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These notes are incomplete as of 12/22/2008. I’ll do more on them after
the first of the year.

1 Basics

Let H be a complex torus, with real points H(R), h, h0, θ, h
∗ = HomC(h, C)

as usual. View X∗(H) as 1

2πi
ker(exp) ⊂ h.

Write X → X for complex conjugation with respect to h0, and X → X̃
for the one with respect to X∗(H)⊗ R. Note that θX = θX and θ̃X = θX̃,
and also

(1) X = −θ̃X = −θX̃ (X ∈ h).

This follows from the fact that X∗(H) ⊂ it0⊕a0 where t0 = hθ
0 and a0 = h−θ

0 .
Write θ∨ for minus-adjoint of θ:

(2) 〈θX, λ〉 = −〈X, θ∨λ〉 (X ∈ h, λ ∈ h∗).

For λ ∈ h∗ define λ ∈ h∗ by λ(X) = λ(X) (the outer is on C), and

λ̃(X) = λ(X̃). Then

(3) λ̃ = λ (λ ∈ X∗(H)⊗ R)

and

(4) λ = θ∨(λ̃) = θ̃∨(λ) (λ ∈ h∗).
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If χ is a character of H(R), then the Hermitian dual of χ is χh(g) =
χ(g−1).

Let K = Hθ, the complexified maximal compact subgroup of H(R). Sup-

pose (λ, τ) is a (h, K)-module, i.e. λ ∈ h∗ and τ ∈ K̂. Carrying the Hermitian
dual over to (h, K)-modules we have (λ, τ)h = (−λ, τ).

We can assume τ is the restriction of an element κ of X∗(H). Then
(h, K)-modules are parametrized by pairs (λ, κ) with λ ∈ h∗, κ ∈ X∗(H),
satisfying

(5) λ− θ∨λ = κ− θ∨κ.

Furthermore (λ, κ) and (λ′, κ′) give the same character if and only if λ′ = λ
and κ′ ∈ κ + (1 + θ∨)X∗(H).

The differential of a character of H(R) is contained in it∗0 +a∗. So if (λ, κ)
is a (g, K)-module, λ + λ ∈ a∗. This implies

(6) θ∨(λ + λ) = (λ + λ).

In our language it is better to see this as follows. Since X∗(H) ⊂ it∗0 + a∗,
θ∨(κ+κ) = (κ+κ). From (5) we have λ−θ∨λ = κ−θ∨κ, λ−θ∨λ = κ−θ∨κ,
and adding these we see

(λ + λ)− θ∨(λ + λ) = (κ + κ)− θ∨(κ + κ) = 0.

Let H∨ be the dual torus, so X∗(H) = X∗(H
∨) etc., and we identify

h∨ = h∗, and carry θ∨ over to H∨. Let H∨Γ = H∨ ⋊ Γ = 〈H∨, δ∨〉 be the
L-group of H (where δ∨2 = 1, and δ∨ acts on H∨ by θ∨). Suppose (y, λ)
(y ∈ H∨Γ\H, λ ∈ X∗(H

∨)) satisfy y2 = exp(2πiλ). This is equivalent to

(7) λ− (τ + θ∨(τ)) ∈ X∗(H)

where y = exp(2πiτ)δ∨.
Then (y, λ) define a map WR → H∨Γ and hence a character χ of H(R).

The corresponding (h, K)-module is (λ, κ) where

(8) κ = λ− (τ + θ∨(τ)),

which is in X∗(H) by (8).
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2 Hermitian Dual of (y, λ)

Define (y, λ)h in the obvious way: this is the L-parameter corresponding to
the Hermitian dual of the character defined by (y, λ).

Lemma 9

(10) (y, λ)h = (exp(πi(λ− λ))y−1,−λ).

Proof. Write y = exp(2πiτ)δ∨. The (h, K)-module defined by (y, λ) is (λ, κ)
with κ = λ− (τ + θ∨τ). The Hermitian dual of this is (−λ, κ).

Let µ = 1

2
(λ− λ), and note that

(11) exp(πi(λ− λ)y−1) = exp(2πi(µ− θ∨τ))δ∨.

