the Kac diagram is quite subtle, due to its use of the extended Dynkin diagram of Δ_{θ}, rather than that of Δ. Here is a version using the extended Dynkin diagram of Δ.

So fix (G, γ) with G simple and $\gamma \neq 1$. Choosing a splitting datum, in particular a Cartan subgroup H we obtain the fundamental automorphism θ of G as in Section 1. Write $H=T A$ as usual.

For simplicity we assume G is adjoint, so strong real forms and real forms coincide. Suppose $\gamma \neq 1$. By Proposition 1.27 the real forms of (G, γ) are parametrized by elements $t \in T$ of order 2 (corresponding to $x=t \delta \in \bar{T} \delta$), modulo $T \cap A$ and conjugation by W^{θ}.

On the other hand the real forms of $(G, 1)$ are parametrized by elements of H of order 2, modulo conjugation by G. If two elements of t are conjugate by W then they are necessarily conjugate by W^{θ}. If S is the Kac diagram of a real form of $(G, 1)$, then the corresponding element h is in T if and only if S is θ-invariant. This gives a surjective map from
θ - invariant Kac diagrams for $(G, 1) \rightarrow$ strong real forms of (G, γ)
This map is not injective: on the left hand side equivalence is by the action of W^{θ}, and on the right by W^{θ} and $A \cap T$. It turns out that if we require that S is pointwise fixed by θ then we get a bijection.

Proposition 3.1 Given (G, γ) let $D_{\text {Aff }}$ be the extended Dynkin diagram of $\Delta=\Delta(G, H)$. Then real forms of (G, γ) are parametrized by Kac diagrams S for which each node of S is fixed by θ, modulo $\operatorname{Aut}\left(D_{A f f}\right)$. That is, S is a set of θ-fixed nodes of $D_{A f f}$, such that $c \sum_{i \in S} n_{i} \leq 2$.

To be honest there is some case-by-case checking here. One point is this. Suppose α is a complex root, and $n_{\alpha}=1$. Then $S=\{\alpha, \theta \alpha\}$ defines an element t of T of order 2 , and a real form of $(G, 1)$. It also defines a real form of (G, γ), but this one is obtained from another set S which is pointwise fixed.

3.1 Vogan Diagrams

We continue to assume (G, γ) and H have been fixed, and θ is the fundamental real form of G. Let D be the Dykin diagram of G. Suppose θ^{\prime} is a real form of (G, γ) and B is a θ-stable Borel subgroup of G containing H. Associated to this data is a Vogan Diagram: color each of the θ-fixed nodes of D black if the cooresponding imaginary root is non-compact, and white otherwise. See [4, Section VI.8]. Alternatively, let \mathcal{S} be the subset (of black nodes) of the θ-fixed nodes of D. This gives a map from real forms of (G, γ) to Vogan diagrams. This map is not injective: it depends on the choice of B. If we choose B to be the "Borel de Siebenthal" choice [4, Theorem 6.96],
i.e. for which at most one simple root is non-compact, then we get a set \mathcal{S} with at most one element.

The is closely related to the simplified Kac diagram. Here is the precise statement.

Proposition 3.2 Suppose S is a modified Kac diagram of a real form. If S contains a node with label 1 we may assume (via the action of $Z_{\text {sc }}$) this is the affine node. Deleting this node we obtain a subset of the finite Dynkin diagram. This is the Vogan diagram of the real form.

Conversely suppose S is a Vogan diagram with at most one node, corresponding to a real form of G. Also assume it satisfies the condition in the last line of [4, Thoerem6.96]; equivalently the label on this node is ≤ 2. If S is empty this is the compact form. Suppose $S=\{i\}$. The Kac diagram of this real form is $S \cup\{0\}$ if $n_{i}=1$, and S if $n_{i}=1$.

Remark 3.3 One of the subtleties of the Vogan diagram is that we do not need a diagram $S=\{i\}$ if $n_{i} \geq 3$. The fact that such Kac diagram is not needed is explained by (2.24).

