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The goal of these notes is to explain how to attach representation parameters (�- and
�-data, which are characters of tori) to the block output of atlas, for blocks associated
to representations with (regular) in�nitesimal character in the translation family of �,
and to do this explicitly in a variety of examples. The block output lines are labeled
with pairs of numbers (i; j) which correspond to pairs (x; y) as described in [2] and [4],
to which correspond representations as de�ned in [6]. Although a pair (x; y) determines
a standard module and an irreducible representation uniquely, the block output only
contains su¢ cient information to make an assignment up to outer automorphisms of
G(R), and, if G(R) is disconnected, up to tensoring by a character which is trivial on
the identity component. In addition, the user will have his or her own realization of
the group G(R) in mind, with a choice of representatives of Cartan subgroups, and
a choice of isomorphisms of those CSG�s with abstract tori. The parameterization of
representations will depend on those choices. For example, if we realize SL(2;R) as the
set of 2� 2 real matrices of determinant 1, and the compact Cartan as�

k� =

�
cos(�) sin(�)
� sin(�) cos(�)

��
' S1;

then the two natural choices of isomorphism

k� 7! ei� and k� 7! e�i� (1)

lead to di¤erent parametrizations of representations of SL(2;R); making a di¤erent
choice amounts to switching the holomorphic and antiholomorphic discrete series. It is
important to be aware of which choices can be made freely, and which are dependent
on other decisions and need to be made consistently. For example, once the choice of

�This material is based upon work supported by the National Science Foundation under Grant No.
0554278.
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isomorphism (1) is made, the isomorphism of the split Cartan with R� is then uniquely
determined via a Cayley transform.
We will �x the real form G(R) of the group G and start with the �large�block, i. e.,

the block containing the trivial representation of G(R). Once we have assigned charac-
ters of Cartan subgroups to all lines of the output, the assignments in the smaller blocks
should (in principle) be uniquely determined by choices we have already made. How-
ever, in many cases, atlas does not provide enough information to deduce what they
are; for example, it would be important to know how the y-parameters corresponding to
the second entries for pairs (i; j) in two di¤erent blocks are related to each other; that
information is not available, so we have to make new choices. Moreover, atlas often
creates identical looking blocks (corresponding to isomorphic strong real forms) only
once, although the blocks correspond to nonequivalent representations of G(R). (Con-
sider for example the blocks PSL(2;R)�SU(2; 0) and PSL(2;R)�SU(0; 2) which give
two principal series of PSL(2;R), di¤ering by tensoring with a nontrivial character.)
In light of these ambiguities, we reformulate the goal of these notes as follows: we

explain how to �nd an �isomorphism� between the set of representation parameters
for a block B with the set of atlas block parameters for this block; i. e., a bijection
such that the nature of the simple roots, the cross actions, and the Cayley transforms
match up. In practice, the user does not need to have a complete set of parameters
(and understanding of which sets of parameters give equivalent representations) in front
of him or her; once one block line is assigned to a parameter, the algorithm outlined
produces a set of parameters for the whole block. However, it is necessary to understand
(have in mind a model of) the appropriate complex torus and root system.
There are no proofs in these notes; they will appear elsewhere [4], [5], [9], [3], [6].

1 Attaching characters step by step

We start with the �large�block; by this we mean the block for any real form G(R) and
the quasisplit form of G_; this is the block that contains the trivial representation of
G(R). In this large block, the theory of the character formula of the trivial representa-
tion described in [9] helps us to nail things down, without having to calculate the parity
of real roots, etc.
The ��-data� consist of a Cartan subgroup (up to conjugacy) H(R), a genuine

character � of the �-cover of H(R), and a choice �+R of positive real roots. As explained
in [9], and in more detail in [8], we can specify � by a pair (�; �), where � = d� and �
is an algebraic character which agrees with � on the compact part of H(R).
The ��-data� consist of a Cartan subgroup H(R) (the same H(R) as above), a

character � of H(R) (given by a pair (
; �) analogous to the above), and a linear
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functional 
 satisfying
d� = 
 + �i � 2�i;c:

Here �i and �i;c are half sums of the imaginary and compact roots of a positive root
system, respectively. We always have 
 = �, so we use this latter notation.
Recall that the data parametrize both a standard module X and an irreducible

representation � which is the unique constituent of X which contains its lowest K-
types. We can construct this standard module using real parabolic induction as follows:
Write

H(R) = TA;

the decomposition of H(R) into a compact part and a vector group, and

M = CentG(R)(A) =M 0A: (2)

Then M is the Levi factor of a cuspidal parabolic subgroup P =MN of G(R), and

X = Ind
G(R)
P (� 
 �); (3)

where � is a discrete series representation ofM 0, and � is the character of A obtained by
the restriction of �. The restriction of � to T is a highest weight of a lowestM \K-type
of �. In Section 12 we address brie�y how to determine the group M .
We now outline a step by step process to determine these parameters associated to

a large block. In the subsequent sections, we explain each step and perform it on the
example of Sp(4;R).

Step 1 Print the block and the cartan output for G(R). (Section 2)

Step 2 Print the kgb output for G_(R), and choose the basepoints. (Section 3)

Step 3 Choose your favorite parametrization of the root system. Check how atlas
numbers the simple roots. (Section 4)

Step 4 Match up a representation attached to the fundamental Cartan #0. (Section
5)

Step 5 Use simple cross actions to obtain the parameters for all other representations
attached to the same Cartan subgroup. (Section 7)

Step 6 Starting from a basepoint representation, perform a Cayley transform through
a simple imaginary noncompact root to obtain the parameters for a representation
attached to more split Cartan subgroup. (Section 8)

More steps Repeat the previous two steps until done.
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2 The block output

Let�s look at the information the block output of atlas gives us. Each line of the
block corresponds to a representation of a given real form of our chosen group G. The
large block is the one for which the real form of the dual group G_ is quasisplit. The
representations in the large block have in�nitesimal character (in the translation familiy
of) �. Below is the output for the example Sp(4;R)� SO(3; 2):

0 (0,6): 0 0 [i1,i1] 1 2 (6,*) (4,*)
1 (1,6): 0 0 [i1,i1] 0 3 (6,*) (5,*)
2 (2,6): 0 0 [ic,i1] 2 0 (*,*) (4,*)
3 (3,6): 0 0 [ic,i1] 3 1 (*,*) (5,*)
4 (4,4): 1 2 [C+,r1] 8 4 (*,*) (0,2) 2
5 (5,4): 1 2 [C+,r1] 9 5 (*,*) (1,3) 2
6 (6,5): 1 1 [r1,C+] 6 7 (0,1) (*,*) 1
7 (7,2): 2 1 [i2,C-] 7 6 (10,11) (*,*) 2,1,2
8 (8,3): 2 2 [C-,i1] 4 9 (*,*) (10,*) 1,2,1
9 (9,3): 2 2 [C-,i1] 5 8 (*,*) (10,*) 1,2,1
10 (10,0): 3 3 [r2,r1] 11 11 (7,*) (8,9) 1,2,1,2
11 (10,1): 3 3 [r2,rn] 10 10 (7,*) (*,*) 1,2,1,2

(4)

The �rst column numbers the representations, starting at 0. The second column
contains a pair of numbers; these correspond to the lines in the kgb outputs of the two
groups. This is the pair (x; y) 2 Z which determines the representation. The third
column gives the length of the twisted involution parameter. The fourth column gives
the conjugacy class of Cartan subgroups that the representation is attached to. The
numbering is the one given by the cartan output of atlas. Here is that output for our
example Sp(4;R):

Cartan #0:
split: 0; compact: 2; complex: 0
canonical twisted involution:
twisted involution orbit size: 1; fiber rank: 2; #X_r: 4
imaginary root system: B2
real root system is empty
complex factor is empty
real form #2: [0,1] (2)
real form #1: [2] (1)
real form #0: [3] (1)
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Cartan #1:
split: 0; compact: 0; complex: 1
canonical twisted involution: 2,1,2
twisted involution orbit size: 2; fiber rank: 0; #X_r: 2
imaginary root system: A1
real root system: A1
complex factor is empty
real form #2: [0] (1)
real form #1: [1] (1)

Cartan #2:
split: 1; compact: 1; complex: 0
canonical twisted involution: 1,2,1
twisted involution orbit size: 2; fiber rank: 1; #X_r: 4
imaginary root system: A1
real root system: A1
complex factor is empty
real form #2: [0] (1)

Cartan #3:
split: 2; compact: 0; complex: 0
canonical twisted involution: 1,2,1,2
twisted involution orbit size: 1; fiber rank: 0; #X_r: 1
imaginary root system is empty
real root system: B2
complex factor is empty
real form #2: [0] (1)

For example, representations 0 through 3 are attached to the compact Cartan #0,
hence discrete series representations. Representations 10 and 11 are attached to Cartan
#3, which is the split Cartan, hence they are principal series. Now 6 and 7 are attached
to the complex Cartan #1, and 4, 5, 8, and 9 to the mixed Cartan #2, which has a
compact and a split factor.

The symbols in square brackets refer to the simple roots. Symbols which may occur
are
ic=imaginary compact
i1=imaginary noncompact type 1
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i2=imaginary noncompact type 2
rn=real non-parity root
r1=real parity root type 1
r2=real parity root type 2
C+,C�=complex roots
In our example, for representation 0 both simple roots are imaginary noncompact,

so this is a large discrete series.
The next r columns (r=rank of the group) give the cross actions through the simple

roots; the following r columns give the Cayley transforms through the simple roots. For
example, from the parameters of representation 0, cross action through the �rst simple
root �1 yields the parameters for representation 1, and Cayley transform through �1
leads to the parameters for 6.
The last entry of the block output is the twisted involution which gives the Cartan

involution on the torus. The numbers stand for the corresponding simple re�ections,
and we must compose this with our fundamental involution (coming from the outer
automorphism �xing the pinning). In the same rank case (as in our example), this is
trivial, so 1,2,1, for instance, stands for s�1s�2s�1.

