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1 Introduction

Perhaps it is surprising that the following question has not been addressed in
the literature: what is the contragredient in terms of Langlands parameters?

Thus G is a connected, reductive algebraic group defined over a local field
F , and G(F ) is its F -points. According to the local Langlands conjecture,
associated to a homomorphism φ from the Weil-Deligne group of F into the
L-group of G(F ) is an L-packet Π(φ), a finite set of irreducible admissible
representations of G(F ). Conjecturally these sets partition the admissible
dual.

So suppose π is an irreducible admissible representation, and π ∈ Π(φ).
Let π∗ be the contragredient of π. The question is: what is the homomor-
phism φ∗ such that π∗ ∈ Π(φ∗)? We also consider the related question of
describing the Hermitian dual in terms of Langlands parameters.

Let ∨G be the complex dual group of G. The Chevalley involution C of
∨G satisfies C(h) = h−1, for all h in some Cartan subgroup of ∨G. The

L-group
L
G of G(F ) is a certain semidirect product ∨G ⋊ Γ where Γ is the

absolute Galois group of F (or other related groups). We can choose C so

that it extends to an involution of
L
G, acting trivially on Γ. We refer to this

as the Chevalley involution of
L
G. See Section 2.

We believe the contragredient should correspond to composition with the

Chevalley involution of
L
G. To avoid two levels of conjecture, we formulate

this as follows.

1



Conjecture 1.1 Assume the local Langlands conjecture is known for both π

and π∗. Let C be the Chevalley involution of
L
G. Then

π ∈ Π(φ) ⇔ π∗ ∈ Π(C ◦ φ).

Even the following weaker result is not known:

Conjecture 1.2 If Π is an L-packet, then so is {π∗ | π ∈ Π}.

The local Langlands conjecture is only known, for fixed G(F ) and all π,
in a limited number cases, notably GL(n, F ) over any local field, and for any
G if F = R or C. See Langlands’s original paper [10], which is summarized
in Borel’s article [6]. On the other hand it is known for a restricted class
of representations for more groups, for example unramified principal series
representations of a split p-adic group [6, 10.4].

It would be reasonable to impose Conjecture 1.1 as a condition on the
local Langlands correspondence in cases where it is not known.

We concentrate on the Archimedean case. Let WR be the Weil group of
R. The contragredient in this case can be realized either via the Chevalley

automorphism of
L
G, or via a similar automorphism of WR. By analogy with

C, there is a unique C∗-conjugacy class of automorphisms τ of WR satisfying
τ(z) = z−1 for all z ∈ C∗. See Section 2.

Theorem 1.3 Let G(R) be the real points of a connected reductive algebraic

group defined over R, with L-group
L
G. Suppose φ : WR →

L
G is an admissible

homomorphism, with associated L-packet Π(φ). Let Π(φ)∗ = {π∗ | π ∈ Π(φ)}.
Then

Π(φ)∗ = Π(C ◦ φ) = Π(φ ◦ τ).

In particular Π(φ)∗ is an L-packet.

Here is a sketch of the proof.
It is easy to prove in the case of tori. See Section 3.
It is well known that an L-packet Π of (relative) discrete series repre-

sentations is determined by an infinitesimal and a central character. In fact
something stronger is true. Let Grad be the radical of G, i.e. the maximal
central torus. Then Π is determined by an infinitesimal character and a
character of Grad(R), which we refer to as a radical character.
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In general it is easy to read off the infinitesimal and radical characters of
Π(φ) [6]. In particular for a relative discrete series parameter the Theorem
reduces to a claim about how C affects the infinitesimal and radical charac-
ters. For the radical character this reduces to the case of tori, and Theorem
1.3 follows in this case.

This is the heart of the matter, and the general case follows easily by
parabolic induction. In other words, the proof relies on the fact that the
parameterization is uniquely characterized by:

1. Infinitesimal character,

2. Radical character,

3. Compatibility with parabolic induction.

For the convenience of the reader we have included a self-contained descrip-
tion of the local Langlands classification in these terms. We make extensive
use of the Tits group (see Section 5), which simplifies some technical argu-
ments.

Now consider GL(n, F ) for F a local field of characteristic 0. Since

GL(n, F ) is split we may take
L
G = GL(n,C) (i.e. Γ = 1), and an ad-

missible homomorphism φ is an n-dimensional representation of the Weil-
Deligne group W ′

F . In this case L-packets are singletons, so write π(φ) for
the representation attached to φ.

For the Chevalley involution take C(g) = tg−1. Then C ◦ φ ≃ φ∗, the
contragredient of φ. Over R Theorem 1.3 says the Langlands correspondence
commutes with the contragredient:

(1.4) π(φ∗) ≃ π(φ)∗.

This is also true over a p-adic field [7], [8], in which case it is closely related
to the functional equations for L and ε factors.

We now consider a variant of (1.4) in the real case. Suppose π is an
irreducible representation of GL(n,R). Its Hermitian dual πh is a certain
irreducible representation, such that π ≃ πh if and only if the space of π
supports an invariant Hermitian form. We say π is Hermitian if π ≃ πh. See
Section 8.

The Hermitian dual arises naturally in the study of unitary representa-
tions: the unitary dual is the subset of the fixed points of this involution,
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consisting of those π for which the invariant form is definite. So it is natural
to ask what the Hermitian dual is on the level of Langlands parameters.

There is a natural notion of Hermitian dual of a finite dimensional repre-
sentation φ of WR: φ

h = tφ −1, and φ preserves a nondegenerate Hermitian
form if and only if φ ≃ φh.

The local Langlands correspondence for GL(n,R) commutes with the
Hermitian dual operation:

Theorem 1.5 Suppose φ is an n-dimensional semisimple representation of
WR. Let φ

h = tφ−1 be its Hermitian dual. Then:

1. π(φh) = π(φ)h,

2. φ is Hermitian if and only if π(φ) is Hermitian,

3. φ is unitary if and only if π(φ) is tempered.

See Section 8.

Return now to the setting of general real groups. The space X0 of conju-
gacy classes of L-homomorphisms parametrizes L-packets of representations.
By introducing some extra data we obtain a space X which parametrizes
irreducible representations [3]. Roughly speaking X is the set of conjugacy
classes of pairs (φ, χ) where φ ∈ X0 and χ is a character of the component
group of Cent∨G(φ(WR)). It is natural to ask for the involution of X induced
by the contragredient.

On the other hand, it is possible to formulate and prove an analogue of
Theorem 1.5 for general real groups, in terms of an anti-holomorphic involu-

tion of
L
G. Also, the analogue of Theorem 1.5 holds in the p-adic case. All

of these topics require more machinery. In an effort to keep the presentation
as elementary as possible we defer them to a later paper.

We thank Kevin Buzzard for asking about the contragredient on the level
of L-parameters.

2 The Chevalley Involution

We discuss the Chevalley involution. This is well known, but for the con-
venience of the reader we give complete details. We also discuss a similar
involution of WR.
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Throughout this paper G is a connected, reductive algebraic group. We
identify it with its complex points, and write G(C) on occasion to emphasize
this point of view. For x ∈ G write int(x) for the inner automorphism
int(x)(g) = xgx−1.