Appendix: Affine root systems and Weyl groups

Let V be a real vector space of dimension n and E an affine space with translations V. That is V acts simply transitively on E, written $v, e \rightarrow v+e$. A function If E, E^{\prime} are affine spaces a function $f: E \rightarrow E^{\prime}$ is said to be affine if there exists a linear function $d f: V \rightarrow V^{\prime}$ such that

$$
\begin{equation*}
f(v+e)=d f(v)+f(e) \quad \text { for all } v \in V, e \in E \tag{A.1}
\end{equation*}
$$

In particular if E^{\prime} is one dimensional we say f is an affine linear functional. In this case $d f: V \rightarrow \mathbb{R}$, i.e. $d f \in V^{*}$. We say $d f$ is the differential of f. The set $\operatorname{Aff}(E)$ of all affine linear functionals is a vector space of dimension $n+1$. The map $f \rightarrow d f$ is a linear map from $\operatorname{Aff}(E)$ to V^{*}, and this gives an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathbb{R} \rightarrow \operatorname{Aff}(E) \rightarrow V^{*} \rightarrow 0 \tag{A.2}
\end{equation*}
$$

The first inclusion takes $x \in \mathbb{R}$ to the constant function $f_{x}(e)=x$ for all $e \in E$; this satisfies $d f=0$.

Choose an element $e_{0} \in E$. This gives an isomorphism $V \simeq E$ via $v \rightarrow v+e_{0}$. For $\lambda \in V^{*}$ let $s(\lambda)\left(v+e_{0}\right)=\lambda(v)$. This defines a splitting of (A.2):

Lemma A. 3 Given e_{0} we obtain an isomorphism

$$
\begin{equation*}
\operatorname{Aff}(E) \simeq V^{*} \oplus \mathbb{R} \tag{A.4}
\end{equation*}
$$

According to this decomposition we write $f \in A f f(E)$ as

$$
\begin{equation*}
f=(\lambda, c) \tag{A.4}
\end{equation*}
$$

We make the isomorphism (A.4)(a) explicit. In one direction $f \in \operatorname{Aff}(E)$ goes to $\lambda=d f$ and $c=f\left(e_{0}\right)$. For the other direction (λ, c) goes to $f \in \operatorname{Aff}(E)$ defined by $f\left(v+e_{0}\right)=\lambda(v)+c$.

We now assume V is equipped with a positive definite non-degenerate symmetric form (,), and identify V and V^{*}. In particular we may identify $d f$ with an element of V. Define (,) on $\operatorname{Aff}(V)$ by

$$
(f, g)=(d f, d g)
$$

and for $f \in \operatorname{Aff}(E)$ not a constant function let

$$
f^{\vee}=\frac{2 f}{(f, f)}
$$

The affine reflection $s_{f}: V \rightarrow V$ is

$$
\begin{aligned}
s_{f}(v) & =v-f^{\vee}(v) d f \\
& =v-f(v)(d f)^{\vee} \\
& =v-\frac{2 f(v)}{(f, f)} d f
\end{aligned}
$$

Definition A. 5 (Macdonald [5]) An affine root system on E is a subset S of Aff(E) satisfying

1. S spans $\operatorname{Aff}(E)$, and the elements of S are non-constant functions,
2. $s_{\alpha}(\beta) \in S$ for all $\alpha, \beta \in S$,
3. $\left\langle\alpha^{\vee}, \beta\right\rangle \in \mathbb{Z}$ for all $\alpha, \beta \in S$,
4. The Weyl group $W=W(S)$ is the group generated by the reflections $\left\{s_{\alpha} \mid \alpha \in S\right\}$. We require that W acts properly on V.

The Weyl group $W(S)$ is an affine Weyl group. The notions of simple roots $\Pi(S)$ and Dynkin diagram $D(S)$ are simlar to those for classical root systems. Also the dual S^{\vee} of S defined in the obvious way is an affine root system, with Dynkin diagram $D\left(S^{\vee}\right)=D(S)^{\vee}$. Here the dual of a Dynkin diagram means the same diagram with arrows reversed, as usual.

Choose a base point e_{0} in E and write elements of $\operatorname{Aff}(E)$ as (λ, c) as in Lemma A. 3 .

Suppose $\Delta \subset V$ is a classical (not necessarily reduced) root system. If Δ is simply laced we say each root is long. Let $\Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be a set of simple roots. For each i let $\widetilde{\alpha}_{i}=\left(\alpha_{i}, 0\right)$, and let $\widetilde{\alpha}_{0}=(-\beta, 1)$ where β is the highest root. Note that β is long. Then $\left\{\widetilde{\alpha}_{0}, \ldots, \widetilde{\alpha}_{n}\right\}$ is a set of simple roots of an affine root system denoted $\widetilde{\Delta}$.