3 Choosing basepoints

Here is the kgb output for SO(3; 2):

0: 0 0 [n,n] 1 0 2 3
1: 0 0 [n,c] 0 1 2 *
2: 1 2 [r,C] 2 5 * * 1
3: 1 1 [C,r] 4 3 * * 2
4: 2 1 [C,n] 3 4 * 6 1,2,1
5: 2 2 [n,C] 5 2 6 * 2,1,2
6: 3 3 [r,r] 6 6 * * 2,1,2,1

(5)

The kgb output lists the kgb orbits with numbers starting at 0. The next two
columns are as in the block output, length and conjugacy class of Cartan. The symbols
in the square brackets describe the simple roots; this time with a little less detail. The
possible symbols are
n=imaginary noncompact
c=imaginary compact
r=real
C=complex
Then we have, as for the block output, cross actions, Cayley transforms, and twisted

involution.
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The basepoints consists of one kgb orbit in each �ber of the space, i. e., for each
twisted involution. The main basepoint is the kgb orbit (on the dual side) which gives
the trivial representation of the quasiplit form of G. It is a closed orbit (length 0),
corresponding to a large fundamental series of G_(R): In the same rank case, it satis�es
that all simple roots are imaginary noncompact. Once we have chosen the fundamental
base point, the others are obtained by performing Cayley transforms through simple
imaginary roots and cross actions through simple complex roots. Recall from [9] that
the block elements (i,j) with j a basepoint give the standard representations occurring
in the character formula of the trivial representation. They are also precisely those for
which � is an algebraic character.
In our example, the fundamental basepoint is 0 (we have no choice here); then we

get 2 and 3 by Cayley transform through �1 and �2. Cross action through �2 leads
from 2 to 5, and cross action through �1 gets us from 3 to 4. Another Cayley transform
brings us from either 4 or 5 to 6. So the base points are 0, 2, 3, 4, 5, and 6.
(Fokko has written some software to pick the basepoints...maybe we can reinstall

it...)
It may be useful to mark the �basepoint representations� in your block output.

They are the ones that will have �-data satisfying � = �:

0 (0,6): 0 0 [i1,i1] 1 2 (6,*) (4,*) B
1 (1,6): 0 0 [i1,i1] 0 3 (6,*) (5,*) B
2 (2,6): 0 0 [ic,i1] 2 0 (*,*) (4,*) B
3 (3,6): 0 0 [ic,i1] 3 1 (*,*) (5,*) B
4 (4,4): 1 2 [C+,r1] 8 4 (*,*) (0,2) 2 B
5 (5,4): 1 2 [C+,r1] 9 5 (*,*) (1,3) 2 B
6 (6,5): 1 1 [r1,C+] 6 7 (0,1) (*,*) 1 B
7 (7,2): 2 1 [i2,C-] 7 6 (10,11) (*,*) 2,1,2 B
8 (8,3): 2 2 [C-,i1] 4 9 (*,*) (10,*) 1,2,1 B
9 (9,3): 2 2 [C-,i1] 5 8 (*,*) (10,*) 1,2,1 B
10 (10,0): 3 3 [r2,r1] 11 11 (7,*) (8,9) 1,2,1,2 B
11 (10,1): 3 3 [r2,rn] 10 10 (7,*) (*,*) 1,2,1,2

(6)

4 The root system

We can write down a (complex) torus and root system. In our example, we choose

H =
�
C�
�2
=
�
(z1; z2) : zi = rie

i�i 2 C�
	
;

and
	 = f�(e1 + e2);� (e1 � e2) ;�2e1;�2e2g :
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atlas chooses �1 to be the short simple root, and �2 the long one. The list of the
atlas numberings will be added to the Root Systems explorer on the Atlas website; it
is essentially the Bourbaki numbering.

5 Where to start

5.1 Equal rank case

In the equal rank case, the fundamental Cartan subgroup is compact, corresponding to
the trivial involution of the torus, � = 1. With respect to this Cartan, all roots are
imaginary, and there may be a standard choice of compact roots; in our example

	i;c = f�(e1 � e2)g ;
	i;n = f�(e1 + e2);�2e1;�2e2g :

We start by choosing a discrete series; write down the Harish-Chandra parameter of
a discrete series with in�nitesimal character �; this will be the parameter � for the
corresponding �-data. In the quasisplit case, a large discrete series is a good choice
here, but any other will work as well. The element � determines simple roots �1, �2,...,
�r, which are either compact or noncompact. Choose a block entry corresponding to
the Cartan #0, and with simple roots of this type, in the same order. There may be
more than one. For example, for

� = (2; 1);

we have

�1 = e1 � e2

�2 = 2e2:

Since �1 is compact and �2 is noncompact, we look for [ic,i1] or [ic,i2] in the �rst 4 lines
of the block output. The possibilities are lines 2 or 3. The two are indistinguishable;
the representations di¤er by an outer automorphism of Sp(4;R). Choosing one of them
amounts to choosing a parametrization. Let�s choose a large discrete series instead.

� = (2;�1) = �

�1 = e1 + e2

�2 = �2e2
	+ = fe1 + e2;�2e2; e1 � e2; 2e1g
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Now both simple roots are noncompact. We assign this parameter to representation
0 in the block output.
As mentioned above, the Harish-Chandra parameter will be � for the � parameter.

This is also necessarily a basepoint representation, so we have � = �. There are no
real roots, so �+R = ? (see Remark 1). We are also keeping track of our other positive
roots. For the purpose of computing the �-data, we should also note the compact and
noncompact roots:

	+i;c = fe1 � e2g ;
	+i;n = f2e1; e1 + e1;�2e2g :

The character � of H0 = H(R) =
�
(ei�1 ; ei�2)

	
is given by

(ei�1 ; ei�2) 7�! ei(2�1��2):

To get the �-data of this representation, we recall that � can be obtained from � by


 = �+ �i � 2�i;c; (7)

� = �+ �i � 2�i;c + �R + ��cx:

Here �i and �i;c are the � shifts corresponding to our working system 	
+, �R is one half

the sum of the roots in �+R, and �
�
cx is a certain half sum of complex roots described in

section 6 below.
In our example, �i = (2;�1), 2�i;c = (1;�1), and �R = 0 = ��cx, so we have


 = � = (3;�1):

Recall that this is the highest weight of the lowest K-type of the representation.

5.2 Unequal rank case

In the �split�inner class (if distinct from the compact one), the fundamental involution
of the torus is not trivial. In order to assign parameters to one of the lines, we need
to know what it is. In this case, we know that the involution of the split Cartan is
inversion, and we can work back from there. Let�s look at the example SL(3;R). Below
is the block output for the large block.

0 (0,5): 0 0 [C+,C+] 2 1 (*,*) (*,*)
1 (1,4) 1 0 [i2,C-] 1 0 (3,4) (*,*) 2,1
2 (2,3) 1 0 [C-,i2] 0 2 (*,*) (3,5) 1,2
3 (3,0) 2 1 [r2,r2] 4 5 (1,*) (2,*) 1,2,1
4 (3,1) 2 1 [r2,rn] 3 4 (1,*) (*,*) 1,2,1
5 (3,2) 2 1 [rn,r2] 5 3 (*,*) (2,*) 1,2,1

(8)
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The cartan command tells us that the group has two conjugacy classes of Cartan
subgroups, one complex and one split. So representation #0 must be attached to a
Cartan which is isomorphic to C�. Let�s work out a realization of it.
In type A2, it is convenient and standard to write

H =
n
(z1; z2; z3) 2

�
C�
�3
: z1z2z3 = 1

o
'
�
C�
�2
:

Then the roots are
	 = f�(ei � ej) : 1 � i < j � 3g :

Choose our simple roots to be

�1 = e1 � e2 and �2 = e2 � e3:

The twisted involution for the split Cartan is obtained from the fundamental involution
by composition with s�1s�2s�1; this is permutation of the �rst and third coordinates.
So the fundamental involution � = �0 must be given by

�0(z1; z2; z3) = (z
�1
3 ; z�12 ; z�11 ) (9)

for (z1; z2; z3) 2 H. Now it is easy to see that

H� =
�
(z; 1; z�1) : z 2 C�

	
, and

H�� =
�
(z; w; z) : z2w = 1

	
=
�
(z; z�2; z)

	
:

So we get

H0 = H(R) =
�
hr;' = (re

i'; r�2; re�i') : r 2 R�+; ' 2 R
	
' C�: (10)

We can now check that �1 and �2 are both complex (since they take complex values
on the real Lie algebra of H0), so this indeed matches with block line 0. There are no
real roots. With our choice of simple roots, � = (1; 0;�1), so representation #0 has the
following �-data:

H(R) given by (10)
� = (1; 0;�1) = �

�+R = ?

Notice that the character � of H0 is given by

�(hr;') = rei'(r�2)0r�1ei' = e2i':

To compute the �-data, we need to know how to compute the complex �-shift ��cx.
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Remark 1 In general, the real root system �+R will be given by the negative real roots
of our system 	 which we are keeping track of along the way:

�+R =
�
�� : � 2 	+R

	
= f� 2 	R : h�; �_i < 0g : (11)

Notice that this is uniquely determined by �, so that the �-data may be speci�ed by
giving just H(R), �, and �.

6 The complex shift ��cx
The construction of a representation with certain �-data involves choosing a positive
roots system �+ which contains the imaginary roots positive on �, the real roots �+R,
and a set of positive complex roots satisfying

� complex and � > 0 =) �� < 0: (12)

This system is in general not the one determined by �. The shift ��cx in the conversion
formula (7) is then one half of the sum of these positive complex roots in �+. Fortu-
nately, the character � is independent of the choice of the set of positive complex roots,
subject to condition (12), i. e., any two such choices will result in values of ��cx which
di¤er by an element of (1 � �)X�(H) (hence have the same restriction to the compact
part of the torus), so we are free to choose it without having to worry whether it is
indeed a subset of some positive root system.
For the fundamental Cartan in our example SL(3;R), the complex roots are

�(e1 � e2) and � (e2 � e3);

and from (9) we have
�0(e1 � e2) = e2 � e3:

Therefore, the set fe1 � e2;�e2 + e3g satis�es (12). So we can choose

��cx =

�
1

2
;�1; 1

2

�
:

To �nish the calculation of �-data, we have �R = 0, and since e1 � e3 is imaginary
noncompact (we�ll explain how to see this in Section 7.2), �i;c = 0, and �i =

�
1
2
; 0;�1

2

�
.

So


 = �+ �i � 2�i;c =
�
3

2
; 0;�3

2

�
; (13)

� = �+ �i � 2�i;c + �R + ��cx = (2;�1;�1) :
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The character � is therefore given by

�(hr;') = e3i':

Notice that since H(R) is connected, the character � is uniquely determined by its
di¤erential 
. Indeed, 
 and � agree on H� = f(z; 1; z�1) : z 2 C�g, so that we could
have chosen � = 
.
We will �nish the example SL(3;R) in Section 13.3.