Proposition 2.1 Fix a Cartan subgroup H of G. There is an automorphism
C of G satisfying C(h) = h−1 for all h ∈ H. For any such automorphism
C2 = 1, and, for every semisimple element g, C(g) is conjugate to g−1.

Suppose C1, C2 are two such automorphisms defined with respect to Cartan
subgroups H1 and H2. Then C1 and C2 are conjugate by an inner automor-
phism of G.

The proof uses based root data and pinnings. For background see [12]. Fix
a Borel subgroup B of G, and a Cartan subgroup H ⊂ B. Let X∗(H), X∗(H)
be the character and co-character lattices of H, respectively. Let Π, ∨Π be
the sets of simple roots, respectively simple co-roots, defined by B.

The based root datum defined by (B,H) is (X∗(H),Π, X∗(H), ∨Π). There
is a natural notion of isomorphism of based root data. A pinning is a set
P = (B,H, {Xα|α ∈ Π}) where, for each α ∈ Π, Xα is contained in the α-root
space gα of g = Lie(G). Let Aut(P) be the subgroup of Aut(G) preserving
P . We refer to the elements of Aut(P) as P-distinguished automorphisms.

Theorem 2.2 ([12]) Suppose G,G′ are connected, reductive complex groups.
Fix pinnings (B,H, {Xα}) and P = (B′, H ′, {X ′

α}). Let Db, D
′

b be the based
root data defined by (B,H) and (B′, H ′).

Suppose φ : Db → D′

b is an isomorphism of based root data. Then there
is a unique isomorphism ψ : G → G′ taking P to P ′ and inducing φ on the
root data.

The only inner automorphism in Aut(P) is the identity, and there are
isomorphisms

(2.3) Out(G) ≃ Aut(Db) ≃ Aut(P) ⊂ Aut(G).

The following consequence of the Theorem is quite useful.

Lemma 2.4 Suppose τ ∈ Aut(G) restricts trivially to a Cartan subgroup H.
Then τ = int(h) for some h ∈ H.

Proof. Fix a pinning (B,H, {Xα}). Then dτ(gα) = gα for all α. Therefore
we can choose h ∈ H so that dτ(Xα) = Ad(h)(Xα) for all α ∈ Π. Then
τ ◦ int(h−1) acts trivially on Db and P . By the theorem τ = int(h). �
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Proof of the Proposition. Choose a Borel subgroup B containing H
and let Db = (X∗(H),Π, X∗(H), ∨Π) be the based root datum defined by
(B,H). Let Bop be the opposite Borel, with corresponding root datum Dop

b =
(X∗(H),−Π, X∗(H),−∨Π).

Choose a pinning P = (B,H, {Xα}). Let Pop = (H,Bop, {X−α|α ∈ Π})
where, for α ∈ Π, X−α ∈ g−α satisfies [Xα, X−α] =

∨α.
Let φ : Db → D′

b be the isomorphism of based root data given by −1
on X∗(H). By the Theorem there is an automorphism CP of G taking P
to Pop and inducing φ. In particular CP(h) = h−1 for h ∈ H. This implies
CP(gα) = g−α, and since CP : P → Pop we have CP(Xα) = X−α. Since
C2

P
is an automorphism of G, taking P to itself, and inducing the trivial

automorphism of Db the Theorem implies C2
P
= 1.

If g is any semisimple element, choose x so that xgx−1 ∈ H. Then
C(g) = C(x−1(xgx−1)x) = (C(x−1)x)g−1(C(x−1)x)−1.

Suppose C1(h) = h−1 for all h ∈ H. Then C1 ◦CP acts trivially on H, so
by the Lemma C1 = int(h) ◦ CP , which implies C2

1 = 1.
For the final assertion choose g so that gH1g

−1 = H2. Then int(g) ◦ C1 ◦
int(g−1) acts by inversion on H2. By the Lemma int(g) ◦ C1 ◦ int(g−1) =
int(h2) ◦ C2 for some h2 ∈ H2. Choose t ∈ H2 so that t2 = h2. Then
int(t−1g) ◦ C1 ◦ int(t

−1g)−1 = C2. �

An involution satisfying the condition of the Proposition is known as a
Chevalley involution. For P a splitting datum we refer to the involution
CP of the proof as the Chevalley involution defined by P . The proof shows
that every Chevalley involution is equal to CP for some P , and all Chevalley
involutions are conjugate. We will abuse notation slightly and refer to the
Chevalley involution.

Remark 2.5

1. If G = GL(n), C(g) = tg−1 is a Chevalley involution. Then GC =
O(n,C), the complexified maximal compact subgroup of GL(n,R). In
other words, C is the Cartan involution for GL(n,R). In general the
Chevalley involution is the Cartan involution of the split real form of
G.

2. Suppose C ′ is any automorphism such that C ′(g) is G-conjugate to
g−1 for all semisimple g. It is not hard to see, using Lemma 2.4, that
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C ′ = int(g) ◦ C for some g ∈ G and some Chevalley involution C. In
other words these automorphisms determine a distinguished element of
Out(G).

3. The Chevalley involution is inner if and only if G is semisimple and −1
is in the Weyl group, in which case C = int(g0) where g0 ∈ NormG(H)
represents w0. The Proposition implies g20 is central, and independent
of all choices. See Lemma 5.4.

Lemma 2.6 Fix a splitting datum P. Then CP commutes with every P-
distinguished automorphism.

This is immediate.
Here is a similar involution of WR. Recall WR = 〈C∗, j〉 with relations

jzj−1 = z and j2 = −1.

Lemma 2.7 There is an involution τ of WR such that τ(z) = z−1 for all
z ∈ C∗. Any two such automorphisms are conjugate by int(z) for some
z ∈ C∗.

Proof. This is elementary. For z0 ∈ C∗ define τz0(z) = z−1 (z ∈ C∗) and
τz0(j) = z0j. From the relations this extends to an automorphism of WR if
and only if z0z0 = 1. Thus τ1 is an automorphism, and τz0 = int(u) ◦ τ1 ◦
int(u−1), provided (u/u)2 = z0. �

We refer to such an involution as the Chevalley involution of WR.

3 Tori

Let H be a complex torus, and fix an element γ ∈ 1
2
X∗(H). Let

(3.1) Hγ = {(h, z) ∈ H × C∗ | 2γ(h) = z2}.

This is a two-fold cover ofH via the map (h, z) → h; write ζ for the nontrivial
element in the kernel of this map. We call this the γ-cover of H. Note that
(h, z) → z is a genuine character of Hγ, and is a canonical square root of 2γ,
denoted γ.

Now assume H is defined over R, with Cartan involution θ. The γ cover
of H(R) is defined to be the inverse image of H(R) in Hγ. A character of
H(R)γ is said to be genuine if it is nontrivial on ζ.

7



Lemma 3.2 ([5], Proposition 5.8) Given γ ∈ 1
2
X∗(H), the genuine char-

acters of H(R)γ are canonically parametrized by the set of pairs (λ, κ) with
λ ∈ h∗, κ ∈ γ +X∗(H)/(1− θ)X∗(H), and satisfying (1 + θ)λ = (1 + θ)κ.

Write χ(λ, κ) for the character defined by (λ, κ). This character has
differential λ, and its restriction to the maximal compact subgroup is the
restriction of the character κ of Hγ.