Letting τ ′ = (µ − θ∨τ) the parameter on the right hand side of (10) is
(exp(2πiτ ′)δ∨,−λ), so we have to show

(12) −λ− (τ ′ + θ∨τ ′) ∈ κ + (1 + θ∨)X∗(H)

So:
(13)
−λ− (τ ′ + θ∨τ ′) = −λ− [(µ− θ∨τ) + θ∨(µ− θ∨τ)]

= −λ− [(µ + θ∨µ)− (τ + θ∨τ)]

= [(τ + θ∨τ))− λ] + (λ− λ)− (µ + θ∨µ)

= −κ + (λ− λ)− (µ + θ∨µ) (by (8))

= −κ + (λ− λ)−
1

2
[(λ− λ) + θ∨(λ− λ)]

(by the definition of µ)

= −κ + (λ− λ)−
1

2
[(λ + λ)− θ∨(λ + λ)− 2λ + 2θ∨λ]

By (6) (λ + λ)− θ∨(λ + λ) = 0, so

(14)

−λ− (τ ′ + θ∨τ ′) = −κ + (λ− λ) + (λ− θ∨λ)

= −κ + (λ− θ∨λ)

= −κ + (κ− θ∨κ) (by (5))

= −θ∨κ

= κ− (1 + θ∨)κ ∈ κ + (1 + θ∨)X∗(H)
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as required. �

We express this in terms of λ̃ = θ∨λ. Note that if h = exp(πiλ̃) then

(15)
h(exp(πi(λ− λ̃))y−1)h−1 = exp(πi(λ− λ̃) + πi(λ̃− θ∨λ̃))y−1

= exp(πi(λ− λ))y−1.

Therefore we can replace λ− λ with λ− λ̃. We conclude

Lemma 16

(17)

(y, λ)h = (exp(πi(λ− λ̃))y−1,−θ∨(λ̃))

= (exp(πi(λ− λ̃))y−1,−Ad(y)λ̃)

= (exp(πi(λ− λ̃))y−1,−λ).

Given y, suppose exp(2πiλ) = y2. Then exp(2πi(λ − λ̃)) is independent
of the choice of λ: any other choice is of the form λ + γ with γ ∈ X∗(H),

and (λ + γ)− (λ̃ + γ) = λ− λ̃ by (3).

Definition 18 Given y, choose λ satisfying exp(2πiλ) = y2, and let

(19) yh = exp(πi(λ− λ̃))y−1.

We are primarily interested in the case of real infinitesimal character,
which corresponds to λ̃ = λ. In this case

(20)(a) yh = y−1

and

(20)(b) (y, λ)h = (y−1,−λ).

A closely related condition is that of integral infinitesimal character, i.e.
〈λ, α∨〉 ∈ Z for all roots; this implies the “semisimple part” of λ is real; in

fact λ−λ̃ is contained in the split part of the center of g, and exp(πi(λ−λ̃)) ∈
Z(G).

The opposite extreme is λ = −λ, which corresponds to unitary characters,
and tempered representations. In this case exp(πi(λ−λ)) = exp(2πiλ) = y2,
so

(21)(a) yh = y
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and

(21)(b) (y, λ)h = (y, λ).

which is reassuring.

3 Involution of KGB

Recall some notation from [1].

We let X̃ = {ξ ∈ NormGΓ\G(H) | ξ2 ∈ Z(G)}, X = X̃/H. Then

X ≃
∐

ξ

Kξ \ G/B

where the (disjoint) union is over strong real forms, i.e. G-conjugacy classes

in X̃.
If ξ ∈ X̃ the involution θξ is defined. If x ∈ X the involution θx,H = θξ|H

of H is well defined.
It is obvious the map ξ → ξ−1 on X̃ descends to X . This defines an

automorphism of X , which we write x→ x−1.

The inner class of G gives an involution of the based root system (coming
from the Cartan involution of the fundamental Cartan). This is an involution
of the positive roots, and induces an automorphism of W . We define W Γ =
W ⋊ Z/2Z = 〈W, δ〉 and IW is the space of twisted involutions:

IW = {τ ∈W Γ \W | τ 2 = 1}

≃ {w ∈W |wδ(w) = 1}.

There is a natural map p : X → IW .

Lemma 22

1. p(x−1) = p(x)

2. θx−1,H = θx,H

3. If p(x) = wδ then w−1(θx(∆
+)) = ∆+
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Proof. Part (1) is immediate from the defintions, and so is (2) since θx,H only
depends on p(x). For (3), if α > 0 then w−1θx(α) = w−1(wδ(α)) = δ(α) > 0
since δ is an involution of the based root datum. �

Fix ξ ∈ X̃ with image x ∈ X , and let

X [x] = {x′ ∈ X | x′ is G-conjugate to x}

(the notion of G-conjugacy is well defined on X ). Then X [x] ≃ Kξ\G/B.
It is obvious that

(23) X [x]−1 = X [x−1]

and X [x]−1 = X [x] if and only if x−1 is G-conjugate to x.
Without loss of generality we can take x ∈ Hδ, and (after conjugating by

H) assume that x ∈ T (the identity component of Hδ). Then x−1 = h−1δ.
Let Wi be the Weyl group of the δ-imaginary roots.

