
Implementation of the Kazhdan–Lusztig algorithm

October 29, 2007

Some notes to myself about the implementation of the K-L algorithm.
The main reference are David’s notes [2] from a Park City conference.

We assume that we are given tables of the cross-actions and Cayley
transforms. For s ∈ S, we denote Cs the Cayley transform going from more
compact to less compact Cartans, Cs the inverse Cayley tranform. We also
use γs (resp. γs

±) for Cs(γ) when Cs is one– (resp. two–) valued on γ;
similarly γs (resp. γ±

s ) for Cs.

1 Hecke algebra action

We denote D the set of parameters (of course the existence of the Cayley
transform and cross action tables imply that the set D has already been
enumerated, and thus identified with a set [0,M [ of integers.) We let M

be the free A-module generated by D, where A = Z[v, v−1], and we write
q = v2. We replace the canonical basis (Tδ)δ∈D of M by tδ = v−l(δ)Tδ,
where l : D → N is the length function (also assumed to be tabulated),
and similarly denote tw the corresponding basis of the Hecke algebra H of
the complex Weyl group. We denote i the canonical involution on M: the
unique A-antilinear involution such that

i(hm) = i(h)i(m) for all h ∈ H, m ∈ M

i(tδ) = tδ +
∑

γ<δ

r(γ, δ) tγ r(γ, δ) ∈ A

The Kazhdan–Lusztig basis of M is the unique basis (cδ)δ∈D such that :

i(cδ) = cδ for all δ ∈ D

cδ = tδ +
∑

γ<δ

p(γ, δ) tγ p(γ, δ) ∈ v−1
Z[v−1]
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We denote µ(γ, δ) the coefficient of v−1 in p(γ, δ).
Denote M≤ =

⊕

δ∈D Z[v−1]tδ, M< =
⊕

δ∈D v−1
Z[v−1]tδ. Then it is

easy to show that if m ∈ M≤ is such that i(m) = m, there are uniquely
defined integers aδ such that

m =
∑

δ∈D

aδcδ

Indeed, there are certainly uniquely defined polynomials aδ ∈ Z[v−1] such
that m =

∑

δ∈D aδcδ, and then i(m) = m is equivalent to i(aδ) = aδ for all
δ, which is equivalent to aδ ∈ Z.

We denote τ(δ) the descent set for δ (this may also be assumed to be
tabulated.) In other words, τ(δ) is the set of s that are either compact
imaginary, complex such that s × δ < δ, or real type I or type II for δ. The
formulas for the action of the Hecke algebra are as follows :

(a) s is compact imaginary for δ :

Ts.Tδ = q Tδ

ts.tδ = v tδ

cs.tδ = (v + v−1) tδ

(b) s is noncompact imaginary type I for δ :

Ts.Tδ = Ts×δ + Tδs

ts.tδ = v−1ts×δ + tδs

cs.tδ = v−1tδ + v−1ts×δ + tδs

(c) s is noncompact imaginary type II for δ :

Ts.Tδ = Tδ + Tδs

+
+ Tδs

−

ts.tδ = v−1tδ + tδs

+
+ tδs

−

cs.tδ = 2v−1tδ + tδs

+
+ tδs

−

(d) s is complex for δ, s ∈ τ(δ) :

Ts.Tδ = (q − 1)Tδ + qTs×δ

ts.tδ = (v − v−1)tδ + ts×δ

cs.tδ = vtδ + ts×δ
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(e) s is complex for δ, s 6∈ τ(δ) :

Ts.Tδ = Ts×δ

ts.tδ = ts×δ

cs.tδ = v−1tδ + ts×δ

(f) s is real type I for δ :

Ts.Tδ = (q − 2)Tδ + (q − 1)(T
δ+
s

+ T
δ−s

)

ts.tδ = (v − 2v−1)tδ + (1 − v−2)(tδ+
s

+ tδ−s )

cs.tδ = (v − v−1)tδ + (1 − v−2)(tδ+
s

+ tδ−s )

(g) s is real type II for δ :

Ts.Tδ = (q − 1)Tδ − Ts×δ + (q − 1)Tδs

ts.tδ = (v − v−1)tδ − v−1ts×δ + (1 − v−2)tδs

cs.tδ = vtδ − v−1ts×δ + (1 − v−2)tδs

(h) s is real for δ, s 6∈ τ(δ) :

Ts.Tδ = −Tδ

ts.tδ = −v−1tδ

cs.tδ = 0

2 Bruhat ordering

It turns out that there are in fact a number of orderings that one could use
for the computation of Kazhdan–Lusztig polynomials. And in fact, what I
am probably going to do is take the radical step of not using Bruhat order
at all! (or rather, use the ordering where γ ≤ δ iff γ = δ or l(γ) < l(δ).)