7 Cross actions

Once we have the �-data for a representation associated to a given conjugacy class of
Cartan subgroups, we can obtain those for the other representations attached to the
same Cartan subgroup by applying simple cross actions to the parameters. The block
output tells us which cross action takes us to which representation. For cross actions
through imaginary or complex simple roots, we essentially apply the corresponding root
re�ection to � and 	+ to obtain our new parameters; for cross action through real roots,
only � changes.

7.1 Imaginary cross actions

Cross actions through simple noncompact imaginary roots take us to other representa-
tions attached to the same twisted involution. For example, in the equal rank case, we
can derive the parameters for all discrete series from our starting point.
More precisely, suppose we have �-data�

H(R); �; �;�+R;	
+
�

(14)

(we include our �working root system�	+ as part of the data, for convenience). If �
is a simple imaginary noncompact root, then cross action through � takes us to the
�-data �

H(R); s��; s��+ (�� �) ;�+R; s�	
+
�
: (15)

The nature of the roots (imaginary/complex/real, compact/noncompact) does not change
under cross actions. If �-data (14) are attached to representation i in the block output,
and the output indicates that cross action through � takes us to line j, then �-data
(15) are attached to representation j.
We can now easily write down the �-data for the remaining three discrete series

representations of Sp(4;R). From #0, cross action through �1 = e1 + e2 takes us to
representation #1:

� = se1+e2(2;�1) = (1;�2) = � (16)
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Our new simple roots are

�1 = �e1 � e2; (17)

�2 = 2e1: (18)

The new � shifts are �i = (2;�1) and 2�i;c = (1;�1), so we have (the highest weight of
the lowest K-type)


 = � = (3;�1): (19)

If we perform cross action (from #0) through �2 = �2e2 instead, we get the data for
representation #2:

� = (2; 1) = � (20)

�1 = e1 � e2 (21)

�2 = 2e2 (22)


 = � = (3; 3): (23)

We get to #3 from #1 by cross action through �2 = 2e1:

� = (�1;�2) (24)

�1 = e1 � e2 (25)

�2 = �2e1 (26)


 = � = (�3;�3): (27)

To keep this information organized, we make a table of what we have so far.

# � CSG �1 �2 � �
0 1 0 e1 + e2 �2e2 (2;�1) (2;�1)
1 1 0 �e1 � e2 2e1 (1;�2) (1;�2)
2 1 0 e1 � e2 2e2 (2; 1) (2; 1)
3 1 0 e1 � e2 �2e1 (�1;�2) (�1;�2)

(28)

7.2 Complex cross actions

Cross actions through simple complex roots take us to the parameters of a representation
which is attached to the same conjugacy class of Cartan subgroups, but with di¤erent
twisted involution. We conjugate things to the same torus, with the same Cartan
involution. The formulas for the new �-data is the same as in the imaginary case
above, in (15). Notice that the positive real root system does not change. The same is
true for the positive imaginary roots. As in the previous case, the nature of the roots
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remains the same. This allows us to determine the nature of nonsimple roots; choose
a complex simple cross action which will turn the nonsimple root in question into a
simple one, then we can read the nature o¤ the block output. This allowed us in the
SL(3;R) example to determine that the imaginary roots were noncompact, since they
are simple in representations #1 and #2.
We will perform cross actions through simple complex roots for Sp(4;R) once we

have �-data attached to other Cartan subgroups (after performing Cayley transforms).

7.3 Real cross actions

As for cross actions through imaginary roots, those through simple real roots take us
to representations attached to the same twisted involution. In this case we conjugate
everything so that the only part of the data that changes is �. More explicitly, cross
action through the simple real root � takes the �-data given in (14) to�

H(R); �; �+ s�(�� �) + �;�+R;	
+
�
: (29)

8 Cayley transforms

Cayley transforms through simple imaginary noncompact roots lead from the para-
meters of one representation to those of one or two (depending on the type of root)
representations attached to a less compact Cartan. The imaginary root � in question
becomes real. If the Cayley transform is double-valued, the two parameters in question
will be related by a (real) cross action through �. (So they will have di¤erent � parame-
ters). In order to avoid ambiguities, for each conjugacy class of Cartan subgroups, we
perform only one Cayley transform with the resulting parameter attached to that class.
All other parameters for this Cartan will then be obtained by cross actions. Moreover,
we always choose the data of a basepoint representation for the Cayley transform; one of
the resulting representations on the new Cartan will also be a basepoint representation.
This way we will be sure to have the correct � parameter (namely, � = �).
The �rst thing to determine is the new Cartan subgroup H(R). This is determined

by the new Cartan involution, which is obtained by composition with the root re�ection
s�. The other data, � = � and	+, will stay unchanged. The nature of the roots changes,
and �+R becomes larger; in particular, it will contain ��.
Let�s perform a Cayley transform through �1 = e1+e2 on the parameters of our large

discrete series #0. According to the block output, this must give us the parameters for
representation #6, which is attached to the complex Cartan #1. Call the corresponding
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involution �1. Since �0 is trivial, �1 = se1+e2, i. e.,

�1(z1; z2) = (z
�1
2 ; z�11 ): (30)

So

H�1 =
�
(z; z�1) : z 2 C�

	
(31)

H��1 =
�
(z; z) : z 2 C�

	
(32)

H1 = H (R) =
�
hr;' = (re

i'; re�i') : r 2 R�+; ' 2 R
	
' C� (33)

We still have

� = (2;�1) = �

�1 = e1 + e2

�2 = �2e2
	+ = fe1 + e2;�2e2; e1 � e2; 2e1g

but now �1 = e1 + e2 is real, 2e1 and �2e2 are complex, and e1 � e2 is still imaginary.
(One way to determine the nature of these roots is to just check the values on the real
Cartan subalgebra.) To see that e1 � e2 is actually noncompact (type 2), we see what
happens to these parameters if we perform a cross action through the complex root
�2 = �2e2; then the root becomes simple, and atlas gives us the answer. So we now
have

�+R = f�e1 � e2g (34)

�i =

�
1

2
;�1
2

�
(35)

�i;c = 0: (36)

Since the Cartan is connected, we don�t need to compute ��cx. The character � is given
by

�(hr;') = re3i': (37)

We can also easily compute �: since H1 is connected, 
 = �, and we have


 =

�
5

2
;�3
2

�
; (38)

so
�(hr;') = re4i': (39)

So we have now
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# � CSG �1 �2 � �
0 1 0 e1 + e2 �2e2 (2;�1) (2;�1)
1 1 0 �e1 � e2 2e1 (1;�2) (1;�2)
2 1 0 e1 � e2 2e2 (2; 1) (2; 1)
3 1 0 e1 � e2 �2e1 (�1;�2) (�1;�2)
6 se1+e2 1 e1 + e2 �2e2 (2;�1) (2;�1)

(40)

9 Finishing the example Sp(4;R)
Since we have a set of �-data for CSG #1, we can now apply a complex cross action
(through �2 = �2e2) to obtain the data for the other representation attached to it, #7.
We get

� = (2; 1) = � (41)

�1 = e1 � e2 (42)

�2 = 2e2 (43)

�+R = f�e1 � e2g (44)

The character � is given by
�(hr;') = r3ei': (45)

We leave the calculation of � to the diligent reader.
This last representation has a simple noncompact root of type 2, �1 = e1 � e2. We

perform a Cayley transform to get the parameters for representation #10. (The Cayley
transform is double-valued, 10 and 11, but we choose the basepoint representation of
the two.) The new Cartan involution is se1�e2�1 = inversion, so the Cartan is split,
H3 = (R�)2. All roots are real now, and

� = (2; 1) = � (46)

�1 = e1 � e2 (47)

�2 = 2e2 (48)

�+R = f�e1 � e2;�e1 + e2;�2e1;�2e2g (49)

The character � is given by

�(r1; r2) = r21r2 for ri 2 R�: (50)
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This time the Cartan subgroup is disconnected, so let�s compute �. We have


 = �+ �i � 2�i;c = � = (2; 1) ; (51)

� = �+ �i � 2�i;c + �R + ��cx = (2; 1)� 0 + (�2;�1) + 0 = (0; 0) : (52)

This means that
�(r1; r2) = jr1j2 jr2j : (53)

This representation is, of course, the trivial representation, or, the spherical principal
series.
Now we only need to perform a real cross action through �1 = e1 � e2 to get the

data for #11:

� = (2; 1) = 
 (54)

� = �+ �1 = (3; 0) (55)

� = (1;�1) (56)

�1 = e1 � e2 (57)

�2 = 2e2 (58)

�+R = f�e1 � e2;�e1 + e2;�2e1;�2e2g (59)

�(r1; r2) = jr1j2 jr2j sgn(r1) (60)

�(r1; r2) = jr1j2 jr2j sgn(r1r2) (61)

It remains to determine the data for the representations attached to the mixed
Cartan #2. We can start by performing a Cayley transform through �1 = �2e2 to the
parameters of representation #0 to obtain the data for representation #4. We have

�2(z1; z2) = (z1; z
�1
2 ); so (62)

H2 =
��
ei'; r

�
: ' 2 R; r 2 R�

	
= S1 � R� (63)

and

� = (2;�1) = �

�1 = e1 + e2

�2 = �2e2
�+R = f2e2g
�i = (1; 0) ; �i;c = 0

The short roots are complex, with

�2(e1 � e2) = e1 + e2; (64)
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so we can take
��cx =

1

2
((e1 � e2) + (�e1 � e2)) = (0;�1) : (65)

So


 = (3;�1) (66)

� = 
 + �R + ��cx = 
; (67)

and

�
�
ei'; r

�
= e2i'r�1 = e2i' jrj�1 sgn(r) (68)

�
�
ei'; r

�
= e3i'r�1 = e3i' jrj�1 sgn(r): (69)

For the remaining three representations, we only compute the �-data. Cross action
through �1 = e1 + e2 gives us the data for representation #8:

� = (1;�2) = � (70)

�1 = �e1 � e2 (71)

�2 = 2e1 (72)

�+R = f2e2g (73)

�
�
ei'; r

�
= ei'r�2 (74)

From #8, we get #9 by cross action through �2 = 2e1:

� = (�1;�2) = � (75)

�1 = e1 � e2 (76)

�2 = �2e1 (77)

�+R = f2e2g (78)

�
�
ei'; r

�
= e�i'r�2 (79)

and from #9, we get #5 by cross action through �1 = e1 � e2:

� = (�2;�1) = � (80)

�1 = �e1 + e2 (81)

�2 = �2e2 (82)

�+R = f2e2g (83)

�
�
ei'; r

�
= e�2i'r�1 (84)

We are collecting our results in this �nal table:
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# � CSG �1 �2 � �
0 1 0 e1 + e2 �2e2 (2;�1) (2;�1)
1 1 0 �e1 � e2 2e1 (1;�2) (1;�2)
2 1 0 e1 � e2 2e2 (2; 1) (2; 1)
3 1 0 e1 � e2 �2e1 (�1;�2) (�1;�2)
4 s2e2 2 e1 + e2 �2e2 (2;�1) (2;�1)
5 s2e2 2 �e1 + e2 �2e2 (�2;�1) (�2;�1)
6 se1+e2 1 e1 + e2 �2e2 (2;�1) (2;�1)
7 se1+e2 1 e1 � e2 2e2 (2; 1) (2; 1)
8 s2e2 2 �e1 � e2 2e1 (1;�2) (1;�2)
9 s2e2 2 e1 � e2 �2e1 (�1;�2) (�1;�2)
10 inv 3 e1 � e2 2e2 (2; 1) (2; 1)
11 inv 3 e1 � e2 2e2 (2; 1) (3; 0)

(85)

Remark 2 Data which are conjugate by the real Weyl group parametrize equivalent
representations; therefore, the �-data and �-data are not uniquely determined. For
example, we can obtain the data for representation #4 by Cayley transform through �2
from discrete series #2 instead of from #0; the resulting character � would be given by

� = (2; 1) = �

instead, with the Cartan H2 realized exactly as above. Since the root re�ection s2e2
belongs to the real Weyl group, these are equivalent parametrizations.