Lemma 24 Suppose ξ = hδ and δ(h) = h, and let x be the image of ξ in X .

1. X [x]−1 = X [x] if and only if h−1 is Wi-conjugate to h.

2. Write h = exp(2πiτ∨) with τ∨ ∈ X∗(H)⊗C = h. Then X [x]−1 = X [x]
if and only if τ + wτ ∈ X∗(H) for some w ∈Wi.

See the proof of [1, Proposition 2.12].
Note that there is no a priori reason for this to hold. For example if G is

a torus and δ = 1 this holds if and only if h has order 2.

Example 25 The worst failure of x−1 ∼ x occurs in the the compact inner
class of G = SL(n, C) (with corresponding real groups SU(p, q)). Suppose
p + q = n, αn = (−1)q,

h = diag(

p︷ ︸︸ ︷
α, . . . , α,

q︷ ︸︸ ︷
−α, . . . ,−α)

and x = hδ. The corresponding real form is SU(p, q). If p 6= q then h is
conjugate to h−1 if and only if α = ±1; if p = q we allow α = ±1,±i.

If p or q is even then X [x]−1 = X [x] if

(26) h = diag(1, . . . , 1,−1, . . . ,−1);

6



these give the groups SU(p, q) with p or q even. This also holds if

(27) h = diag(

p︷ ︸︸ ︷
i, . . . , i,

p︷ ︸︸ ︷
−i, . . . ,−i).

which gives SU(p, p) with p odd.

I think this never happens in types B/C, but does in type D. It cannot
happen in types E8, F4, G2 (which are always adjoint), so the only other
places this could arise are E6 and E7.

4 Involution of Z

Fix G, G∨, let Z = X × X ∨ the parameter space of representations. By the
previous discussion the map (x, y)→ (x, y−1) is an involution of Z.

Recall that W acts on X ,X ∨ and Z.

Definition 28 Supppose (x, y) ∈ Z. Write p(x) = wxδ, so wx is the last
entry in the output of kgb for x. Let

(29) (x, y)h = (w−1

x xwx, w
−1

x y−1wx).

Practically speaking we can think of this as

(30) (x, y)h = w−1

x × (x, y−1)

where we compute w−1
x × using the output of block.

This is an involution of Z.

5 Hermitian dual in (x, y) parameters

Recall (x, y) gives a translation family of representations. Here is how to pin
down the infinitesimal character. Assume exp(2πiλ) = y2. We assume λ is

integral, so y2 ∈ Z(G). We also assume λ is real, i.e. λ̃ = λ; given integrality
this is only a condition on the split part of the center (see the end of Section
2).

We have fixed a set of positive roots. If 〈λ, α∨〉 ≥ 0 for all α then the
parameter (x, y, λ) is defined, and defines a (g, Kξ)-module (where ξ lies over
x) with infinitesimal character λ.
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Proposition 31 Suppose π corresponds to parameter (x, y, λ). Write p(x) =
wxδ. Then πh is given by the parameter

(32) (x, y, λ)h = (w−1
x xwx, w

−1
x y−1wx,−wxλ).

Note that π and πh have the same infinitesimal character if and only if
−λ is W -conjugate to λ. Assuming this holds (x, y, λ) and (x, y, λ)h are in
the same block if and only if yh is conjugate to y.

Corollary 33 Assume λ is real, −λ is conjugate to λ, and y−1 is conjugate
to y. Then γ → γh is an automorphism of the block (with infinitesimal
character λ). It is given by:

(34)
(x, y)h = (w−1

x xwx, w
−1
x y−1wx)

= w−1

x × (x, y−1).

Here p(x) = wxδ (given by the last entry in the output of kgb) and w−1
x ×

(x, y−1) is the cross action, which can be computed via the output of block.

Remark 35 Once we have set things up for nonintegral infinitesimal char-
acter, the corresponding result in general should be something like this.

Let W (λ) be the integral root system of λ. Choose w ∈W (λ) so that

(36) Re〈−wλ, α∨〉 ≥ 0 (for all α).

Then πh is given by parameter

(37) (x, y, λ)h = (w−1xw, w−1yhw,−wλ)

For example if λ = −λ then yh = y, w = 1 and

(38) (x, y, λ)h = (x, y, λ).

If λ is real and integral then w = wx, yh = y−1 and this agrees with Propo-
sition 31.