Let $D=D(\Delta)$ be the Dynkin diagram of Δ. Let \widetilde{D} be the extended Dynkin diagram of D, i.e. obtained by adjoining $-\beta$ where β is the highest root. Then the Dynkin diagram of $\widetilde{\Delta}$ is the extended Dynkin diagram of Δ, i.e.

$$
D(\widetilde{\Delta})=\widetilde{D(\Delta)}
$$

We will use Δ (resp. S) to denote a typical classical (resp. affine) root system.

Suppose Δ is a classical root system with Dykin diagram $D=D(\Delta)$. Let and $S=\widetilde{\Delta}$, so $D(S)=\widetilde{D}$. Then $S^{\vee}=(\widetilde{\Delta})^{\vee}$ is also an affine root system, with Dynkin diagram $D\left(S^{\vee}\right)=(\widetilde{D})^{\vee}$. If Δ is not simply laced then it is not necessarily the case that $(\widetilde{\Delta})^{\vee}=\widetilde{\left(\Delta^{\vee}\right)}$ or $(\widetilde{D})^{\vee}=\widetilde{\left(D^{\vee}\right)}$. Note that \widetilde{D} is obtained from D by adding a long root, so $(\widetilde{D})^{\vee}$ has an extra short root. On the other hand $\widetilde{\left(D^{\vee}\right)}$ is obtained from D^{\vee} by adding an extra long root.

Theorem A. 6 (Macdonald [5]) Every reduced, irreducible affine root system is equivalent to either $\widetilde{\Delta}$ or $(\widetilde{\Delta})^{\vee}$ where Δ is a classical (not necessarily reduced) root system.

Remark A. 7 A remarkable fact is that every reduced, irreducible affine root system is also obtained from a classical root system and involution, as discussed in the next section.

Affine root system and Weyl group associated to (Δ, θ)

Let Δ be an irreducible root system, and θ an automorphism of Δ preserving a set of simple roots. Thus θ corresponds to an automorphism of the Dynkin diagram $D=D(\Delta)$ of Δ. Let $c \in\{1,2,3\}$ be the order of δ. Associated to (Δ, θ) is an affine root system, which we now describe.

The quotient Δ / θ is naturally a root system $[7]$, which we denote Δ_{θ}. Here are the possibilities with $\theta \neq 1$. We list the finite root systems Δ, Δ_{θ}, the names of the affine root system according to [5] and [6], the simply connected group G with root system Δ, the real form of G corresponding to θ, and G^{θ}.

Δ	Δ_{θ}	$\Delta_{\text {aff }}$	$\Delta_{\text {aff }}$	G	$G(\mathbb{R})$	K
$A_{2 n}$	$B C_{n}$	$\widetilde{B C_{n}}$	$A_{2 n}^{(2)}$	$S L(2 n+1)$	$S L(2 n+1, \mathbb{R})$	$S O(2 n+1)$
$A_{2 n-1}$	C_{n}	\widetilde{B}_{n}^{\vee}	$A_{2 n-1}^{(2)}$	$S L(2 n)$	$S L(n, \mathbb{H})$	$S p(n)$
D_{n}	B_{n}	\widetilde{C}_{n}^{\vee}	$D_{n}^{(2)}$	$\operatorname{Spin}(2 n)$	$\operatorname{Spin}(2 n-1,1)$	$S p i n(2 n-1)$
$E_{6} R$	F_{4}	$\widetilde{F}_{4}{ }^{\vee}$	$E_{6}^{(2)}$	E_{6}	$E_{6}\left(F_{4}\right)$	F_{4}
$D_{4}, \quad \theta^{3}=1$	G_{2}	\widetilde{G}_{2}	$D_{4}^{(3)}$	$\operatorname{Spin}(8)$		G_{2}

As in section 1 there is an algebraic group G, and splitting data ($H, B,\left\{X_{\alpha}\right\}$) so that $\Delta=\Delta(G, H)$, and θ may be viewed as an automorphism of G preserving the splitting data. (For these purposes we may as well take G simply connected.) Then $T=H^{\theta}$ acts on \mathfrak{g}, and the set of roots $\Delta(G, T) \subset \mathfrak{t}^{*}$ is a (possibly reduced) root system.

The following Lemma is more or less immediate.
Lemma B. 1 Restriction from H to T defines isomorphisms

$$
\Delta(G, T) \simeq \Delta_{\theta}
$$

and

$$
W^{\theta} \simeq W\left(\Delta_{\theta}\right)
$$

Also $\Delta(K, T)$ is the reduced root system of Δ_{θ} (obtained by taking only the shorter of two roots $\alpha, 2 \alpha)$ and $W(K, T) \simeq W\left(\Delta_{\theta}\right)$. See Remark 1.4.