Let ∨H be the dual torus. This satisfies: X∗(∨H) = X∗(H), X∗(
∨H) =

X∗(H). If H is defined over R, with Cartan involution θ, then θ may be
viewed as an involution of X∗(H); its adjoint θt is an involution of X∗(H) =
X∗(

∨H). Let ∨θ be the automorphism of ∨H induced by −θt.

The L-group of H is
L
H = 〈∨H, ∨δ〉 where ∨δ2 = 1 and ∨δ acts on ∨H by ∨θ.

Part of the data is the distinguished element ∨δ (more precisely its conjugacy
class).

More generally an E-group for H is a group
E
H = 〈∨H, ∨δ〉, where ∨δ acts

on ∨H by ∨θ, and ∨δ2 is allowed to be an arbitrary element of ∨H
∨θ. Such a

group is determined up to isomorphism by the image of ∨δ2 in ∨H
∨θ/{h∨θ(h) |h ∈

∨H}. Again the data includes the ∨H conjugacy class of ∨δ. See [5, Definition
5.9].

A homomorphism φ : WR →
E
H is said to be admissible if it is continuous

and φ(j) ∈
L
H\∨H. Admissible homomorphisms parametrize representations

of the covers H(R)γ.

Lemma 3.3 ([5], Theorem 5.11) In the setting of Lemma 3.2, suppose

(1 − θ)γ ∈ X∗(H). View γ as an element of 1
2
X∗(

∨H). Let
E
H = 〈∨H, ∨δ〉

where ∨δ acts on ∨H by ∨θ, and ∨δ2 = exp(2πiγ) ∈ ∨H
∨θ.

There is a canonical bijection between the irreducible genuine characters
of H(R)γ and ∨H-conjugacy classes of admissible homomorphisms φ : WR →
L
H.

Sketch of proof. If φ is an admissible homomorphism it may be written
in the form

(3.4)
φ(z) = zλz

∨θ(λ)

φ(j) = exp(2πiµ)∨δ

for some λ, µ ∈ ∨h. Then φ(j)2 = exp(2πi(µ + ∨θµ) + γ) and φ(−1) =
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exp(πi(λ− ∨θλ)), so φ(j2) = φ(j)2 if and only if

(3.5) κ :=
1

2
(1− ∨θ)λ− (1 + ∨θ)µ ∈ γ +X∗(

∨H) = γ +X∗(H).

Then (1 + θ)λ = (1 + θ)κ; take φ to χ(λ, κ). �

Write χ(φ) for the genuine character of H(R)γ associated to φ.

The Chevalley involution C of ∨H (i.e. inversion) extends to an involution

of
E
H = 〈∨H, ∨δ〉, fixing ∨δ (this uses the fact that exp(2πi(2γ)) = 1).
Here is the main result in the case of (covers of) tori.

Lemma 3.6 Suppose φ : WR →
E
H is an admissible homomorphism, with

corresponding genuine character χ(φ) of H(R)γ. Then

(3.7) χ(C ◦ φ) = χ(φ)∗

Proof. Suppose φ is given by (6.4), so χ(φ) = χ(λ, κ) with κ as in (3.5).
Then

(3.8)
(C ◦ φ)(z) = z−λz−∨θ(λ)

(C ◦ φ)(j) = exp(−2πiµ)∨δ

By (3.5) χ(C ◦ φ) = χ(−λ,−κ) = χ(λ, κ)∗. �

4 L-packets without L-groups

We describe L-packets in terms of data for G itself. For the relation with
L-parameters see Section 6.

Suppose G is defined over R, with real form G(R). Thus G(R) = G(C)σ

where σ is an antiholomorphic involution. Fix a Cartan involution θ of G,
and let K = Gθ. By definition, K ∩G(R) is a maximal compact subgroup of
G(R), with complexification K.

Suppose H is a θ-stable Cartan subgroup of G. After conjugating by K
we may assume it is defined over R, which we always do without further
comment.

The imaginary roots ∆i, i.e. those fixed by θ, form a root system. Let
ρi be one-half the sum of a set ∆+

i of positive imaginary roots. The two-fold
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cover Hρi of H is defined as in Section 3. It is convenient to eliminate the

dependence on ∆+
i : define H̃ to be the inverse limit of {Hρi} over all choices

of ∆+
i . The inverse image of H(R) in Hρi is denoted H(R)ρi , and take the

inverse limit to define H̃(R).

Definition 4.1 An L-datum is a pair (H,Λ) where H is a θ-stable Cartan

subgroup of G, Λ is a genuine character of H̃(R), and 〈dΛ, ∨α〉 6= 0 for all
imaginary roots.

Associated to each L-datum is an L-packet. We start by defining relative
discrete series L-packets.

We say H(R) is relatively compact if H(R) ∩Gd is compact, where Gd is
the derived group ofG. ThenG(R) has relative discrete series representations
if and only if it has a relatively compact Cartan subgroup.

Suppose H(R) is relatively compact. Choose a set of positive roots ∆+

and define the Weyl denominator

(4.2) D(∆+, h) =
∏

α∈∆+

(1− e−α(h))eρ(h) (h ∈ H(R)ρ).

This is a genuine function, i.e. satisfies D(∆+, ζh) = −D(∆+, h). We may

view this as a function on H̃(R).
Let q = 1

2
dim(Gd/K∩Gd). LetW (K,H) = NormK(H)/H∩K; this is iso-

morphic to the real Weyl group W (G(R), H(R)) = NormG(R)(H(R))/H(R).

Definition 4.3 Suppose γ = (H,Λ) is an L-datum with H(R) relatively
compact. Let π = π(γ) be the unique, non-zero, relative discrete series rep-
resentation whose character restricted to the regular elements of H(R) is

(4.4) Θπ(h) = (−1)qD(∆+, h̃)−1
∑

w∈W (K,H)

sgn(w)(wΛ)(h̃)

where h̃ ∈ H̃(R) is any inverse image of h, and ∆+ makes dΛ dominant.
Every relative discrete series representation is obtained this way, and π(γ) ≃
π(γ′) if and only if γ and γ′ are K-conjugate.

The L-packet of γ is

(4.5) ΠG(γ) = {π(wγ) |w ∈ W (G,H)/W (K,H)}.
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It is a basic result of Harish-Chandra that π(γ) exists and is unique. This
version of the character formula is a slight variant of the usual one, because

of the use of H̃(R). See [5] or [2].
By (4.4) the representations in ΠG(γ) all have infinitesimal character dΛ.

If ρ = ρi is one-half the sum of any choice of positive roots (all roots are
imaginary), Λ ⊗ eρ factors to H(R), and the central character of ΠG(γ) is
(Λ⊗ eρ)|Z(G(R)).

Since 2ρ = 2ρi is a sum of roots, e2ρ is trivial on the center Z of G, and
there is a canonical splitting of the restriction of H̃ to Z: z → (z, 1) ∈ Hρ ≃

H̃. Using this splitting the central character of the packet is simply Λ|Z(G(R)).
Furthermore Π(γ) is precisely the set of relative discrete series represen-

tations with the same infinitesimal and central characters as π(γ). In fact
something stronger is true.