What we want from a “Bruhat ordering” is that (a) it is compatible with
length (i.e., weaker than the ordering described above, which we shall call
the length ordering), and that (b) pγ,δ 6= 0 implies γ ≤ δ. Obviously, there
is a strongest such ordering (the length ordering) and a weakest one (the
one generated by the relations pγ,δ 6= 0.) Surprisingly, those two extremes
do not seem to be all that far apart; even more so if instead of the weakest
one, which seems rather hard to get at (is it even clear that it is graded?)
we use one of the natural candidates, such as the one described in [2]. In
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all the cases I computed, which included the large block for type E7, more
than half the comparable pairs for the length ordering were also comparable
for the Bruhat ordering in [2].

Recall the definition. Write δ
s
→ δ′ if s is a strict descent for δ (i.e.,

a complex descent, or real type I or II), and δ′ = s × δ if s is a complex
descent, δ′ ∈ Cs(δ) is s is real. Now let δ, γ ∈ D. Then we say that γ < δ

iff there exists an s ∈ S with δ
s
→ δ′, and either γ ≤ δ′, or there is a γ′ < δ′

such that γ
s
→ γ′. It should be fairly easy to show, pretty much as for the

ordinary Bruhat order, that this ordering is graded, with degree being given
by the length function. Then, in order to describe it, it suffices to give the
covering relations.

As David pointed out to me, this ordering suffers from a lack of symmetry
when passing over to the dual; one should want that the duality is order-
reversing for the Bruhat ordering. As he explained, one solution would
be to make the ordering even stronger, essentially by imposing that in the
situation where δ

s
→ δ′, γ

s
→ γ′, one has γ < δ iff γ′ < δ′. It is not clear to

me whether this definition is susceptible of a recursive construction; perhaps
something of doing it as previously, and then applying symmetrizing passes
until symmetry is achieved ?

Another solution, that would make the order weaker, would be to take
the “product ordering” for the two projections on orbit sets, where on the
orbit sets one takes the closure ordering as described combinatorially in
Richardson and Springer [1]. I think this is an acceptable ordering, but this
needs to be re-checked.

3 Kazhdan–Lusztig polynomials

Denote cδ the Kazhdan-Lusztig basis. In order to compute the cδ, we use
two kinds of formulas :

I. Let s ∈ τ(δ) (recall that this means that s is either imaginary compact, real
in the domain of the inverse Cayley transform, or complex with s × δ < δ.)
then we have :

cs.cδ = (v + v−1) cδ (1)

This is Lemma 6.7 (b) in [2]. This yields the “easy case” induction
formulas (second case type II in [2]) :
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pγ,δ = v−1pγs,δ for s imaginary type I w.r.t. γ

pγ,δ = v−1(pγs

+
,δ + pγs

−
,δ) for s imaginary type II w.r.t. γ

pγ,δ = v−1ps×γ,δ for s complex ascent w.r.t. γ

pγ,δ = 0 for s real nonparity w.r.t. γ

Indeed, we have :

cs.cδ =
∑

γ≤δ

pγ,δ cs.tγ =
∑

γ<δ
s compact

(v + v−1)pγ,δtγ

+
∑

γ<δ
s type I imaginary

[

v−1(pγ,δ + ps×γ,δ) + (1 − v−2)pγs,δ

]

tγ

+
∑

γ<δ
s type II imaginary

[

2v−1pγ,δ + (1 − v−2)(pγs

+
,δ + pγs

−
,δ)

]

tγ

+
∑

γ<δ
s complex descent

(vpγ,δ + ps×γ,δ)tγ +
∑

γ<δ
s complex ascent

(v−1pγ,δ + ps×γ,δ)tγ

+
∑

γ<δ
s type I real

[

(v − v−1)pγ,δ + pγ+
s ,δ + pγ−

s ,δ

]

tγ

+
∑

γ<δ
s type II real

[

vpγ,δ − v−1ps×γ,δ + pγs,δ

]

tγ +
∑

γ<δ
s real nonparity

0.tγ

Consider now the four cases where s is an ascent for γ :

(a) s is noncompact type I imaginary with respect to γ. Then (1) yields :

v−1(pγ,δ + ps×γ,δ) + (1 − v−2)pγs,δ − (v + v−1)pγ,δ = 0 (2)

But the same equation for γs yields :

(v − v−1)pγs,δ + pγ,δ + ps×γ,δ − (v + v−1)pγs,δ = 0

Multiplying by v−1, and using (2), we get

(v + v−1)(pγ,δ − v−1pγs,δ) = 0

whence pγ,δ = v−1pγs,δ.
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(b) s is noncompact type II imaginary with respect to γ. Then (1) yields :

2v−1pγ,δ + (1 − v−2)(pγs

+
,δ + pγs

−
,δ) − (v + v−1)pγ,δ = 0 (3)

But the same equation for γs
+ and γs

− yields :

vpγs

+
,δ − v−1pγs

−
,δ + pγ,δ − (v + v−1)pγs

+
,δ = 0

vpγs

−
,δ − v−1pγs

+
,δ + pγ,δ − (v + v−1)pγs

−
,δ = 0

Multiplying by v−1, adding up and combining with (3) yields :

(v + v−1)(pγ,δ − v−1(pγs

+
,δ + pγs

−
,δ)) = 0

whence pγ,δ = v−1(pγs

+
,δ + pγs

−
,δ).