Now T^{Γ} acts on the complex Lie algebra \mathfrak{g} of G. Let $\Delta\left(G, T^{\Gamma}\right)$ be the set of roots, i.e. we have a root space decomposition

$$
\mathfrak{g}=\sum_{\alpha \in \Delta\left(G, T^{\mathrm{T}}\right)} \mathfrak{g}_{\alpha} .
$$

Clearly restriction from T^{Γ} to T is a surjection $\Delta\left(G, T^{\Gamma}\right) \rightarrow \Delta(G, T)$.
If $c=1$ this is simply $\Delta(G, T)$. For simplicity assume $c=2$. Then $\Delta\left(G, T^{\Gamma}\right)$ may be thought of as a $\mathbb{Z} / 2 \mathbb{Z}$-graded root system. That is a character α of T^{Γ} is a pair $\left(\alpha_{0}, \epsilon\right)$ with $\alpha_{0} \in \Delta(G, T) \simeq \Delta_{\theta}$ and $\epsilon= \pm 1$, where $\alpha_{0}=\left.\alpha\right|_{T}$ and $\epsilon=\alpha(\delta)$. We can define the reflection associated to $\alpha \in \Delta\left(G, T^{\Gamma}\right)$ in the usual way, preserving $\Delta\left(G, T^{\Gamma}\right)$. To be precise, if $\alpha=\left(\alpha_{0}, \epsilon\right)$ and $\beta=\left(\beta_{0}, \delta\right)$ then

$$
\begin{equation*}
s_{\alpha}(\beta)=\left(s_{\alpha_{0}}\left(\beta_{0}\right), \epsilon \delta(-1)^{\left\langle\beta, \alpha^{\vee}\right\rangle}\right) \tag{B.2}
\end{equation*}
$$

Let $\pi: E \rightarrow T \delta$ be the universal cover. Then E is an affine space with translations $\mathfrak{t}=\operatorname{Lie}(\mathfrak{t})$.

Suppose λ is a character of $T^{\Gamma} \rightarrow \mathbb{C}^{*}$. Note that λ is determined by its restriction to $T \delta$. By the property of covering spaces λ lifts to a family of functions $\widetilde{\lambda}: E \rightarrow \mathbb{C}$ satisfying

$$
\lambda(\pi(X))=e^{2 \pi i \widetilde{\lambda}(X)}
$$

i.e. $d \widetilde{\lambda}=d \lambda$, where the left hand side is in the sense of (A.1) and the right is the ordinary differential of λ. We say $\widetilde{\lambda}$ lies over λ. Any two such functions differ by constant.

Definition B. 3 The affine root system $\Delta_{\text {aff }}$ associated to (Δ, θ) is the set of affine functions in Aff (E) lying over $\Delta\left(G, T^{\Gamma}\right)$.

Note that the underlying finite root system, i.e. the differentials of all affine roots is $\Delta(G, T) \simeq \Delta_{\theta}$, i.e.

$$
d: \Delta_{\mathrm{aff}} \rightarrow \Delta_{\theta}
$$

The following Lemma is an immediate consequence of the fact that $\Delta\left(G, T^{\Gamma}\right)$ is a root system in the sense of (B.2).

Lemma B. $4 \Delta_{\text {aff }}$ is an affine root system.
To be explicit, choose $\widetilde{\delta} \in E$ with $\pi(\widetilde{\delta})=\delta$. Suppose $\alpha \in \widehat{T^{\Gamma}}$. To avoid excessive notation we write α for the differential of α restricted to T, rather than $d \alpha$. Then in the decomposition of Lemma A. 3 we may write the set of $\widetilde{\alpha}$ lying over α as

$$
\left\{(\alpha, c) \mid e^{2 \pi i c}=\alpha(\delta)\right\}
$$

In particular note that the set of roots lying over α is

$$
\{(\alpha, c) \mid c \in \mathbb{Z}\} \quad \text { if } \alpha(\delta)=1
$$

or

$$
\left\{(\alpha, c) \left\lvert\, c \in \mathbb{Z}+\frac{1}{2}\right.\right\} \quad \text { if } \alpha(\delta)=-1
$$