Let Grad be the radical of G. This is the maximal central torus, is the
identity component of the center, and is defined over R. By a radical charac-
ter we mean a character ofGrad(R), and the radical character of an irreducible
representation is the restriction of its central character to Grad(R).

Proposition 4.6 An L-packet of relative discrete series representations is
uniquely determined by an infinitesimal and a radical character.

This is based on the following structural fact.

Lemma 4.7 Suppose H(R) is a relatively compact Cartan subgroup of G(R).
Then

(4.8) Z(G(R)) ⊂ Grad(R)H(R)0.

Proof. Let Hd = H ∩Gd. Then Hd(R) is a compact torus, and is therefore
connected. It is enough to show:

(4.9) H(R) = Grad(R)Hd(R),

since this implies Z(G(R)) ⊂ H(R) = Grad(R)Hd(R) = Grad(R)H(R)0. It is
well known (4.9) holds over C: H(C) = Grad(C)Hd(C). If y ∈ H(R) choose
z ∈ Grad(C), h ∈ Hd(C) such that y = zh. Since y ∈ H(R), σ(zh) = zh, so

(4.10) zσ(z−1) = h−1σ(h).

The left hand side is in Z(G(C)), and the right hand side is in Gd(C). So
h−1σ(h) ∈ Z(Gd(C)).
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Lemma 4.11 Suppose G(C) is a complex, connected, semisimple group, σ is
an antiholomorphic involution of G(G), H(C) is a σ-stable Cartan subgroup,
and H(C)σ = H(R) is compact. Then for h ∈ H(C):

(4.12) h−1σ(h) ∈ Z(G(C)) ⇒ h−1σ(h) = 1

Proof. Let Gad(C) be the adjoint group and let Had(C) be the image of
H(C) in Gad(C). Write p for projection H(C) → Had(C). The condition
h−1σ(h) ∈ Z(G(C)) is equivalent to p(h) ∈ Had(R). So we need to show:

p(h) ∈ Had(R) ⇒ h ∈ H(R),

or equivalently, p−1(Had(R)) = H(R).
Since Had(R) is a compact torus it is connected, so p : H(R) → Had(R)

is surjective. On the other hand, since G(C) is semisimple every element of
Z(G(C)) has finite order. But Z(G(C)) ⊂ H(C), and since H(R) is compact
this implies Z(G(C)) ⊂ H(R). Therefore p−1(Had(R)) = H(R)Z(G(C)) =
H(R). �

By the Lemma applied to Gd(C), h
−1σ(h) = 1, i.e. h ∈ Hd(R), and

z ∈ Grad(R) by (4.10). �

Proof of the Proposition. Suppose Π is an L-packet of relative discrete
series representations, with infinitesimal character χinf and central character
χ. Choose λ ∈ h∗ defining χinf. It is enough to show χ is determined by λ
and the restriction χrad of χ to Grad(R). But this is clear from Lemma 4.7:
there is a unique character of Z(G(R)) whose restriction to Grad(R) is χrad,
and to H(R)0 ∩ Z(G(R)) is exp(λ + ρ) (where ρ is one-half the sum of any
set of positive roots). �

The following converse to Proposition 4.6 follows immediately from the
definitions.

Lemma 4.13 Assume G(R) has a relatively compact Cartan subgroup, and
fix one, denoted H(R). Suppose χinf, χrad are infinitesimal and radical char-
acters, respectively. Choose λ ∈ h∗ defining χinf via the Harish-Chandra
homomorphism. Then the L-packet of relative discrete series representations
defined by χinf, χrad is nonzero if and only if λ is regular, and there is a

genuine character of H̃(R) satisfying:

(1) dΛ = λ
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(2) Λ|Grad(R) = χrad.

The conditions are independent of the choices of H(R) and λ.

In (2) we have used the splitting Z(G(R)) → H̃(R) discussed after (4.5).

We now describe general L-packets. See [2, Section 13] or [1, Section 6]

Definition 4.14 Suppose γ is an L-datum. Let A be the identity component
of {h ∈ H | θ(h) = h−1} and set M = CentG(A). Let a = Lie(A). Choose a
parabolic subgroup P =MN satisfying

Re〈dΛ|a,
∨α〉 ≥ 0 for all roots of h in Lie(N).

Then P is defined over R, and H(R) is a relatively compact Cartan subgroup
ofM(R). Let ΠM(γ) be the L-packet of relative discrete series representations
of M(R) as in Definition 4.3. Define

(4.15) ΠG(γ) =
⋃

π∈ΠM (γ)

{irreducible quotients of Ind
G(R)
P (R)(π)}

Here we use normalized induction, and pull π back to P (R) via the map
P (R) →M(R) as usual.

By the discussion following Definition 4.3, and basic properties of induc-
tion, the infinitesimal character of ΠG(γ) is dΛ, and the central character is
Λ|Z(G(R)).

5 The Tits Group

We need a few structural facts provided by the Tits group.
Fix a pinning P = (B,H, {Xα}) (see Section 2). For α ∈ Π define

X−α ∈ g−α by [Xα, X−α] =
∨α as in Section 2. Define σα ∈ W = exp(π

2
(Xα−

X−α)) ∈ NormG(H). The image of σα in W is the simple reflection sα. Let
H2 = {h ∈ H |h2 = 1}.

Definition 5.1 The Tits group defined by P is the subgroup T of G generated
by H2 and {σα |α ∈ Π}.

Proposition 5.2 ([13]) The Tits group T has the given generators, and
relations:
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(1) σαhσ
−1
α = sα(h),

(2) the braid relations among the σα,

(3) σ2
α = ∨α(−1).

If w ∈ W then there is a canonical preimage σw of w in T defined as follows.
Suppose w = sα1

. . . sαn
is a reduced expression with each αi ∈ Π. Then

σw = σα1
. . . σαn

, independent of the choice of reduced expression.

Lemma 5.3 If w0 is the long element of the Weyl group, then σw0
is fixed

by any P-distinguished automorphism.

Proof. Suppose w0 = sα1
. . . sαn

is a reduced expression. If γ is distin-
guished it induces an automorphism of the Dynkin diagram, so sγ(α1) . . . sγ(αn)

is also a reduced expression for w0. Therefore γ(σw0
) = γ(σα1

. . . σαn
) =

σγ(α1) . . . σγ(αn) = σw0
by the last assertion of Proposition 5.2. �

Let ∨ρ be one-half the sum of the positive coroots.

Lemma 5.4 For any w ∈ W we have

(5.5) σwσw−1 = exp(πi(∨ρ− w∨ρ)).

In particular if w0 is the long element of the Weyl group,

(5.6) σ2
w0

= exp(2πi∨ρ) ∈ Z(G).

This element of Z(G) is independent of the choice of positive roots, and is
fixed by every automorphism of G.

Proof. We proceed by induction on the length of w. If w is a simple reflection
sα then sα

∨ρ = ∨ρ− ∨α, and this reduces to Proposition 5.2(3).
Write w = sαu with α simple and ℓ(w) = ℓ(u) + 1. Then σw = σασu,

w−1 = u−1sα, σw = σu−1σα, and

(5.7)

σwσw−1 = σασuσu−1σα

= σασuσu−1σ−1
α mα

= σαexp(
∨ρ− u∨ρ)σ−1

α mα (by the inductive step)

= exp(πi(sα
∨ρ− w∨ρ))exp(πi∨α)

= exp(πi(∨ρ− ∨α− w∨ρ))exp(πi∨α) = exp(πi(∨ρ− w∨ρ)).