10 Smaller blocks for Sp(4;R)
Those familiar with the representation theory of Sp(4;R) will know that we are miss-
ing six representations at in�nitesimal character �: they are all attached to discon-
nected Cartans and non-basepoint representations; i.e., � would be di¤erent from �.
These representations will be found in the two smaller blocks, Sp(4;R)� SO(4; 1) and
Sp(4;R) � SO(5). In general, representations in smaller blocks may be attached to
di¤erent (translation families of) in�nitesimal characters; see Section 13.1.2 for more
details. For simply connected G, however, there is only one such family, so all blocks
give representations at in�nitesimal character �. In these smaller blocks, we don�t have
basepoints to nail things down, but we can often still assign the �-data correctly. One
fact working in our favor in this example is that there are no double-valued Cayley
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transforms. Here is the block output for the �rst block, Sp(4;R)� SO(4; 1):

0(4,2): 1 2 [C+,rn] 2 0 (*,*) (*,*) 2
1(5,2): 1 2 [C+,rn] 3 1 (*,*) (*,*) 2
2(8,1): 2 2 [C-,i1] 0 3 (*,*) (4,*) 1,2,1
3(9,1): 2 2 [C-,i1] 1 2 (*,*) (4,*) 1,2,1
4(10,0): 3 3 [rn,r1] 4 4 (*,*) (2,3) 1,2,1,2

(86)

To get a start, recall that the kgb orbit (that is x in the pair (x; y), or the �rst number
in the pair (i; j) of the block output) determines every piece of the �-data EXCEPT �.
Therefore, the data for representation #0 may be obtained from those for representation
#4 in the large block by changing �. So we have CSG H2 as described in (63), and

� = (2;�1)
�1 = e1 + e2

�2 = �2e2
�+R = f2e2g

The choices for � are limited by the following conditions:

1. � must agree with � on the connected part of the compact torus:

�+ �� = �+ �� (87)

2. Only its restriction toH� is important; i. e., � and �0 determine the same character
� if and only if

�� �0 2 (1� �)X�(H): (88)

In this example, this means that the �rst coordinate of � is forced to be 2, and
the second coordinate must be an integer which is determined modulo 2 only. (This
determines the character of the Z=2Z factor in our Cartan.) Since � must be di¤erent
from �, we must have

� = (2; 0): (89)

So � is given by
�
�
ei'; r

�
= e2i' jrj�1 : (90)

Similar arguments lead us to the �-data of #�s 1, 2, and 3, which we record in the
table below.
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To �nd the data for #4, we perform a Cayley transform through �2 = 2e1 on #2.
The new Cartan subgroup is the split one, H3, and we get

� = (1;�2)
� = (1; 1)

�1 = �e1 � e2

�2 = 2e1

�+R = fe1 + e2;�2e1; 2e2;�e1 + e2g
�(r1; r2) = jr1j jr2j�2 sgn(r1r2):

This time we compute � so that we can compare this better to the two principal series
we already have:


 = � = (1;�2) (91)

� = �+ �R = (0; 3) (92)

�(r1; r2) = jr1j jr2j�2 sgn(r2): (93)

One can check that this is conjugate by the real Weyl group to

�0(r1; r2) = jr1j2 jr2j1 sgn(r1): (94)

This leaves the unique remaining principal series for the small block Sp(4;R)� SO(5):

0(10,0): 3 3 [rn,rn] 0 0 (*,*) (*,*) 1,2,1,2 (95)

� = (1;�2)
� = (0; 0)

�1 = �e1 � e2

�2 = 2e1

�+R = fe1 + e2;�2e1; 2e2;�e1 + e2g
�(r1; r2) = jr1j jr2j�2 :

# � CSG �1 �2 � �
0 [SO(4; 1)] s2e2 2 e1 + e2 �2e2 (2;�1) (2; 0)
1 [SO(4; 1)] s2e2 2 �e1 + e2 �2e2 (�2;�1) (�2; 0)
2 [SO(4; 1)] s2e2 2 �e1 � e2 2e1 (1;�2) (1; 1)
3 [SO(4; 1)] s2e2 2 e1 � e2 �2e1 (�1;�2) (�1; 1)
4 [SO(4; 1)] inv 3 �e1 � e2 2e1 (1;�2) (1; 1)
0 [SO(5)] inv 3 �e1 � e2 2e1 (1;�2) (0; 0)

(96)
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11 Other in�nitesimal characters

Recall that the block output parametrizes translation families of representations, rather
than individual ones. That is, we have a standard module and an irreducible for each
line of the block output and in�nitesimal character with the correct integrality and
regularity properties. In the preceding exposition, we have �xed the in�nitesimal char-
acter to be that of the trivial representation. Any other allowed in�nitesimal character
may be represented by a regular element  2 � +X�(H). Assuming that we have the
�-data

(H(R); �; �)

at in�nitesimal character � for a certain line of the block output, the corresponding
�-data at in�nitesimal character  are then

(H(R); �0; �0) ;

where �0 is the unique Weyl group conjugate of  in the Weyl chamber of �, and

�0 = �0 + (�� �):

Notice that this says that the quantity

� = �� �

is an invariant of each representation that is independent of the in�nitesimal character.
For example, the representation at in�nitesimal character (5; 3) assigned to #4 of

the large block for Sp(4;R) has �-data

H(R) = H2;

� = (5;�3) = �;

the one assigned to #11 has

H(R) = H3;

� = (5; 3);

� = (6; 2):

12 The Levi subgroup M

Given a Cartan subgroupH(R) and a character �, the construction of the corresponding
standard module may be done by real parabolic induction, as outlined in Section 1. The
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type of the corresponding root system is given by the type of the system of imaginary
roots with respect to H(R) (this can be found in the cartan output). We can determine
the real form of the derived group Md of M by looking at the nature of the imaginary
roots. By cross actions, we can arrange for the roots that are simple for the subsystem
of imaginary roots to be simple for the whole root system. In the block output lines
corresponding to our CSG H(R), �nd the ones with the number of simple imaginary
roots equal to the rank of the imaginary root system. The nature of these roots indicates
the real form of Md. If all of them are compact, then so is Md. If not, look at the lines
with all imaginary simple roots except one being compact (on each simple factor). They
correspond to the discrete series attached to the Borel de Siebenthal chamber, and the
node in the Dynkin diagram corresponding to the noncompact root determines the real
form.
The Levi subgroup M is then a group (real points of a connected complex algebraic

group) containing H(R) as the fundamental Cartan, and containing Md. This infor-
mation does not necessarily determine M uniquely, but in general, there are not many
possibilities. Here are some more facts which help in determining M :

� If G(R) is simply connected, then so isM (here we mean that they are real points
of a simply connected algebraic group).

� If G(R) is quasisplit, then so is M .

For example, take H(R) = H1 ' C� of our Sp(4;R) example. The cartan output
tells us that the imaginary root system is of type A1. Since Sp(4;R) is simply connected
and split, Md = SL(2;R). So we are looking for a split group of type A1 with funda-
mental Cartan subgroup C�; this is GL(2;R). In the notation of (2), M 0 = SL(2;R)�,
and A = R�+. For representation #6, for example, with � and � given by (37) and
(39), the discrete series � of M 0 (see(3)) has Harish-Chandra parameter 3 and lowest
O(2)-type (4) (this is the discrete series whose restriction to SL(2;R) is the sum of
the holomorphic and antiholomorphic discrete series at in�nitesimal character 3, with
lowest SO(2)-types 4 and �4). The character � of A is given by the identity character.
If H(R) = H2 ' S1 � R�, we have again that the imaginary root system is of type

A1, but thenM = SL(2;R)�R�. NowM 0 = SL(2;R)�Z=2Z. For representation #4,
for example, the formula (69) for � says that � is the discrete series of SL(2;R) with
lowest SO(2)-type (3), tensored with the sign character of Z=2Z, and � is the inverse
character r 7�! r�1.
For a more interesting, and less familiar, example, consider the non-quasisplit non-

compact real form of E6 in the equal rank inner class (maximal compact subgroup
SO(10)�U(1)), simply connected. This group has a Cartan subgroup H1 ' (S1)4�C�:
Cartan #1:

23



split: 0; compact: 4; complex: 1
canonical twisted involution: 2,4,3,1,5,4,2,3,4,5,6,5,4,2,3,1,4,3,5,4,2
twisted involution orbit size: 36; fiber rank: 4; #X_r: 576
imaginary root system: A5
real root system: A1
complex factor is empty
The imaginary root system is of type A5, so Md is a real form of SL(6;C). To see

which, we look in the block output (there is only one block for this real form) to �nd
a line attached to Cartan #1, with �ve imaginary simple roots, at least four of which
are compact:

472(472,359): 11 1 [i1,C-,ic,ic,ic,ic]...

Keeping in mind the atlas (Bourbaki) numbering of the roots of E6

2

j
1� 3� 4� 5� 6

the imaginary roots give us the Dynkin diagram for A5 with the �rst root noncompact.
This corresponds to the real form SU(1; 5) or SU(5; 1). Our Levi subgroup M must
have derived group SU(5; 1) and fundamental Cartan H1; this is the group�

SU(5; 1)� R�
�
= h(�I;�1)i :

This group is a subgroup of GU(5; 1); it has center hR�; &i, where � is a cube root of
unity.