(c) s is complex for γ, s 6∈ τ(γ). Then (1) yields

v−1pγ,δ + ps×γ,δ − (v + v−1)pγ,δ = 0 (4)

The same equation for s × γ yields :

vps×γ,δ + pγ,δ − (v + v−1)ps×γ,δ = 0

Multiplying by v−1 and combining with (4) yields :

(v + v−1)(pγ,δ − v−1ps×γ,δ) = o

whence pγ,δ = v−1ps×γ,δ.

(d) s is real for γ, s 6∈ τ(γ). Then (1) yields :

(v + v−1)pγ,δ = 0

whence pγ,δ = 0.

II. Let s 6∈ τ(δ). Then there are four cases to consider :

(a) s is complex for δ, s × δ > δ. Then :

cs.cδ = cs×δ +
∑

ζ<δ
s∈τ(ζ)

µ(ζ, δ) cζ

(b) s is imaginary noncompact type I for δ. Then :

cs.cδ = cδs +
∑

ζ<δ
s∈τ(ζ)

µ(ζ, δ) cζ
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(c) s is imaginary noncompact type II for δ. Then :

cs.cδ = cδs

+
+ cδs

−

+
∑

ζ<δ
s∈τ(ζ)

µ(ζ, δ) cζ

(d) s is real nonparity for δ. Then :

cs.cδ =
∑

ζ<δ
s∈τ(ζ)

µ(ζ, δ) cζ

III. Of course, in practice one would like to use the formulas in II for ex-
pressing cδ in terms of lower parameters. This works as follows :

(a) s is complex for δ, s × δ < δ. Then :

cδ = cs.cs×δ −
∑

ζ<s×δ
s∈τ(ζ)

µ(ζ, s × δ) cζ

(b) s is real type I for δ. Then :

cδ = cs.cδ+
s

−
∑

ζ<δ+
s

s∈τ(ζ)

µ(ζ, δ+
s ) cζ

(here δ−s might have been used just as well instead of δ+
s .)

(c) s is real type II for δ. Then :

cδ + cs×δ = cs.cδs
−

∑

ζ<δs

s∈τ(ζ)

µ(ζ, δs) cζ

The last of these formulas is the one that doesn’t directly give a recursion,
and where the “structural fact” of Lemma 6.2 in [2] has to be used to show
that the recursion can be gotten to go through. More specifically, if G(δ) is
the connected component of δ in the graph where the edges are the (δ, s× δ)
corresponding to generators in case (c) above, then for each fixed γ < δ there
will be a δ′ ∈ G(δ) for which s is an ascent, allowing pγ,δ′ to be computed
through one of the “easy” formulas obtained in I. Then the equations can
be solved to get all the pγ,δ′′ , δ′′ ∈ G(δ).

In terms of polynomials, if we set δ′ to be s × δ in case (a), δ+
s in case

(b), and δs in case (c), we get the following formulas for γ < δ, where lhs
denotes pγ , δ in the first two cases, pγ,δ + pγ,s×δ in case (c)
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(a) when s is a complex descent for γ :

lhs = v pγ,δ′ + ps×γ,δ′ −
∑

γ≤ζ<δ′

µ(ζ, δ′)pγ,ζ

(b) s is real type I for γ. Then :

lhs = (v − v−1)pγ,δ′ + p
γ+

s ,δ′
+ p

γ−

s ,δ′
−

∑

γ≤ζ<δ′

µ(ζ, δ′)pγ,ζ

(c) s is real type II for γ. Then :

lhs = v pγ,δ′ − v−1ps×γ,δ′ + pγs,δ′ −
∑

γ≤ζ<δ′

µ(ζ, δ′)pγ,ζ

(d) s is imaginary noncompact for γ. Then :

lhs = (v + v−1)pγ,δ′ −
∑

γ≤ζ<δ′

µ(ζ, δ′)pγ,ζ

References

[1] Roger W. Richardson and Tonny A. Springer. The Bruhat Order on
Symmetric Varieties. GeometriæDedicata, 35:389–436, 1990.

[2] David A. Vogan, Jr. The Kazhdan-Lusztig conjecture for real reductive
groups. In Representation Theory of Reductive Groups (Park City, Utah,
1982), volume 40 of Progress in Mathematics, pages 223–264, Boston,
Mass., 1983. Birkhäuser.
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