14



The final assertion is easy. �

We thank Marc van Leeuwen for this proof.
We only need what follows for the part of the main theorem involving

the Chevalley involution τ of WR. Let C = CP be the Chevalley involution
defined by P .

Lemma 5.8 C(σw) = (σw−1)−1

Proof. We proceed by induction on the length of w.
Since C(Xα) = X−α (α ∈ Π), we conclude C(σα) = σ−1

α .
Suppose w = sαu with length(w) = length(u) + 1. Then σw = σασu, and

C(σw) = C(σα)C(σu) = σ−1
α (σu−1)−1. On the other hand w−1 = u−1sα, so

σw−1 = σu−1σα, and taking the inverse gives the result. �

Fix a P-distinguished involution τ of G. Consider the semidirect product
G ⋊ 〈δ〉 where δ acts on G by τ . By Lemma 2.6, C = CP extends to the
semidirect product, fixing δ. Since τ normalizes H, it defines an automor-
phism of W , satisfying τ(σw) = στ(w).

Lemma 5.9 Suppose wτ(w) = 1. Then

(a) C(σwδ) = (σwδ)
−1

(b) Suppose g ∈ NormG(H) is a representative of w. Then C(gδ) is H-
conjugate to (gδ)−1.

Proof. By the previous Lemma, and using τ(w) = w−1, we compute

C(σwδ)σwδ = (σw−1)−1στ(w) = (στ(w))
−1στ(w) = 1.

For (b) write g = hσwδ with h ∈ H. Then C(g) = C(hσwδ) = h−1(σwδ)
−1 =

h−1(hσwδ)
−1h. �

6 L-parameters

Fix a Cartan involution θ of G. Let ∨G be the connected, complex dual group

of G. The L-group
L
G of G is 〈∨G, ∨δ〉 where ∨δ2 = 1, and ∨δ acts on ∨G by a

homomorphism ∨θ0, which we now describe. See [6], [5], or [4, Section 2].
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Fix B0, H0 and let Db = (X∗(H0),Π, X∗(H0),
∨Π) be the corresponding

based root datum. Similarly choose ∨B0,
∨H0 for ∨G to define ∨Db. In par-

ticular we identify X∗(H0) = X∗(
∨H0) and X∗(H0) = X∗(∨H0). Also fix a

pinning ∨P = (∨B0,
∨H0, {X∨α}) for

∨G. See Section 2.
An automorphism γ ofDb consists of a pair (τ, τ

t), where τ ∈ Aut(X∗(H0)),
and τ t ∈ Aut(X∗(H0)) is the transpose with respect to the perfect pairing
X∗(H0) × X∗(H0) → Z. These preserve Π, ∨Π respectively. Interchang-
ing (τ, τ t) defines a transpose isomorphism Aut(Db) ≃ Aut(∨Db), denoted
µ → µt. Compose with the embedding Aut(∨Db) →֒ Aut(∨G) defined by ∨P
(Section 2) to define a map:

(6.1) µ→ µt : Aut(Db) ≃ Aut(∨Db) →֒ Aut(∨G).

Here are two equivalent ways of defining
L
G, each of which has its advan-

tages.
Let γ be the image of θ in Out(G) ≃ Aut(Db). The long element w0 of

W (G,H0) satisfies −w0 ∈ Aut(Db). Define

(6.2) ∨θ0 = (−w0γ)
t ∈ Aut(∨G).

This is the approach of [5] and [4].
Alternatively suppose σ is a real form corresponding to θ (see the be-

ginning of Section 4). Choose g conjugating σ(B0) to B0 and σ(H0) to H0.
Then τ = int(g) ◦ σ ∈ Aut(Db). Let

∨θ0 = τ t ∈ Aut(∨G). See [6].
It is not hard to see the elements τ, γ ∈ Aut(Db) satisfy τ = −w0γ, so

the two definitions of
L
G agree.

The second definition is well suited to the most split Cartan subgroup.
For example suppose G(R) is split. Choosing B0, H0 defined over R gives

τ = 1, so τ t = 1 and
L
G = ∨G× Γ (direct product).

On the other hand the first version is natural with respect to the funda-
mental (most compact) Cartan subgroup. The next Lemma is very useful in
this regard.

Lemma 6.3 The following conditions are equivalent:

(1) G(R) has a compact Cartan subgroup,

(2) ∨θ0 is inner to the Chevalley involution;
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(3) There is an element y ∈
L
G\∨G such that yhy−1 = h−1 for all y ∈ ∨H0.

Proof. The equivalence of (2) and (3) is immediate. Let C be the Chevalley
involution of ∨G with respect to ∨P . It is easy to see (6.2) is equivalent to:
the image of ∨θ0 ◦ C in Out(∨G) ≃ Aut(∨Db) is equal to γ

t. So the assertion
is that G(R) has a compact Cartan subgroup if and only if γ = 1, i.e. θ is
an inner automorphism, which holds by Lemma 6.3. �

A homomorphism φ : WR →
L
G is said to be admissible if it is continuous,

φ(C∗) consists of semisimple elements, and φ(j) ∈
L
G\∨G [6, 8.2]. Associated

to an admissible homomorphism φ is an L-packet ΠG(φ), which depends
only on the ∨G-conjugacy class of φ. Since we did not impose the relevancy
condition [6, 8.2(ii)], such a packet may be empty.

After conjugating by ∨G we may assume φ(C∗) ⊂ ∨H0. Let ∨S be the
centralizer of φ(C∗) in ∨G. Since φ(C∗) is connected, abelian and consists of
semisimple elements, ∨S is a connected reductive complex group, and ∨H0 is
a Cartan subgroup of ∨S. Conjugation by φ(j) is an involution of ∨S, so φ(j)
normalizes a Cartan subgroup of ∨S. Equivalently some ∨S-conjugate of φ(j)
normalizes ∨H0; after this change we may assume φ(WR) ⊂ Norm∨G(

∨H0).
Therefore

φ(z) = zλzλ
′

(for some λ, λ′ ∈ X∗(
∨H0)⊗ C, λ− λ′ ∈ X∗(

∨H0))(6.4)(a)

φ(j) = hσw
∨δ (for some w ∈ W,h ∈ ∨H0).(6.4)(b)

Here (a) is shorthand for φ(es) = exp(sλ + sλ′) ∈ ∨H0 (s ∈ C), and the
condition on λ − λ′ guarantees this is well defined. In (b) we’re using the
element σw of the Tits group representing w (Proposition 5.2).

Conversely, given λ, λ′, w and h, (a) and (b) give a well-defined homo-

morphism φ : WR →
L
G if and only if

∨θ := int(hσw
∨δ) is an involution of ∨H0,(6.4)(c)

λ′ = ∨θ(λ),(6.4)(d)

h∨θ(h)(σw
∨θ0(σw)) = exp(πi(λ− ∨θ(λ)).(6.4)(e)

Furthermore (c) is equivalent to

(6.4)(c′) w∨δ(w) = 1.
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6.1 Infinitesimal and radical characters

Infinitesimal Character of ΠG(φ)
View λ as an element of X∗(H0) ⊗ C via the identification X∗(

∨H0) =
X∗(H0). The W (G,H)-orbit of λ is indendent of all choices, so it defines
an infinitesimal character for G, denoted χinf(φ), via the Harish-Chandra
homomorphism.