13 More examples

13.1 SL(2;R) and PGL(2;R) ' SO(2; 1)

We consider the basic example of type A1.

13.1.1 SL(2,R)

We start with the split, simply connected group SL(2;R). Write

H = C� =
�
rei'

	
; (97)
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and
	 = f�2eg ;

with the root re�ection acting by inversion. The group has two conjugacy classes of
Cartan subgroups, H0 = S1 and H1 = R�. The quasisplit form of the dual group is
PGL(2;R) ' SO(2; 1). Here is the kgb output for this group:

0: 0 0 [n] 0 1
1: 1 1 [r] 1 * 1

There is only one choice of basepoints; both orbits are basepoint orbits, orbit 0 being
the fundamental one. So we have the large block

0(0,1): 0 0 [i1] 1 (2,*) B
1(1,1) 0 0 [i1] 0 (2,*) B
2(2,0): 1 1 [r1] 2 (0,1) 1 B

Lines 0 and 1 are indistinguishable; they are associated with the compact Cartan
H0 and hence the two discrete series at in�nitesimal character �. We must choose an
assignment. We choose #0 to be the representation with HC parameter

� = (1) = �;

so the simple root

� = 2e:

�i = (1);

�i;c = 0;


 = (2) = � (the lowest K-type)

We get the other discrete series by cross action through � = 2e:

� = (�1) = �;

� = �2e;

 = (�2) = �:

We obtain the parameters for #2 from #0 by Cayley transform through �:

� = (1) = �;

� = 2e;

�R = (�1);

 = (1);

� = (0):
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We have for r 2 H1 = R�;

�(r) = r;

�(r) = jrj ;

which is, of course, the inducing data for the trivial representation/spherical principal
series.
Since SL(2;R) is simply connected, the small block (dual group SO(3)) is also

attached to in�nitesimal character �:

0(2,0): 1 1 [rn] 0 (*,*) 1

This must be the nonspherical principal series

� = (1);

� = (2)

� = 2e;

�R = (�1);

 = (1);

� = (1);

�(r) = jrj ;
�(r) = r:

So we get a table for SL(2;R):

# � CSG � � �
0 [SO(2; 1)] 1 0 2e (1) (1)
1 [SO(2; 1)] 1 0 �2e (�1) (�1)
2 [SO(2; 1)] inv 1 2e (1) (1)
0 [SO(3)] inv 1 2e (1) (2)

(98)

13.1.2 SO(2,1)

For the adjoint group, G(R) = SO(2; 1), we need to look at the kgb output of the simply
connected split form SL(2;R):

0: 0 0 [n] 1 2
1: 0 0 [n] 0 2
2: 1 1 [r] 2 * 1
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This time, we have a choice to make for our fundamental basepoint since lines 0 and
1 are indistinguishable. We choose 0 as our fundamental basepoint, then 2 will be the
basepoint for the split Cartan. So we get the large block for SO(2; 1):

0(0,2): 0 0 [i2] 0 (1,2) B
1(1,0) 1 1 [r2] 2 (0,*) 1 B
2(1,1) 1 1 [r2] 1 (0,*) 1

We can choose our complex Cartan and the two real forms as for SL(2;R); however,

	 = f�eg ;

and

� =

�
1

2

�
(up to Weyl group conjugation) does not belong to X�(H), so the �-cover of H(R) is
not trivial this time.
Representation #0 is the unique discrete series, with

� =

�
1

2

�
= �;

� = e;

�i =

�
1

2

�
;

�i;c = 0;


 = (1) = �:

Notice that lines 1 and 2 are indistinguishable; they correspond to the two one-dimensional
representations of SO(2; 1). Choosing kgb orbit 0 as our fundamental basepoint above
amounted to choosing representation #1 to be the trivial representation. We obtain
the parameters by Cayley transform from #0:

� =

�
1

2

�
= �;

� = e;

�R =

�
�1
2

�
;


 =

�
1

2

�
;

� = (0);

�(r) = jrj
1
2 :
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We obtain the data for #2 by cross action through the real root �:

� =

�
1

2

�
;

� =

�
3

2

�
;

� = e;

�R =

�
�1
2

�
;


 =

�
1

2

�
;

� = (1);

�(r) = jrj
1
2 sgn(r):

This is the sign representation of SO(2; 1). We have the table

# � CSG � � �
0 1 0 e

�
1
2

� �
1
2

�
1 inv 1 e

�
1
2

� �
1
2

�
2 inv 1 e

�
1
2

� �
3
2

� (99)

Now the question arises whether these are all the representations at this in�nitesimal
character. To �nd the blocks attached to the translation family of �, we check which
strong real forms on the dual side belong to the same �real form class�as the quasisplit
one, using the command strongreal. For G_ = SL(2;C), this gives
empty: type
Lie type: A1 sc s
main: strongreal
(weak) real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
cartan class (one of 0,1): 0
Name an output file (return for stout, ? to abandon):
there are 2 real form classes:
class #0:
real form #1: [0,1] (2)
class #1:
real form #0: [0] (1)
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real form #0: [1] (1)

The real form #1 is the split one; it is in class #0, so class #0 gives the blocks
attached to in�nitesimal character �. Since it contains only one strong real form, the
large block is the only one. There are two more blocks, for dual groups SU(2; 0) and
SU(0; 2); they give the representations of SO(2; 1) with in�nitesimal character (1).(there
are two principal series). atlas outputs only one of these two blocks since they look
the same.

13.2 GL(2;R)
As an example of a reductive (non-semisimple) group, we look at GL(2;R). The qua-
sisplit form of the dual group is U(1; 1), which has kgb output

0: 0 0 [n] 1 2
1: 0 0 [n] 0 2
2: 1 1 [r] 2 * 1

Lines 0 and 1 are indistinguishable; we choose 0 as our fundamental basepoint. This
gives for our block output:

0(0,2): 0 0 [i2] 0 (1,2) B
1(1,0): 1 1 [r2] 2 (0,*) 1 B
2(1,1): 1 1 [r2] 1 (0,*) 1

Our group GL(2;R) has rank two and two Cartan subgroups, one complex (#0), and
one split (#1). Write

H =
�
C�
�2
;

	 = f� (e1 � e2)g ;

with the root re�ection acting by transposition of the two entries. If the split Cartan
H1 corresponds to �1 being inversion, then �0 must be given by

�0(z1; z2) = (z
�1
2 ; z�11 );

so that
H0 =

�
hr;' =

�
rei'; re�i'

�	
' C�:

The unique representation attached to the fundamental Cartan has parameters

� =

�
1

2
;�1
2

�
= �;


 = (1;�1) = �;
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and we get the parameters of the two principal series by Cayley transform and cross
action. By our choice of basepoints, #1 is the trivial representation, and #2 the sign
of the determinant. We record the �-data in the table. Notice that for #1,

�(r1; r2) = jr1j
1
2 jr2j�

1
2 ;

and for #2,
�(r1; r2) = jr1j

1
2 jr2j�

1
2 sgn(r1r2):

# � CSG � � �
0 inv�s� 0 e1 � e2

�
1
2
;�1

2

� �
1
2
;�1

2

�
1 inv 1 e1 � e2

�
1
2
;�1

2

� �
1
2
;�1

2

�
2 inv 1 e1 � e2

�
1
2
;�1

2

� �
3
2
;�3

2

� (100)

13.3 SL(3;R)
In this section, we �nish the example started in Section 5.2. The quasisplit form of the
dual group is PSU(2; 1), which has kgb output

0: 0 0 [n,n] 1 2 4 3
1: 0 0 [n,c] 0 1 4 *
2: 0 0 [c,n] 2 0 * 3
3: 1 1 [C,r] 5 3 * * 2
4: 1 1 [r,C] 4 5 * * 1
5: 2 1 [C,C] 3 4 * * 1,2,1

The basepoints are 0, 3, 4, and 5, which we indicate in the block output; we are adding
the small block (SL(3;R)� PSU(3)) as well:

0 (0,5): 0 0 [C+,C+] 2 1 (*,*) (*,*) B
1 (1,4) 1 0 [i2,C-] 1 0 (3,4) (*,*) 2,1 B
2 (2,3) 1 0 [C-,i2] 0 2 (*,*) (3,5) 1,2 B
3 (3,0) 2 1 [r2,r2] 4 5 (1,*) (2,*) 1,2,1 B
4 (3,1) 2 1 [r2,rn] 3 4 (1,*) (*,*) 1,2,1
5 (3,2) 2 1 [rn,r2] 5 3 (*,*) (2,*) 1,2,1

0 (3,1) 2 1 [rn,rn] 0 0 (*,*) (*,*) 1,2,1

(101)

We have the data for #0, and we obtain the data for the other two representations
attached to the fundamental Cartan by complex cross actions as explained in Section 7
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The remaining representations are the four principal series representations of SL(3;R),
attached to the split Cartan

H1 =
n
(r1; r2; r3) 2

�
R�
�3
: r1r2r3 = 1

o
:

The basepoint (hence trivial) representation is #3, we obtain the parameters by Cayley
transform from #0 through �2 = e2 � e3:

� = (1; 0;�1) = �

�(r1; r2; r3) = r1r
�1
3

�(r1; r2; r3) = jr1j jr3j�1

The data for the remaining representations in the large block are obtained by real cross
actions, which change the � parameters only.
To determine the parameter � for the representation in the small block, we write

the three known characters � so that we can easily compare them, and check which one
is missing:

�3(r1; r2; r3) = jr1j jr3j�1 sgn(r1r3)
�4(r1; r2; r3) = jr1j jr3j�1 sgn(r2r3) = jr1j jr3j�1 sgn(r1)
�5(r1; r2; r3) = jr1j jr3j�1 sgn(r1r2) = jr1j jr3j�1 sgn(r3)

So we must have for the last character

�(r1; r2; r3) = jr1j jr3j�1 ;
� = (0; 0; 0) :

We record our results in a table.