Example 39 Let G = GL(3, R). Here is the large block:

0(0,5): 0 0 [C+,C+] 2 1 (*,*) (*,*)

1(1,4): 1 0 [i2,C-] 1 0 (3,4) (*,*) 2,1

2(2,3): 1 0 [C-,i2] 0 2 (*,*) (3,5) 1,2

3(3,0): 2 1 [r2,r2] 4 5 (1,*) (2,*) 1,2,1

4(3,1): 2 1 [r2,rn] 3 4 (1,*) (*,*) 1,2,1

5(3,2): 2 1 [rn,r2] 5 3 (*,*) (2,*) 1,2,1
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and here is kgb:

Name an output file (return for stdout, ? to abandon):

0: 0 0 [C,C] 2 1 * *

1: 1 0 [n,C] 1 0 3 * 2,1

2: 1 0 [C,n] 0 2 * 3 1,2

3: 2 1 [r,r] 3 3 * * 1,2,1

In this case every kgb element for G∨ has order 2. Let λ = ρ Therefore

(40)

#0 = (0, 5)→ (0, 5)h = (0, 5) = #0

#1 = (1, 4)→ (1, 4)h = 1× 2× (1, 4) = (2, 3) = #2

#2 = (2, 3)→ (2, 3)h = 2× 1× (2, 3) = (1, 4) = #1

#3 = (3, 0)→ (3, 0)h = 1× 2× 1× (3, 0) = (3, 0) = #3

#4 = (3, 1)→ (3, 1)h = 1× 2× 1× (3, 1) = (3, 2) = #5

#5 = (3, 2)→ (3, 2)h = 1× 2× 1× (3, 2) = (3, 1) = #4

We check this example another way in the next Section.

6 Examples: Classical Groups

It is easy to compute the Hermitian dual in terms of Barbasch’s parame-
ters for classical groups. The parameters software on the web site (soft-
ware/helpers) gives block output in these parameters. See the help file for
the software for more details.

For example the parameter

γ = (6+, 5−, 4 3, 2, 1)

for Sp(12, R) corresponds toa a representation π which is induced from M =
Rx2 × GL(2, R)× Sp(4, R). The only thing which isn’t fairly obvious is the
representation of GL(2, R), see below. In any event the Hermitian dual πh

of π has parameter

γh = (−6+,−5−,−3 − 4, 2, 1)

which is equivalent to γ, i.e. this representation is Hermitian.
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GL(2, R) factors:
A term a b or a b means the torus contains a copy of C×:

(a b) means e1−e2 is imaginary, e1+e2 is real (BCD). In particular a−b ∈ Z.

(a b) means e1 − e2 is real, e1 + e2 is real (BCD). In particular a + b ∈ Z.
Note that

(41) (a b) = (a − b).

Note that since the imaginary reflection se1−e2
is in the Weyl group

for GL(2, R), we can always replace (a b) with (b a) and get an equiva-
lent representation. In types BCD, the same holds for the real reflection
(a b)→ (−b − a).

Similarly the real reflection (a b) → (b a) is always allowed, and the
imaginary reflection (a b)→ (−b − a) in types BCD.

Write [k, ν] for the character of C∗: reiθ → rνeikθ.

Here is the dictionary going between (a b) or (a b) and [k, ν]:

(42)

(a b)→[a− b, a + b]

(
1

2
(k + ν)

1

2
(−k + ν))←[k, ν]

(a b)→[a + b, a− b]

(
1

2
(k + ν)

1

2
(k − ν))←[k, ν]

Now the Hermitian dual is

(43) [k, ν]h = [k,−ν].

Chasing this around we compute

(44)
(a b)h = ([−Re(b) + iIm(a)] [−Re(a) + iIm(b)])

(a b)h = ([Re(b) + iIm(a)]̂[Re(a) + iIm(b)])

The infinitesimal character is real if a, b ∈ R, in which case it is much
easier:

(45)
(a b)h = (−b − a) = −(b a)

(a b)h = (b a).
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Example 46 We illustrate the fact that even if π and πh have the same
infinitesimal character, π cannot be Hermitian if y−1 is not conjugate to y.

Let G = PSL(4, C), G(R) = PSL(4, R), the split real form of PSL(4, C).
It is easiest to think of this group as GL(4, R)/R×.

There are four compact strong real forms of G∨ = SL(4, C), given by
elements of the center y = ±I,±iI. These correspond to four irreducible
principal series representations of G(R). See the Remark below.

We assume λ is real and −λ is W -conjugate to λ, i.e. −w0λ = λ where
w0 is the long element of the Weyl group.