Radical character of Π(φ)
Recall (Section 4) Grad is the radical of G, and the radical character of a

representation is its restriction to Grad(R).
Dual to the inclusion ι : Grad →֒ G is a surjection ∨ι : ∨G ։

∨[Grad] (the

dual group of Grad). For an L-group for Grad we can take
L
Grad = 〈∨Grad,

∨δ〉.

Thus ∨ι extends to a natural surjection ∨ι :
L
G →

L
Grad (taking ∨δ to itself).

Then ∨ι ◦ φ : WR →
L
Grad, and this defines a character of Grad(R) by the

construction of Section 3. We denote this character χrad(φ). See [6, 10.1]

6.2 Relative Discrete Series L-packets

By a Levi subgroup of
L
G we mean the centralizer

d
M of a torus ∨T ⊂ ∨G,

which meets both components of
L
G [6, Lemma 3.5]. An L-packet ΠG(φ)

consists of relative discrete series representations if and only if φ(WR) is not
contained in a proper Levi subgroup.

Lemma 6.5 φ(WR) is not contained in a proper Levi subgroup if and only
if λ is regular, and G(R) has a relatively compact Cartan subgroup.

Proof. Assume φ(WR) is not contained in a proper Levi subgroup. Let ∨S =
Cent∨G(φ(WR)) as in the discussion preceding (6.4). Then ∨θ = int(φ(j)) is
an involution of ∨S, and of its derived group ∨Sd. There cannot be a torus in
∨Sd, fixed (pointwise) by ∨θ; its centralizer would contradict the assumption.

Since any involution of a semisimple group fixes a torus, this implies ∨Sd = 1,
i.e. ∨S = ∨H0, which implies λ is regular.

Similarly, there can be no torus in ∨H0 ∩
∨Gd fixed by ∨θ. This implies

∨θ(h) = h−1 for all h ∈ ∨H0 ∩
∨Gd. By Lemma 6.3 applied to the derived

group, G(R) has a relatively compact Cartan subgroup.
The reverse implication is similar. �
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Definition 6.6 ΠG(φ) is the L-packet of relative discrete series represen-
tations determined by infinitesimal character χinf(φ) and radical character
χrad(φ) (see Proposition 4.6).

Lemma 6.7 Π(φ) is nonempty.

Proof. After conjugating θ if necessary we may assume H0 is θ-stable. Write
φ as in (6.4)(a) and (b). By the discussion of infinitesimal character above
χinf(φ) is defined by λ, viewed as an element of X∗(H0)⊗ C.

Choose positive roots making λ dominant. By Lemma 4.13 it is enough
to construct a genuine character of H(R)ρ satisfying dΛ = λ and Λ|Grad(R) =
χrad. For this we apply Lemma 3.3, using the fact that φ(WR) ⊂ 〈∨H0, σw

∨δ〉.
First we need to identify 〈∨H0, σw

∨δ〉 as an E-group.
First we claim w = w0. By (6.4)(b) and (c) ∨θ|∨H0

= w∨θ0|∨H0
. By (6.2),

for h ∈ ∨H0 ∩
∨Gd we have:

(6.8) ∨θ(h) = w∨θ0(h) = w(−w0γ
t)(h) = ww0γ

t(h)−1.

Since Gd(R) has a compact Cartan γ is trivial on H0 ∩ Gd and γt(h) = h.
On the other hand, as in the proof of Lemma 6.5, ∨θ(h) = h−1. Therefore
ww0 = 1, i.e. w = w0.

Next we compute

(6.9)

(σw0

∨δ)2 = w0θ0(w0)

= w2
0 (by (5.3), since ∨θ0 is distinguished)

= exp(2πiρ) (by (5.6)).

Remark 6.10 The fact that (σw0

∨δ)2 = exp(2πiρ) is the analogue of [10,
Lemma 3.2].

Thus, in the terminology of Section 3, 〈∨H0, σw0

∨δ〉 is identified with the
E-group for H defined by ∨ρ. Thus φ : WR → 〈∨H0, σw0

∨δ〉 defines a genuine
character Λ of H(R)ρ.

By construction dΛ = λ. The fact that Λ|Grad(R) = χrad is a straightfor-
ward check. Here are the details.

Write h of (6.4)(b) as h = exp(2πiµ). We use the notation of Section 3,
especially (3.4). Using the fact that σw0

∨δ is the distinguished element of the
E-group of H0 we have Λ = χ(λ, κ) where

κ =
1

2
(1− ∨θ)λ− (1 + ∨θ)µ ∈ ρ+X∗(H0).
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Write p : X∗(H0) → X∗(Grad) for the map dual to inclusion Grad → H0.
Recall (Section 4) there is a canonical splitting of the cover of H(R); using
this splitting χ(ρ, ρ)|Z(G(R)) = 1, and

Λ|Grad(R) = χ(p(λ), p(κ− ρ)).

On the other hand, by the discussion of the character of Grad(R) above,
the E-group of Grad is 〈∨Grad,

∨δ〉. The map p : X∗(H0) → X∗(Grad) is
identified with a map p : X∗(

∨H0) → X∗(
∨Grad). Then

∨ι(φ(j)) = ∨ι(hσw
∨δ) =

∨ι(h)∨δ = exp(2πip(µ))∨δ. Let

κ′ =
1

2
(1− ∨θ)p(λ)− (1 + ∨θ)p(µ) ∈ X∗(Grad)

Thus κ′ = p(κ − ρ). By the construction of Section 3 applied to φ : WR →
∨Grad, χrad = χ(p(λ), κ′) = χ(p(λ), p(κ− ρ)) = Λ|Grad(R). �

We can read off the central character of the L-packet from the construc-
tion. We defer this until we consider general L-packets (Lemma 6.16).

6.3 General L-packets

Recall (see the beginning of the previous section) a Levi subgroup
d
M of

L
G

is the centralizer of a torus ∨T , which meets both components of
L
G. An

admissible homomorphism φ may factor through various Levi subgroups
d
M .

We first choose
d
M so that φ : WR →

L
M defines a relative discrete series

L-packet of M .
Choose a maximal torus ∨T ⊂ Cent∨G(φ(WR)) and define

(6.11) ∨M = Cent∨G(
∨T ),

d
M = CentL

G
(∨T ).

Then
d
M = 〈∨M,φ(j)〉, so

d
M is a Levi subgroup, and φ(WR) ⊂

d
M .

Suppose φ(WR) ⊂ Centd
M
(∨U) where ∨U ⊂ ∨M is a torus. Then ∨U cen-

tralizes φ(WR) and
∨T , so ∨U∨T is a torus in Cent∨G(φ(WR)). By maximality

∨U ⊂ ∨T and Centd
M
(∨U) =

d
M . Therefore φ(WR) is not contained in any

proper Levi subgroup of
d
M .
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Lemma 6.12 The group
d
M is independent of the choice of ∨T , up to con-

jugation by Cent∨G(φ(WR)).