# � CSG �1 �2 � �
0 inv � se1�e3 0 e1 � e2 e2 � e3 (1; 0;�1) (1; 0;�1)
1 inv � se1�e3 0 e1 � e3 �e2 + e3 (1;�1; 0) (1;�1; 0)
2 inv � se1�e3 0 �e1 + e2 e1 � e3 (0; 1;�1) (0; 1;�1)
3 inv 1 e1 � e2 e2 � e3 (1; 0;�1) (1; 0;�1)
4 inv 1 e1 � e2 e2 � e3 (1; 0;�1) (2;�1;�1)
5 inv 1 e1 � e2 e2 � e3 (1; 0;�1) (1; 1;�2)
0[PSU(3)] inv 1 e1 � e2 e2 � e3 (1; 0;�1) (0; 0; 0)

(102)
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13.4 Split G2
The group G2 is both simply connected and adjoint, and dual to itself. Below is the
block output for the split form of G2; we have added the basepoints, for which there is
a unique choice (as happens whenever the dual group is adjoint):

0(0,9): 0 0 [i1,i1] 1 2 (3,*) (4,*) B
1(1,9): 0 0 [i1,ic] 0 1 (3,*) (*,*) B
2(2,9): 0 0 [ic,i1] 2 0 (*,*) (4,*) B
3(3,7): 1 1 [r1,C+] 3 6 (0,1) (*,*) 1 B
4(4,8): 1 2 [C+,r1] 5 4 (*,*) (0,2) 2 B
5(5,5): 2 2 [C-,C+] 4 8 (*,*) (*,*) 1,2,1 B
6(6,6): 2 1 [C+,C-] 7 3 (*,*) (*,*) 2,1,2 B
7(7,3): 3 1 [C-,i2] 6 7 (*,*) (9,11) 1,2,1,2,1 B
8(8,4): 3 2 [i2,C-] 8 5 (9,10) (*,*) 2,1,2,1,2 B
9(9,0): 4 3 [r2,r2] 10 11 (8,*) (7,*) 2,1,2,1,2,1 B
10(9,1): 4 3 [r2,rn] 9 10 (8,*) (*,*) 2,1,2,1,2,1
11(9,2): 4 3 [rn,r2] 11 9 (*,*) (7,*) 2,1,2,1,2,1

(103)

There are four conjugacy classes of Cartan subgroups; one compact (#0), one split
(#3), and two complex, distinguished by whether the imaginary roots are short (#2)
or long (#1).
We choose our root system as follows. The complex Cartan H is

H =
n
(z1; z2; z3) 2

�
C�
�3
: z1z2z3 = 1

o
'
�
C�
�2
; (104)

and our root system

	 =

�
�(e1 � e2);�(e2 � e3);�(e1 � e3);

�(e1 + e2 � 2e3);�(e1 � 2e2 + e3);�(2e1 � e2 � e3)

�
(105)

The root re�ections act as follows:

se1�e2(z1; z2; z3) = (z2; z1; z3);

and analogously for the other short roots; and

s2e1�e2�e3(z1; z2; z3) = (z
�1
2 ; z�21 ; z�13 );

and analogously for the other long roots. Consequently, the Weyl group acts by permu-
ations and sign change/inversion of all three coordinates at once, and is isomorphic to
S3 � Z=2Z.
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atlas chooses �1 to be the short simple root, and �2 to be the long one.
The fundamental Cartan is compact, corresponding to � = 1:

H0 =
�
(ei'1 ; ei'2 ; ei'3) : '1 + '2 + '3 2 2Z

	
: (106)

The standard choice of (positive) compact roots (according to, e. g., [12]), is

	+i;c = f(e2 � e3); (2e1 � e2 � e3)g � 	i;c = f�(e2 � e3);�(2e1 � e2 � e3)g : (107)

A weight
(a; b; c)

is dominant with respect to 	+i;c if and only if

a � 0 and b � c:

In these coordinates, � is any Weyl group conjugate of

(3;�1;�2):

The large discrete series (#0 in the block output) has Harish-Chandra parameter

� = (2; 1;�3) = �;

with

�1 = e1 � e2;

�2 = �e1 + 2e2 � e3:

So we have
�(ei'1 ; ei'2 ; ei'3) = ei(2'1+'2�3'3):

	+i;n = fe1 � e2;�e1 + 2e2 � e3; e1 � e3; e1 + e2 � 2e3g ;
�i = (3;�1;�2);

2�i;c = (2; 0;�2);

 = (4;�2;�2) = �:

We obtain the paramters for the other two discrete series, #1 and #2, by cross action
through �1 = e1 � e2 and �2 = �e1 + 2e2 � e3, respectively. So we have for #1:

� = (1; 2;�3) = �;
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�1 = �e1 + e2;

�2 = 2e1 � e2 � e3:

and for #2:
� = (3;�1;�2) = �;

�1 = e2 � e3;

�2 = e1 � 2e2 + e3:

To get to Cartan #1, we perform a Cayley transform on representation #0, through
�1 = e1 � e2. Then � = �1 = se1�e2, and

H1 =
�
hr;' = (re

i'; r�1ei'; e�2i')
	
' C�:

We have

� = (2; 1;�3) = �;

�1 = e1 � e2;

�2 = �e1 + 2e2 � e3:

Now �1 is real, e1 + e2 � 2e3 is noncompact imaginary, and the other positive roots are
complex, so we get

�+R = f�e1 + e2g ;

�R =

�
�1
2
;
1

2
; 0

�
;

�i =

�
1

2
;
1

2
;�1

�
;

2�i;c = 0:

We have

�1(e1 � e3) = e2 � e3, and �1(2e1 � e2 � e3) = �e1 + 2e2 � e3;

so we can take
��cx = (2;�2; 0) :

So we compute


 =

�
5

2
;
3

2
;�4

�
;

� = (4; 0;�4) ;
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giving us

�(hr;') = re9i';

�(hr;') = re12i':

Notice that ��cx and �R both belong to (1� �1)X
�(H), so we could actually take � = 


instead (as expected, since H1 is connected).
We get the parameters for #6 from those for #3 by cross action through �2 =

�e1+2e2�e3, and those for #7 from those for #6 by cross action through �1 = e2�e3.
We leave the details to the reader, and record the �-data in the table (108) below.
A Cayley transform from #0 through the long root �2 = �e1 + 2e2 � e3 gets us to

representation #4 , which is attached to CSG #2. We have �2 = s�e1+2e2�e3, and

H2 = H (R) =
�
hr;'

�
rei'; r�2; re�i'

�	
' C�:

Since this is connected, we can take � = � and 
 = �, and don�t need to compute ��cx
or �R. For #4, the data are

� = (2; 1;�3) = �;

�1 = e1 � e2;

�2 = �e1 + 2e2 � e3;

�+R = fe1 � 2e2 + e3g ;

�i =

�
1

2
; 0;�1

2

�
;

�i;c = 0;


 =

�
5

2
; 1;�7

2

�
;

�(hr;') = r�3e5i';

�(hr;') = r�3e6i':

We leave #5 and #8 to the reader, and just record the �-data below.
For the principal series, we start by doing a Cayley transform to the parameters of

#7 through �2 = e1 + e2 � 2e3. The Cartan subgroup is split

H3 =
n
(r1; r2; r3) 2

�
R�
�3
: r1r2r3 = 1

o
'
�
R�
�2
:

The basepoint representation (with � = �) is #9 (this must be the spherical one); it
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has

� = (3;�2;�1) = �;

�1 = �e2 + e3;

�2 = e1 + e2 � 2e3;
�R = ��:

All roots are real, so


 = (3;�2;�1);
� = (0; 0; 0);

� (r1; r2; r3) = r31r
�2
2 r�13 ;

� (r1; r2; r3) = jr1j3 jr2j�2 jr3j�1 :

We get #10 and #11 from #9 by cross actions through �1 = �e2 + e3 and �2 =
e1 + e2 � 2e3, respectively. This gives

� (r1; r2; r3) = r31r
�2
2 r�13 sgn(r2r3) for #10, and

� (r1; r2; r3) = r31r
�2
2 r�13 sgn(r1r2) for #11.

By calculation of the parity condition, or by symmetry considerations, we get that the
principal series in the small block must correspond to

� = (4;�2;�2) ;
� (r1; r2; r3) = r31r

�2
2 r�13 sgn(r1r3)

# � CSG �1 �2 � �
0 1 0 e1 � e2 �e1 + 2e2 � e3 (2; 1;�3) (2; 1;�3)
1 1 0 �e1 + e2 2e1 � e2 � e3 (1; 2;�3) (1; 2;�3)
2 1 0 e2 � e3 e1 � 2e2 + e3 (3;�1;�2) (3;�1;�2)
3 se1�e2 1 e1 � e2 �e1 + 2e2 � e3 (2; 1;�3) (2; 1;�3)
4 s�e1+2e2�e3 2 e1 � e2 �e1 + 2e2 � e3 (2; 1;�3) (2; 1;�3)
5 s�e1+2e2�e3 2 �e1 + e2 2e1 � e2 � e3 (1; 2;�3) (1; 2;�3)
6 se1�e2 1 e2 � e3 e1 � 2e2 + e3 (3;�1;�2) (3;�1;�2)
7 se1�e2 1 �e2 + e3 e1 + e2 � 2e3 (3;�2;�1) (3;�2;�1)
8 s�e1+2e2�e3 2 e1 � e3 �2e1 + e2 + e3 (�1; 3;�2) (�1; 3;�2)
9 inv 3 �e2 + e3 e1 + e2 � 2e3 (3;�2;�1) (3;�2;�1)
10 inv 3 �e2 + e3 e1 + e2 � 2e3 (3;�2;�1) (3;�3; 0)
11 inv 3 �e2 + e3 e1 + e2 � 2e3 (3;�2;�1) (4;�1;�3)
C inv 3 �e2 + e3 e1 + e2 � 2e3 (3;�2;�1) (4;�2;�2)

(108)

36



13.5 SO(4; 1)

As an example of a non-quasisplit real form, we look at the example SO(4; 1). The
(quasi)split form of the dual group is Sp(4;R), with kgb output

0: 0 0 [n,n] 1 2 6 4
1: 0 0 [n,n] 0 3 6 5
2: 0 0 [c,n] 2 0 * 4
3: 0 0 [c,n] 3 1 * 5
4: 1 2 [C,r] 8 4 * * 2
5: 1 2 [C,r] 9 5 * * 2
6: 1 1 [r,C] 6 7 * * 1
7: 2 1 [n,C] 7 6 10 * 2,1,2
8: 2 2 [C,n] 4 9 * 10 1,2,1
9: 2 2 [C,n] 5 8 * 10 1,2,1
10: 3 3 [r,r] 10 10 * * 1,2,1,2

If we choose 0 as our fundamental bsepoint, we get basepoints 0,4,6,7,8,10. Here is the
(large) block for SO(4; 1) with this information added:

0(0,10): 0 0 [ic,i2] 0 0 (*,*) (1,2) B
1(1,8): 1 1 [C+,r2] 3 2 (*,*) (0,*) 2 B
2(1,9): 1 1 [C+,r2] 4 1 (*,*) (0,*) 2
3(2,4): 2 1 [C-,ic] 1 3 (*,*) (*,*) 1,2,1 B
4(2,5): 2 1 [C-,ic] 2 4 (*,*) (*,*) 1,2,1

Write

H =
�
C�
�2
;

	 = f�(e1 � e2);� (e1 + e2) ;�e1;�e2g :
atlas chooses the long simple root to be �1, the short one to be �2. There are two
conjugacy classes of real CSG�s, the fundamental one being compact, corresponding to
� = 1. The compact roots are the long roots. There is one discrete series (#0):

� =

�
3

2
;
1

2

�
= �

�1 = e1 � e2

�2 = e2

�i =

�
3

2
;
1

2

�
;

2�i;c = (2; 0) ;


 = (1; 1) = �:
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We perform a Cayley transform through �2 = e2 to get the parameters for #1: The
Cartan subgroup is associated to �1 = se2 ,

H1 = S1 � R�:

The data for #1 are

� =

�
3

2
;
1

2

�
= �;

�1 = e1 � e2;

�2 = e2;

�R =

�
0;�1

2

�
;

�i =

�
1

2
; 0

�
;

�i;c = 0;

��cx = (0; 1) ;


 =

�
2;
1

2

�
;

� = (2; 1) ;

�(ei'; r) = e2i' jrj
1
2 sgn(r):

We get #2 by cross action through the real root �2 = e2 (only � and � change), and the
remaining two representations by more cross actions. Representation #3 is the trivial
representation.