In terms of (x, y) note that wx = w0, −w0λ = λ, and

(47)
(x, y, λ)h = (w−1

0 xw0, w
−1

0 yw0,−w0λ)

= (x, y−1, λ).

Thus the representation corresponding to (x, y, λ) is Hermitian if and only if
y−1 = y.

Suppose y = ±I. We can take the infinitesimal character to be all inte-
gers, for example λ = (2, 1,−1,−2). If y = I take

(48) γI = (2+, 1−,−1−,−2+).

(To be precise this is a representation of GL(4, R), in Barbasch’s notation,
which factors to G(R).) For γ = −I we have

(49) γI = (2−, 1+,−1+,−2−).

It is easy to see π(γ±I) are Hermitian:

(50)

γh
I = (2+, 1−,−1−,−2+)h

= (−2+,−1−, 1−, 2+)

= (2+, 1−,−1−,−2+) = γh
I .

corresponding to the fact that in this case y−1 is conjugate to (in fact equal
to) y.

Now suppose y = +iI, so y2 = −I, and the corresponding infinitesimal
character is in ρ + X∗(H). We can take

(51) γiI = (3/2+, 1/2−,−1/2+,−3/2−).
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On the other hand if y = −iI then the infinitesimal character is the same,
and we can take

(52) γ−iI = (3/2−, 1/2, − 1/2−,−3/2+).

Even though π(γiI) and π(γ−iI) have the same infinitesimal character,
they are not Hermitian; π(γiI) = π(γ−iI). This is easy to see:

(53)

γh
iI = (3/2+, 1/2−,−1/2+,−3/2−)h

= (−3/2+,−1/2−, 1/2+, 3/2−)

= (3/2−, 1/2+,−1/2−,−3/2+) = γ−iI

This corresponds to the fact that y−1

iI = y−iI is not conjugate to yiI .

Remark 54 Note that there are 4 compact strong real forms of SL(4, C),
corresponding to the 4 singleton blocks of PSL(4, R) (up to tranlslation),
say at infinitesimal character ρ and λ′ = (2, 1,−1,−2). The two blocks at ρ
differ by tensoring with sgn, as do the two at λ′. The two blocks at λ′ are
Hermitian, while the two blocks at ρ are each other’s Hermitian duals.

Also note that atlas only sees two of the strong real forms, say y = I and
y = iI. The strong real forms ±I are equivalent in the sense of the reduced
parameter space, as are ±iI. The example shows that some information is
lost when passing to the reduced parameter space.

main: strongreal

(weak) real forms are:

0: su(4).u(1)

1: su(3,1).u(1)

2: su(2,2).u(1)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (return for stdout, ? to abandon):

real form #2: [0,1,2,8,9,10] (6)

real form #0: [3] (1)

real form #1: [4,6,7,13] (4)

real form #1: [5,12,14,15] (4)

real form #0: [11] (1)
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Example 55 We do Example 39 in these terms. Here G = GL(3, R) and
G∨ = U(2, 1).

Command:parameters -t A -b inputFiles/blockGL3 -s 3=(1+,0+,-1+)

G=GL(3,R) (based on the block file inputFiles/blockGL3)

Computed Parameters:

Barbasch: parameters in Barbasch’s notation

Action: how the parameter was obtained

Atlas: parameter from atlas block file inputFiles/blockGL3

Barbasch Action Atlas

(1_-1,0-) 2x1 0(0,5): 0 0 [C+,C+] 2 1 (*,*) (*,*)

(1_0,-1+) 1^3 1(1,4): 1 0 [i2,C-] 1 0 (3,4) (*,*) 2,1

(-1_0,1+) 2^3 2(2,3): 1 0 [C-,i2] 0 2 (*,*) (3,5) 1,2

(1+,0+,-1+) *** 3(3,0): 2 1 [r2,r2] 4 5 (1,*) (2,*) 1,2,1

(1-,0-,-1+) 1x3 4(3,1): 2 1 [r2,rn] 3 4 (1,*) (*,*) 1,2,1

(1+,0-,-1-) 2x3 5(3,2): 2 1 [rn,r2] 5 3 (*,*) (2,*) 1,2,1

In this example representations #0,#3 are Hermitian, and the Hermitian
dual operations interchanges #1,#2, and also #4,#5. Fore example

#1 = (1 0,−1+)→ (1 0,−1+)h = (0 − 1, 1+) = (−1 0, 1+) = #2

and

#4 = (1−, 0−,−1+)→ (1−, 0−,−1+)h = (−1−, 0−, 1+) = (1+, 0−,−1−) = #5.

This agrees with Example 39.
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