Proof. Let ∨C = Cent∨G(φ(WR)). Conjugation by φ(j) is an involution of
the connected reductive group ∨S = Cent∨G(φ(C

∗)) (see the discussion after
Lemma 6.3) and ∨C is the fixed points of this involution. Therefore ∨C is a
reductive group, and ∨T is a maximal torus in the identity component ∨C0.
Any two such tori are conjugate by ∨C0. �

The idea is to identify
d
M with the L-group of a Levi subgroup M ′(R)

of G(R). Then, since φ(WR) ⊂
d
M is not contained in any proper Levi

subgroup, it defines a relative discrete series L-packet for M ′(R). We obtain
ΠG by induction. Here are the details.

We need to identify
d
M = 〈∨M,φ(j)〉 with an L-group. A crucial technical

point is that after conjugating we may assume
d
M = 〈∨M, ∨δ〉, making this

identification clear.

Lemma 6.13 ([6], Section 3.1) Suppose S is a ∨θ0-stable subset of
∨Π. Let

∨MS be the corresponding Levi subgroup of ∨G: ∨H0 ⊂
∨MS, and S is a set

of simple roots of ∨H0 in ∨MS. Let
d
MS = ∨MS ⋊ 〈∨δ〉, a Levi subgroup of

L
G.

Let MS ⊃ H0 be the Levi subgroup of G with simple roots {α | ∨α ∈ S} ⊂
Π. Given a real form of G (in the given inner class) suppose some conjugate

M ′ of MS is defined over R. Write
L
M ′ = ∨M ′ ⋊ 〈∨δM ′〉. Then conjugation

induces an isomorphism
L
M ′ ≃

d
MS, taking

∨δM ′ to ∨δ.

Any Levi subgroup of
L
G is ∨G-conjugate to

d
MS for some ∨θ0-stable set

S.

We refer to the Levi subgroups
d
MS of the Lemma (where S is ∨θ0-stable) as

standard Levi subgroups.

Definition 6.14 Suppose φ : WR →
L
G is an admissible homomorphism.

Choose a maximal torus ∨T in Cent∨G(φ(WR)), and define ∨M,
d
M by (6.11).

After conjugating by ∨G, we we may assume
d
M is a standard Levi sub-

group. Let M be the corresponding standard Levi subgroup of G.
Assume there is a subgroup M ′ conjugate to M , which is defined over R;

otherwise Π(φ) is empty. Let ΠM ′(φ) be the L-packet for M ′(R) defined by
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φ : WR →
d
M ≃

L
M ′. (cf. Lemma 6.13). Define ΠG(φ) by induction from

ΠM ′(φ) as in Definition 4.14.

Lemma 6.15 The L-packet ΠG(φ) is independent of all choices.

Proof. By Lemma 6.12 the choice of ∨T is irrelevant: another choice leads

to an automorphism of
d
M fixing φ(WR) pointwise.

It is straighforward to see that the other choices, including another Levi
subgroup M ′′, would give an element g ∈ G(C) such that int(g) : M ′ → M ′′

is defined over R, and this isomorphism takes ΠM ′(φ) to ΠM ′′(φ).
First of all we claim M ′(R) and M ′′(R) are G(R)-conjugate. To see

this, let H ′(R) be a relatively compact Cartan subgroup of M ′(R). Then
H ′′(R) = gH ′(R)g−1 is a relatively compact Cartan subgroup of M ′′(R).
In fact H ′(R) and H ′′(R) are G(R)-conjugate: two Cartan subgroups of
G(R) are G(C)-conjugate if and only if they are G(R)-conjugate. Therefore
M ′(R),M ′′(R), being the centralizers of the split components of H ′(R) and
H ′′(R), are also G(R)-conjugate.

Therefore, since the inductive step is not affected by conjugating by G(R),
we may assume M ′ = M ′′. Then g ∈ NormG(C)(M

′), and furthermore g ∈
NormG(C)(M

′(R)).
Now gH ′(R)g−1 is another relatively compact Cartan subgroup ofM ′(R),

so after replacing g with gm for some m ∈ M ′(R) we may assme g ∈
NormG(C)(H

′(R)). It is well known that

NormG(C)(H
′(R)) = NormM ′(C)(H

′(R))NormG(R)(H
′(R)).

For example see [14, Proposition 3.12] (where the group in question is denoted
W (R)θ), or [11, Theorem 2.1]. Since conjugation by M ′(C) does not change
infinitesimal or central characters, by Proposition 4.6 it preserves ΠM ′(φ).
As above G(R) has no effect after the inductive step. This completes the
proof. �

We now give the formula for the central character of ΠG(φ).

Lemma 6.16 Write φ as in (6.4)(a) and (b), and suppose h = exp(2πiµ),
with µ ∈ X∗(

∨H0)⊗ C ≃ X∗(H0)⊗ C. Let ρi be one-half the sum of any set
of positive roots of {α | ∨θα = −α}, Set

τ =
1

2
(1− ∨θ)λ− (1 + ∨θ)µ+ ρi ∈ X∗(H0).

Then the central character of ΠG(φ) is τ |Z(G(R)).
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7 Contragredient

The proof of Theorem 1.3 is now straightforward. We restate the Theorem
here.

Theorem 7.1 Let G(R) be the real points of a connected reductive algebraic

group defined over R, with L-group
L
G. Let C be the Chevalley involution

of
L
G (Section 2) and let τ be the Chevalley involution of WR (Lemma 2.7).

Suppose φ : WR →
L
G is an admissible homomorphism, with associated L-

packet Π(φ). Let Π(φ)∗ = {π∗ | π ∈ Π(φ)}. Then:

(a) Π(φ)∗ = Π(C ◦ φ)

(b) Π(φ)∗ = Π(φ ◦ τ)

Proof. Let P = (∨B0,
∨H0, {X∨α} be the pinning used to define

L
G. After

conjugating by ∨G we may assume C = CP . As in the discussion before (6.4),
we are free to conjugate φ so that φ(C∗) ∈ ∨H0, and φ(WR) ⊂ Norm∨G(

∨H0).
First assume Π(φ) is an L-packet of relative discrete series representations.

Then Π(φ) is determined by its infinitesimal character χinf(φ) and its radical
character χrad(φ) (Definition 6.6). It is easy to see that the infinitesimal
character of Π(φ)∗ is −χinf(φ), and the radical character is χrad(φ)

∗. So it is
enough to show χinf(C ◦ φ) = −χinf(φ) and χrad(C ◦ φ) = χrad(φ)

∗. The first
is obvious from (6.4)(a), the Definition of χinf(φ), and the fact that C acts
by −1 on the Lie algebra of ∨H0. The second follows from the fact that C

factors to the Chevalley involution of
L
Grad, and the torus case (Lemma 3.6).

Now suppose φ is any admissible homomorphism such that ΠG(φ) is

nonempty. As in Definition 4.14 we may assume φ(WR) ⊂
d
M where

d
M

is a standard Levi subgroup of
L
G. Choose M ′ as in Definition 6.14 and

write ΠM ′ = ΠM ′(φ) as in that Definition.
Write socle (resp. co-socle) for the set of irreducible submodules (resp.

quotients) of an admissible representation.
Choose P =M ′N as in Definition 4.14 to define

(7.2)(a) ΠG(φ) = cosocle(Ind
G(R)
P (R)(ΠM ′)) =

⋃

π∈Π
M′

cosocle(Ind
G(R)
P (R)(π)).