# � CSG �1 �2 � �
0 1 0 e1 � e2 e2

�
3
2
; 1
2

� �
3
2
; 1
2

�
1 se2 1 e1 � e2 e2

�
3
2
; 1
2

� �
3
2
; 1
2

�
2 se2 1 e1 � e2 e2

�
3
2
; 1
2

� �
3
2
; 3
2

�
3 se2 1 �e1 + e2 e1

�
1
2
; 3
2

� �
1
2
; 3
2

�
4 se2 1 �e1 + e2 e1

�
1
2
; 3
2

� �
1
2
; 5
2

�
(109)

14 Smaller blocks

In order to be able to assign representations to the smaller blocks, we must under-
stand the automorphisms of an atlas block. These are symmetries coming from outer
automorphisms (of the real group which are inner to the complex group) and discon-
nectedness of the real group G(R). We de�ne the notion of indistinguishability of block
entries. For simplicity of statements, we assume in this section that G(R) is semisimple.
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De�nition 3 Two block entries are said to be weakly indistinguishable if they are
attached to the same twisted involution, and the nature of the simple roots agrees. Two
block entries are (strongly) indistinguishable if all entries obtained by cross actions
are pairwise indistinguishable. Two entries are (weakly or strongly) x-indistinguishable
if they are (weakly or strongly) indistinguishable, and the pairs of numbers parametrizing
the corresponding pair (x; y) coincide in the second number; i. e., they have the same y
parameter. Analogously, de�ne weakly and strongly y-indistinguishable.

For example, lines 0 and 1 of the large block of Sp(4;R) are strongly x-indistinguishable;
lines 1 and 2 of the large block of SO(2; 1) are strongly y-indistinguishable. Strongly
x-indistinguishable pairs correspond to representations which di¤er by an outer auto-
morphism of the group; strongly y-indistinguishable pairs to representations which di¤er
by tensoring by a character � which is trivial on the identity component of the group.
Each of these maps gives an automorphism of the block output. For example, the large
block output for Sp(4;R) has one nontrivial automorphism, generated by switching 0
and 1, the large block of SO(2; 1) has an automorphism generated by switching lines
1 and 2, and the large block of G2 has no nontrivial automorphism. The block lines
corresponding to each twisted involution may be partitioned into equal size sets of x-
indistinguishable lines, and similarly for y-indistinguishable. The cardinality of these
sets is constant for each Cartan subgroup. In order to assign representation characters,
we must make a choice for each automorphism generator. In our Sp(4;R) example, we
chose #0 to be the line for the discrete series with Harish-Chandra parameter (2;�1);
all other characters were then uniquely determined. Assigning #1 to that particular
discrete series results in a di¤erent, uniquely determined, assignment. In general, the
choice corresponding to strong x-indistinguishability is given by a choice of starting
point in the fundamental Cartan. These strongly x-indistinguishable pairs will collapse
on a less compact Cartan depending on whether or not there is an element of the real
Weyl group whose action agrees with the restriction of this automorphism to the Cartan.
The choice for strong y-indistinguishability happens on the dual side; in the large

block, it is the choice of a basepoint, which determines the trivial representation. In
smaller blocks, the real form of the dual group is di¤erent, so this choice has to be made
in some other way. It is important to keep track of how many such choices have to be
made. This is given by the size of the sets of y-indistinguishable lines for the most split
Cartan subgroup. If G(R) is connected, then there is no new choice to be made. If
there is more than one possible fundamental basepoint to choose from, then we need to
make a corresponding choice in the smaller blocks, as well. Strongly y-indistinguishable
pairs collapse on Cartan subgroups on which the restriction of � is trivial (for example,
if H(R) is connected).
Since the x-parameter determines � (and hence a Cartan subgroup) and �, and all

possible values of x appear in the large block, the only data to determine in the smaller
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blocks are the parameters �. The restriction of � to the connected component of the
�-cover of H(R) is uniquely determined by �, so it only remains to understand what
happens on the Z=2Z or Z=4Z factors, so we need to look at the nature of the real roots.

Proposition 4 Let H(R) and � = �(�; �) be given, and let � be a real simple root.
Then � is a parity root if and only if

h�� �; �_i

is an even integer.

Proposition 4 now goes a long way towards determining � in general; any remaining
ambiguity comes from having to make the choice mentioned above.
The proposition also allows us to compute the size of the y-indistinguishable sets,

by counting how many values of � = �� � make all simple real roots parity roots.

Proposition 5 Given � and � 2 � + X�(H), let X�(H)�� be the elements of X�(H)
�xed by ��, and P the weight lattice. Then the cardinality of the y-indistinguishable
sets for the corresponding Cartan subgroup H(R) is the cardinality of the quotient

2P \X�(H)��=2P \ (1� �)X�(H): (110)

One di¢ culty is that outside the large block, these sets may be partitioned between
di¤erent blocks.
We look at some examples to illustrate some of these facts.

14.1 SL(4;R)
The group SL(4;R) is simply connected; in this case, the quotient (110) is always trivial,
so there will be no choices to be made. We use this example to demonstrate how to
use Proposition 4 to determine the �-data in the smaller blocks. It appears to be the
smallest example for which the simpleminded method that we employed in Section 10
does not work for every representation.
There are three blocks, for the real forms PSU(2; 2), PSU(3; 1), and PSU(4) of

the dual group, respectively. We concentrate on the intermediate block SL(4;R) �
PSU(3; 1), and compute only as much of the �-data for the large block as we need to
get started.
There are three conjugacy classes of Cartan subgroups, two of which occur in the

intermediate block. We choose our complex Cartan

H =
n
(z1; z2; z3; z4) 2

�
C�
�4
: z1z2z3z4 = 1

o
:
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Then the fundamental Cartan involution �0 and Cartan subgroup H0 can be taken to
be

�0 (z1; z2; z3; z4) =
�
z�14 ; z�13 ; z�12 ; z�11

�
;

H0 =
�
hr;'; =

�
rei'; r�1ei ; r�1e�i ; re�i'

�	
' C� � S1:

We display the �rst three lines of the large block:

0(0,11): 0 0 [C+,i1,C+] 3 1 3 (*,*) (2,*) (*,*)
1(1,11): 0 0 [C+,i1,C+] 4 0 4 (*,*) (2,*) (*,*)
2(2,10): 1 1 [C+,r1,C+] 6 2 5 (*,*) (0,1) (*,*) 2

Lines 0 and 1 are x-indistinguishable; this indistinguishability collapses on the other
two Cartan subgroups. We choose #0 to be the representation with �-data

� =

�
3

2
;
1

2
;�1
2
;�3
2

�
= �;

�(hr;'; ) = ei(3'+�):

�1 = e1 � e2;

�2 = e2 � e3;

�3 = e3 � e4:

We have to compose �0 with se2�e3 to get

�1 (z1; z2; z3; z4) =
�
z�14 ; z�12 ; z�13 ; z�11

�
;

H1 =
�
hr;';x =

�
rei'; x; y; re�i'

�
: rei' 2 C�; x 2 R�; y = x�1r�2

	
' C� � R�:

Then #2 has �-data

� =

�
3

2
;
1

2
;�1
2
;�3
2

�
= �;

�(hr;';x) = re3i'x;

�1 = e1 � e2;

�2 = e2 � e3;

�3 = e3 � e4:

We are now ready to look at the intermediate block.
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0(2,9): 1 1 [C+,rn,C+] 2 0 1 (*,*) (*,*) (*,*) 2
1(5,8): 2 1 [C+,C+,C-] 4 3 0 (*,*) (*,*) (*,*) 3,2,1
2(6,7): 2 1 [C-,C+,C+] 0 5 4 (*,*) (*,*) (*,*) 1,2,3
3(9,6): 3 1 [i2,C-,rn] 3 1 3 (7,9) (*,*) (*,*) 2,1,3,2,1
4(10,5): 3 1 [C-,i2,C-] 1 4 2 (*,*) (6,7) (*,*) 1,2,3,2,1
5(11,4): 3 1 [rn,C-,i2] 5 2 5 (*,*) (*,*) (6,8) 1,2,1,3,2
6(12,0): 4 2 [rn,r2,r2] 6 7 8 (*,*) (4,*) (5,*) 1,2,1,3,2
7(12,1): 4 2 [r2,r2,rn] 9 6 7 (3,*) (4,*) (*,*) 1,2,1,3,2
8(12,2): 4 2 [rn,rn,r2] 8 8 6 (*,*) (*,*) (5,*) 1,2,1,3,2
9(12,3): 4 2 [r2,rn,rn] 7 9 9 (3,*) (*,*) (*,*) 1,2,1,3,2

The �rst six lines are attached to the intermediate Cartan H1; we can obtain the
�-data for #0 by changing the �-value for those of #2 in the large block so that �2
becomes a nonparity root. Consider � = �� � instead. Since

�+ �1� = �+ �1�;

� must satisfy
�1� = ��; (111)

and we must also have � 2 X�(H) = f(a; b; c; d) 2 R4 : a� b; b� c; c� d 2 Zg (modulo
R, diagonally embedded). Condition (111) says that if � = (a; b; c; d) then a = d. In
order to turn �2 = e2 � e3 into a nonparity root, we can choose