Similarly if δ has order 3 then $c \in \mathbb{Z}+\frac{1}{3}$ or $\mathbb{Z}+\frac{2}{3}$.
For $\alpha \in \Delta_{\theta}$ let $c_{\alpha}=1$ if α is long, or $\frac{1}{c}$ if α is short, where $c=\operatorname{order}(\theta)$.
Proposition B. 5 Let $\Delta_{\text {aff }}$ be the affine root system associated to (Δ, θ), and let $c=\operatorname{order}(\theta) \in\{1,2,3\}$. Then

$$
\Delta_{a f f}=\left\{(\alpha, x) \mid x \in c_{\alpha} \mathbb{Z}\right\}
$$

Proposition B. 6 Fix a set $\alpha_{1}, \ldots, \alpha_{n}$ of simple roots of Δ_{θ}. For each i let $\widetilde{\alpha}_{i}=\left(\alpha_{i}, 0\right)$. Let β be the highest (long) root of $\Delta=\Delta_{\theta}$ if $c=1$ or the highest short root otherwise. Let

$$
\widetilde{\alpha}_{0}=\left(-\beta, \frac{1}{c}\right) .
$$

Then $\left\{\widetilde{\alpha}_{0}, \widetilde{\alpha}_{1}, \ldots, \widetilde{\alpha}_{n}\right\}$ is a set of simple roots of $\Delta_{\text {aff }}$.
Definition B. 7 The affine Weyl group associated to (Δ, θ) is the subgroup of $\operatorname{Aff}(E, E)$ generated by the affine reflections $s_{\widetilde{\alpha}}$ for $\widetilde{\alpha} \in \Delta_{\text {aff. }}$. Alternatively,

$$
\begin{equation*}
W_{a f f}=\left\{\phi \in \operatorname{Aff}(E, E) \mid \phi \text { factors to an element of } W\left(\Delta_{\theta}\right)=W^{\theta}\right\} \tag{B.8}
\end{equation*}
$$

We now describe $W_{\text {aff }}$.
Definition B. 9 Let

$$
\begin{equation*}
L_{s c}=\left\langle\left.\frac{1}{c} \sum_{k=0}^{c-1} \theta^{k}\left(\alpha^{\vee}\right) \right\rvert\, \alpha \in \Delta\right\rangle \tag{B.10}
\end{equation*}
$$

We are primarily interested in $c=1,2$, in which case:

$$
\begin{equation*}
L_{s c}=\left\{\left.\frac{1}{2}\left(\alpha^{\vee}+\theta \alpha^{\vee}\right) \right\rvert\, \alpha \in \Delta\right\} \tag{B.11}
\end{equation*}
$$

Proposition B. 12 The lattice $L_{s c}$ is the set of translations in $W_{\text {aff }}$. There is an exact sequence
(B.13)(a)

$$
0 \rightarrow L_{s c} \rightarrow W_{a f f} \rightarrow W^{\theta} \rightarrow 1
$$

If we choose an element $\widetilde{\delta} \in E$ lying over δ we obtain a splitting of (1.18), taking W^{θ} to the the stabilizer in $\operatorname{Aff}(E)$ of $\widetilde{\delta}$, i.e.

$$
\begin{equation*}
W_{a f f} \simeq W^{\theta} \ltimes L_{s c} \tag{B.13}
\end{equation*}
$$

We give a few details of the map $p: W_{\text {aff }} \rightarrow W_{\delta}$. Suppose $\alpha \in \Delta_{\theta}$ and $x \in \mathbb{Z}$. Then

$$
p\left(s_{(\alpha, x)}\right)=s_{\alpha}
$$

Suppose $c=2, \alpha \in \Delta_{\theta}$ is a short root and $x \in \mathbb{Z}+\frac{1}{2}$. Then $m_{\alpha}=\alpha^{\vee}(-1) \in$ $T \cap A$ and

$$
p\left(s_{(\alpha, x)}\right)=s_{\alpha} m_{\alpha}
$$

and

$$
p\left(t_{\frac{1}{2} \alpha \vee}\right)=m_{\alpha}
$$

where $t_{\frac{1}{2} \alpha^{\vee}} \in W_{\text {aff }}$ is translation by $\frac{1}{2} \alpha^{\vee}$.

References

[1] J. Adams. Lifting of characters, volume 101 of Progress in mathematics. Birkhäuser, Boston,Basel,Berlin, 1991.
[2] N. Bourbaki. Groupes et Algèbres de Lie, volume Chapitres 4,5 and 6 of Éléments de Mathématique. Masson, New York, 1981.
[3] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.
[4] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 2002.
[5] I. G. Macdonald. Affine Hecke algebras and orthogonal polynomials, volume 157 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.
[6] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.
[7] Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968.