It is immediate from the definitions that CP restricts to the Chevalley
involution of ∨M . Therefore by the preceding case ΠM ′(C ◦ φ) = ΠM ′(φ)∗.
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Apply Definition 4.14 again to compute ΠG(C ◦ φ); this time the positivity
condition in Definition 4.14 forces us to to use the opposite parabolic P =
M ′N :

(7.2)(b) ΠG(C ◦ φ) = cosocle(Ind
G(R)

P (R)
(Π∗

M ′)).

Here is the proof of part (a), we justify the steps below.

(7.2)(c)

ΠG(C ◦ φ)∗ = [cosocle(Ind
G(R)

P (R)
(Π∗

M ′))]∗

= [cosocle(Ind
G(R)

P (R)
(ΠM ′)∗)]∗

= [socle(Ind
G(R)

P (R)
(ΠM ′))∗]∗

= cosocle(Ind
G(R)
P (R)(ΠM ′)) = ΠG(φ).

The first step is just the contragredient of (7.2)(b). For the second, inte-

gration alongG(R)/P (R) defines a pairing between Ind
G(R)
P (R)(π

∗) and Ind
G(R)
P (R)(π)

∗,
and gives

(7.3) Ind
G(R)
P (R)(π

∗) ≃ Ind
G(R)
P (R)(π)

∗.

For the next step use cosocle(X∗) = socle(X)∗. Then the double dual can-
cels for irreducible representations, and it is well known that the theory of
intertwining operators gives:

(7.4) socle(Ind
G(R)

P (R)
(π)) = cosocle(Ind

G(R)
P (R)(π)).

Finally plugging in (7.2)(a) gives part (a) of the Theorem.
For (b) we show that C ◦ φ is ∨G-conjugate to φ ◦ τ .
Recall τ is any automorphism of WR acting by inverse on C∗, and any

two such τ are conjugate by int(z) for z ∈ C∗. Therefore the statement is
independent of the choice of τ . It is convenient to choose τ(j) = j−1, i.e.
τ = τ−1 in the notation of the proof of Lemma 2.7.

By (6.4)(a) (C ◦ φ)(z) = C(φ(z)) = z−λz−λ′

. On the other hand (φ ◦
τ)(z) = φ(z−1) = z−λz−λ′

. Therefore it is enough to show C(φ(j)) is ∨H0-
conjugate to φ(τ(j)), which equals φ(j)−1 by our choice of τ .

Since φ(j) normalizes ∨H0, φ(j) = g∨δ with g ∈ Norm∨G(
∨H0). Then

gδ(g)φ(j)2 = φ(−1) ∈ ∨H0. Therefore the image w of g in w satisfies
wθ0(w) = 1. Apply Lemma 5.9(b). �
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8 Hermitian Dual

Suppose π is an admissible representation of G(R). We briefly recall what
it means for π to have an invariant Hermitian form, and the notion of the
Hermitian dual of π. See [9] for details, and for the connection with unitary
representations.

We work entirely in a purely algebraic setting. Write σ for complex conju-
gation of g = Lie(G(C)) with respect to g0 = Lie(G(R)). Choose a Cartan in-
volution θ commuting with σ, and let K = Gθ. We consider (g, K)-modules,
and write (π, V ) for a (g, K)-module with underlying complex vector space
V .

We say (π, V ), or simply π, is Hermitian if there is a nondegenerate
Hermitian form ( , ) on V , satisfying

(8.1) (π(X)v, w) + (v, π(σ(X))w) = 0 (v, w ∈ V,X ∈ g),

and a similar identity for the action of K.
Define the Hermitian dual (πh, V h) as follows. Define a representation of

g on the space of conjugate-linear functions V → C by

(8.2) πh(X)(f)(v) = −f(π(σ(X))v) (v ∈ V,X ∈ g).

Define the action of K by a similar formula, and let V h be the K-finite
functions; then (πh, V h) is a (g, K)-module. If π is irreducible then π is
Hermitian if and only if π ≃ πh.

Fix a Cartan subgroup H of G. Identify an infinitesimal character χinf

with (the Weyl group orbit of) an element λ ∈ h∗, by the Harish-Chandra
homomorphism. Define λ → λ with respect to the real form X∗(H) ⊗ R of
h∗, and write χinf for the corresponding action on infinitesimal characters.
This is well-defined, independent of all choices.

For simplicity we restrict to GL(n,R) from now on.

Lemma 8.3 Suppose π is an admissible representation of GL(n,R), admit-
ting an infinitesimal character χinf(π), and a central character χ(π). Then:

1. χinf(π
h) = −χinf(π),

2. χ(πh) = χ(π)h,
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3. Suppose P (R) = M(R)N(R) is a parabolic subgroup of GL(n,R), and

πM is an admissible representation of M(R). Then Ind
G(R)
P (R)(π

h
M) ≃

Ind
G(R)
P (R)(πM)h.

Proof. The first assertion is easy if π is a minimal principal series represen-
tation. Since any irreducible representation embeds in a minimal principal
series, (1) follows. Statement (2) is elementary, and (3) is an easy variant of
(7.3). We leave the details to the reader. �

Now suppose φ is a finite dimensional representation of WR on a complex
vector space V . Define a representation φh on the space V h of conjugate linear
functions V → C by: φ(w)(f)(v) = f(φ(w−1)v) (w ∈ WR, f ∈ V h, v ∈ V ).
Choosing dual bases of V, V h, identify GL(V ), GL(V h) with GL(n,C), to

write φh = tφ
−1
.

It is elementary that φ has a nondegenerate invariant Hermitian form if
and only if φ ≃ φh.

Take
L
G = GL(n,C), so irreducible admissible representation of GL(n,R)

are parametrized by n-dimensional semisimple representations of WR. Write
φ→ π(φ) for this correspondence.

Lemma 8.4 Suppose φ is an n-dimensional semisimple representation of
WR. Then

1. χinf(φ
h) = −χinf(φ),

2. χrad(φ
h) = χrad(φ)

h.

Proof. Let ∨H be the diagonal torus in GL(n,C). As in (6.4), write φ(z) =

zλzλ
′

, so χinf(φ) = λ. On the other hand φh(z) = zλzλ
′
−1
, and it is easy

to see this equals z−λ′

z−λ, where λ is complex conjugatation with respect to
X∗(

∨H)⊗ R. Therefore χinf(φ
h) = −λ′. Then (1) follows from the fact that,

by (6.4)(d), λ is GL(n,C)-conjugate to λ′.
The second claim comes down to the case of tori, which we leave to the

reader.
�

Proof of Theorem 1.5. The equivalence of (1) and (2) follow from
the preceding discussion. For (3), it is well known (and a straightforward
exercise) that π(φ) is tempered if and only if φ(WR) is bounded [6, 10.3(4)],
which is equivalent to φ being unitary.
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The proof of (1) is parallel to that of Theorem 1.3, using the previous two
Lemmas, and our characterization of the Langlands classification in terms of
infinitesimal character, radical character, and compatibility with parabolic
induction. We leave the few remaining details to the reader. �
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