� = (0; 0; 1; 0) ;

so we have

� =

�
3

2
;
1

2
;�1
2
;�3
2

�
;

� =

�
3

2
;
1

2
;
1

2
;�3
2

�
�(hr;';x) = re3i' jxj ;

�1 = e1 � e2;

�2 = e2 � e3;

�3 = e3 � e4:

The other �ve sets of �-data attached to this Cartan may now be obtained by cross
actions as explained earlier. Recall that � = � � � is not a¤ected by imaginary or
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complex cross actions, so we obtain

# CSG �1 �2 �3 � � �
0 1 e1 � e2 e2 � e3 e3 � e4

�
3
2
; 1
2
;�1

2
;�3

2

� �
3
2
; 1
2
; 1
2
;�3

2

�
(0; 0; 1; 0)

1 1 e1 � e2 e2 � e4 �e3 + e4
�
3
2
; 1
2
;�3

2
;�1

2

� �
3
2
; 1
2
;�1

2
;�1

2

�
(0; 0; 1; 0)

2 1 �e1 + e2 e1 � e3 e3 � e4
�
1
2
; 3
2
;�1

2
;�3

2

� �
1
2
; 3
2
; 1
2
;�3

2

�
(0; 0; 1; 0)

3 1 e1 � e4 �e2 + e4 e2 � e3
�
3
2
;�1

2
;�3

2
;+1

2

� �
3
2
;�1

2
;�1

2
;+1

2

�
(0; 0; 1; 0)

4 1 �e1 + e2 e1 � e4 �e3 + e4
�
1
2
; 3
2
;�3

2
;�1

2

� �
1
2
; 3
2
;�1

2
;�1

2

�
(0; 0; 1; 0)

5 1 e2 � e3 �e1 + e3 e1 � e4
�
�1
2
; 3
2
; 1
2
;�3

2

� �
�1
2
; 3
2
; 3
2
;�3

2

�
(0; 0; 1; 0)
(112)

To get to Cartan #2, we must perform a Cayley transform; all such Cayley transforms
are double-valued, so we need to use the parity condition to distinguish between the
two images. The Cartan H2 is the split Cartan, so �2 is inversion, and

H2 =
n
hx1;x2;x3;x4 = (x1; x2; x3; x4) 2

�
R�
�4
: x1x2x3x4 = 1

o
:

We start with #4 and perform a Cayley transform through �2 = e1�e4. The two images
will correspond to #6 and #7. They di¤er by cross action through �2 = e1�e4, so their
parameters � di¤er by �2 = e1� e4; this means that one of them has � = (0; 0; 1; 0), the
other � = (1; 0; 1;�1) (which gives the same character as (0; 1; 0; 0) since the di¤erence
is in (1� �2)X

�(H)). In #6, �1 = �e1 + e2 is a nonparity root, and

h(0; 0; 1; 0) ; �1i = 0 (even)

h(0; 1; 0; 0) ; �1i = 1 (odd),

so � = (0; 1; 0; 0) corresponds to #6. The remaining parameters may now be obtained
by cross actions through real roots (or you can check the parity conditions), so we obtain
the following table of �-data:

# CSG �1 �2 �3 � � �
6 2 �e1 + e2 e1 � e4 �e3 + e4

�
1
2
; 3
2
;�3

2
;�1

2

� �
1
2
; 5
2
;�3

2
;�1

2

�
(0; 1; 0; 0)

7 2 �e1 + e2 e1 � e4 �e3 + e4
�
1
2
; 3
2
;�3

2
;�1

2

� �
1
2
; 3
2
;�1

2
;�1

2

�
(0; 0; 1; 0)

8 2 �e1 + e2 e1 � e4 �e3 + e4
�
1
2
; 3
2
;�3

2
;�1

2

� �
3
2
; 3
2
;�3

2
;�1

2

�
(1; 0; 0; 0)

9 2 �e1 + e2 e1 � e4 �e3 + e4
�
1
2
; 3
2
;�3

2
;�1

2

� �
1
2
; 3
2
;�3

2
; 1
2

�
(0; 0; 0; 1)

(113)

14.2 The compact block

Let G(R) be split, and consider a block given by a compact real form of the dual
group. Assume that � 2 X�(H), so that this block corresponds to the in�nitesimal
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character in the translation family of �. (This is not a necessary condition; consider,
e. g., G(R) = PSO(7; 7).) The block consists of only one line, corresponding to a
principal series representation with all roots real nonparity roots. Since � = � and
� 2 �+X�(H), we have � = �� � 2 X�(H). One option for � is � = � since

h�; �_i = 1

for all simple roots �, so this makes all simple roots nonparity roots. In general, this
is not the only choice; the y-indistinguishable sets for the split Cartan may have more
than one element; in this case, there should be the same number of representations.
This is where strong real forms, rather than real forms come in. The block and kgb
output for di¤erent strong real forms (corresponding to the same weak real form) look
the same, so atlas makes a choice and provides it only once. We can check how many
strong real forms there are by looking at the strongreal output for the dual group, or
by computing the quotient (110).
Consider the example G(R) = PSO(4; 4). A look at the large block tells us that the

y-indistiguishable sets for the split Cartan have four elements. The compact form of the
dual group is Spin(8); using the strongreal command we can see that there are four
strong real forms, each of which is in the class of the split real form, hence corresponds
to the in�nitesimal character �:

empty:type
Lie type: D4 sc e
main:strongreal
(weak) real forms are:
0: so(8)
1: so(6,2)
2: so*(8)[0,1]
3: so*(8)[1,0]
4: so(4,4)
enter your choice: 0
there is a unique conjugacy class of Cartan subgroups
Name an output file (return for stdout, ? to abandon):

there are 4 real form classes:
class #0:
real form #4: [0,1,2,4,5,6,8,9,10,12,13,14] (12)
real form #0: [3] (1)
real form #0: [7] (1)
real form #0: [11] (1)
real form #0: [15] (1)
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class #1:
real form #2: [0,1,2,7,8,9,10,15] (8)
real form #2: [3,4,5,6,11,12,13,14] (8)
class #2:
real form #3: [0,2,3,4,6,7,9,13] (8)
real form #3: [1,5,8,10,11,12,14,15] (8)
class #3:
real form #1: [0,2,3,5,9,12,14,15] (8)
real form #1: [1,4,6,7,8,10,11,13] (8)

If we write the roots in the standard way,

	 = f�ei � ej : 1 � i < j � 4g ;
then the root lattice is

R =
�
(a; b; c; d) 2 Z4 : a+ b+ c+ d 2 2Z

	
= X�(H);

and
� = (3; 2; 1; 0) 2 X�(H):

The parameter � is de�ned up to

(1� �)X�(H) = 2X�(H);

so the choices for � are given by representatives of X�(H)=2X�(H); we can choose

�1 = (3; 2; 1; 0)

�2 = (3; 2;�1; 0)
�3 = (4; 3; 2; 1)

�4 = (4; 3; 2;�1)
to get four inequivalent representations, one for each of the four compact blocks.
Let�s check the number of set elements using the quotient (110). For the split Cartan,

we have � = �1;so
X�(H)�� = X�(H);

P = Z4 [
�
Z+

1

2

�4
;

2P = (2Z)4 [ (2Z+ 1)4 = 2P \X�(H)��;

2P \ (1� �)X�(H) = (1� �)X�(H) = 2X�(H):

The quotient 2P=2X�(H) has indeed four elements; representatives may be taken as

(0; 0; 0; 0) ; (1; 1; 1; 1) ; (2; 0; 0; 0); (3; 1; 1; 1):
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14.3 Weakly indistinguishable entries

It can happen that a double-valued Cayley transform leads to weakly (but not strongly)
y-indistinguishable parameters. In this case the choice of representations is uniquely de-
termined. In the large block, this is not a problem because of our trick using basepoints.
In general, we need to determine which representation is which. The easiest way is to
avoid this Cayley transform, and �nd a di¤erent path to one of the parameters which
does not involve any weakly indistinguishable double-valued Cayley transform, and
then obtain the other parameter through the appropriate real cross action. This may
be always possible (is this true?). If all else fails, we can guess an assignment for the
two parameters, then perform cross actions to distinguishable parameters, and check
whether our assignment was the correct one, by checking the nature of the roots.
For example, consider the block Sp(8;R) � SO(6; 3). Entries 120 and 121 may be

obtained from 115 by a double-valued Cayley transform through the �rst root. The
two entries are weakly y-indistinguishable. We can obtain the �-data for these two
parameters from those of 115 by writing down the two possible parameters obtained by
Cayley transform (their ��s di¤er by �1), then perform complex cross actions through �3
to get the parameters for entries 132 and 133. These entries are not indistinguishable;
they di¤er by the nature of the real root �2. Using Proposition 4, we can match up the
parameters for 132 and 133, and thus those for 120 and 121. This kind of procedure
would be necessary if every Cayley transform (increasing length) leading to Cartan #6
were double-valued. An easier way would be to obtain the parameters of, say, #102
from #91, by Cayley transform through �4, and then perform cross actions to obtain
the �-data for all other lines attached to Cartan #6.

14.4 Dependent choices

If G(R) is disconnected so that a choice has to be made, it is important that this choice
is made in a consistent fashion. In our walk through the block, assigning parameters to
block lines, we may have to make a choice at more than one double-valued Cayley trans-
form with indistinguishable images; these choices are not necessarily independent. The
assignment of representations must be independent of the path. If the y-indistiguishable
sets associated with the most split Cartan have cardinality two, then only one choice
may be made freely; all others depend on this �rst choice. It is helpful to choose the
path through the block in a clever way so that we encounter a minimal number of
double-valued indistinguishable Cayley splits. Consider, for example, SO(3; 2) which
has two connected components, and a nontrivial character, sgn, which is trivial on the
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identity component. The group has four (conjugacy classes of) Cartan subgroups:

H0 '
�
S1
�2

H1 ' S1 � R�

H2 ' C�

H3 '
�
R�
�2

The restriction of sgn to H0 and H2 is trivial (since they are connected), and its re-
striction to the other two is nontrivial. There are Cayley transforms as indicated in the
diagram:

H3

% -
H2 H1

- %
H0

The Cayley transforms from H0 to H1 and from H2 to H3 will be double-valued with
indistinguishable images. The choices to be made will be dependent on each other. One
can avoid this di¢ culty by choosing the path from H1 to H3 instead, so that only one
choice occurs, with the Cayley transform from H0 to H1.
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